/* idl.c - ldap id list handling routines */ /* $OpenLDAP$ */ /* * Copyright 1998-2000 The OpenLDAP Foundation, All Rights Reserved. * COPYING RESTRICTIONS APPLY, see COPYRIGHT file */ #include "portable.h" #include #include #include #include "slap.h" #include "back-ldbm.h" static ID_BLOCK* idl_dup( ID_BLOCK *idl ); static void cont_alloc( Datum *cont, Datum *key ) { ldbm_datum_init( *cont ); cont->dsize = 1 + sizeof(ID) + key->dsize; cont->dptr = ch_malloc( cont->dsize ); * (unsigned char *) cont->dptr = SLAP_INDEX_CONT_PREFIX; AC_MEMCPY( &((unsigned char *)cont->dptr)[1 + sizeof(ID)], key->dptr, key->dsize ); } static void cont_id( Datum *cont, ID id ) { int i; for( i=1; i <= sizeof(id); i++) { ((unsigned char *)cont->dptr)[i] = (unsigned char)(id & 0xFF); id >>= 8; } } static void cont_free( Datum *cont ) { ch_free( cont->dptr ); } /* Allocate an ID_BLOCK with room for nids ids */ ID_BLOCK * idl_alloc( unsigned int nids ) { ID_BLOCK *new; /* nmax + nids + space for the ids */ new = (ID_BLOCK *) ch_calloc( (ID_BLOCK_IDS_OFFSET + nids), sizeof(ID) ); ID_BLOCK_NMAX(new) = nids; ID_BLOCK_NIDS(new) = 0; return( new ); } /* Allocate an empty ALLIDS ID_BLOCK */ ID_BLOCK * idl_allids( Backend *be ) { ID_BLOCK *idl; idl = idl_alloc( 0 ); ID_BLOCK_NMAX(idl) = ID_BLOCK_ALLIDS_VALUE; ID_BLOCK_NIDS(idl) = next_id_get( be ); return( idl ); } /* Free an ID_BLOCK */ void idl_free( ID_BLOCK *idl ) { if ( idl == NULL ) { Debug( LDAP_DEBUG_TRACE, "idl_free: called with NULL pointer\n", 0, 0, 0 ); return; } free( (char *) idl ); } /* Fetch an single ID_BLOCK from the cache */ static ID_BLOCK * idl_fetch_one( Backend *be, DBCache *db, Datum key ) { Datum data; ID_BLOCK *idl; /* Debug( LDAP_DEBUG_TRACE, "=> idl_fetch_one\n", 0, 0, 0 ); */ data = ldbm_cache_fetch( db, key ); if( data.dptr == NULL ) { return NULL; } idl = idl_dup((ID_BLOCK *) data.dptr); ldbm_datum_free( db->dbc_db, data ); return idl; } /* Fetch a set of ID_BLOCKs from the cache * if not INDIRECT * if block return is an ALLIDS block, * return an new ALLIDS block * otherwise * return block * construct super block from all blocks referenced by INDIRECT block * return super block */ ID_BLOCK * idl_fetch( Backend *be, DBCache *db, Datum key ) { Datum data; ID_BLOCK *idl; ID_BLOCK **tmp; int i, nids; idl = idl_fetch_one( be, db, key ); if ( idl == NULL ) { return NULL; } if ( ID_BLOCK_ALLIDS(idl) ) { /* all ids block */ /* make sure we have the current value of highest id */ idl_free( idl ); idl = idl_allids( be ); return( idl ); } if ( ! ID_BLOCK_INDIRECT( idl ) ) { /* regular block */ return( idl ); } /* * this is an indirect block which points to other blocks. * we need to read in all the blocks it points to and construct * a big id list containing all the ids, which we will return. */ /* count the number of blocks & allocate space for pointers to them */ for ( i = 0; !ID_BLOCK_NOID(idl, i); i++ ) ; /* NULL */ tmp = (ID_BLOCK **) ch_malloc( (i + 1) * sizeof(ID_BLOCK *) ); /* read in all the blocks */ cont_alloc( &data, &key ); nids = 0; for ( i = 0; !ID_BLOCK_NOID(idl, i); i++ ) { cont_id( &data, ID_BLOCK_ID(idl, i) ); if ( (tmp[i] = idl_fetch_one( be, db, data )) == NULL ) { Debug( LDAP_DEBUG_ANY, "idl_fetch: one returned NULL\n", 0, 0, 0 ); continue; } nids += ID_BLOCK_NIDS(tmp[i]); } tmp[i] = NULL; cont_free( &data ); idl_free( idl ); /* allocate space for the big block */ idl = idl_alloc( nids ); ID_BLOCK_NIDS(idl) = nids; nids = 0; /* copy in all the ids from the component blocks */ for ( i = 0; tmp[i] != NULL; i++ ) { if ( tmp[i] == NULL ) { continue; } AC_MEMCPY( (char *) &ID_BLOCK_ID(idl, nids), (char *) &ID_BLOCK_ID(tmp[i], 0), ID_BLOCK_NIDS(tmp[i]) * sizeof(ID) ); nids += ID_BLOCK_NIDS(tmp[i]); idl_free( tmp[i] ); } free( (char *) tmp ); Debug( LDAP_DEBUG_TRACE, "<= idl_fetch %ld ids (%ld max)\n", ID_BLOCK_NIDS(idl), ID_BLOCK_NMAX(idl), 0 ); return( idl ); } /* store a single block */ static int idl_store( Backend *be, DBCache *db, Datum key, ID_BLOCK *idl ) { int rc, flags; Datum data; struct ldbminfo *li = (struct ldbminfo *) be->be_private; ldbm_datum_init( data ); /* Debug( LDAP_DEBUG_TRACE, "=> idl_store\n", 0, 0, 0 ); */ data.dptr = (char *) idl; data.dsize = (ID_BLOCK_IDS_OFFSET + ID_BLOCK_NMAX(idl)) * sizeof(ID); #ifdef LDBM_DEBUG Statslog( LDAP_DEBUG_STATS, "<= idl_store(): rc=%d\n", rc, 0, 0, 0, 0 ); #endif flags = LDBM_REPLACE; rc = ldbm_cache_store( db, key, data, flags ); /* Debug( LDAP_DEBUG_TRACE, "<= idl_store %d\n", rc, 0, 0 ); */ return( rc ); } /* split the block at id * locate ID greater than or equal to id. */ static void idl_split_block( ID_BLOCK *b, ID id, ID_BLOCK **right, ID_BLOCK **left ) { unsigned int nr, nl; /* find where to split the block *//* XXX linear search XXX */ for ( nr = 0; nr < ID_BLOCK_NIDS(b) && id > ID_BLOCK_ID(b, nr); nr++ ) ; /* NULL */ nl = ID_BLOCK_NIDS(b) - nr; *right = idl_alloc( nr == 0 ? 1 : nr ); *left = idl_alloc( nl + (nr == 0 ? 0 : 1)); /* * everything before the id being inserted in the first block * unless there is nothing, in which case the id being inserted * goes there. */ if ( nr == 0 ) { ID_BLOCK_NIDS(*right) = 1; ID_BLOCK_ID(*right, 0) = id; } else { AC_MEMCPY( (char *) &ID_BLOCK_ID(*right, 0), (char *) &ID_BLOCK_ID(b, 0), nr * sizeof(ID) ); ID_BLOCK_NIDS(*right) = nr; ID_BLOCK_ID(*left, 0) = id; } /* the id being inserted & everything after in the second block */ AC_MEMCPY( (char *) &ID_BLOCK_ID(*left, (nr == 0 ? 0 : 1)), (char *) &ID_BLOCK_ID(b, nr), nl * sizeof(ID) ); ID_BLOCK_NIDS(*left) = nl + (nr == 0 ? 0 : 1); } /* * idl_change_first - called when an indirect block's first key has * changed, meaning it needs to be stored under a new key, and the * header block pointing to it needs updating. */ static int idl_change_first( Backend *be, DBCache *db, Datum hkey, /* header block key */ ID_BLOCK *h, /* header block */ int pos, /* pos in h to update */ Datum bkey, /* data block key */ ID_BLOCK *b /* data block */ ) { int rc; /* Debug( LDAP_DEBUG_TRACE, "=> idl_change_first\n", 0, 0, 0 ); */ /* delete old key block */ if ( (rc = ldbm_cache_delete( db, bkey )) != 0 ) { Debug( LDAP_DEBUG_ANY, "idl_change_first: ldbm_cache_delete returned %d\n", rc, 0, 0 ); return( rc ); } /* write block with new key */ cont_id( &bkey, ID_BLOCK_ID(b, 0) ); if ( (rc = idl_store( be, db, bkey, b )) != 0 ) { Debug( LDAP_DEBUG_ANY, "idl_change_first: idl_store returned %d\n", rc, 0, 0 ); return( rc ); } /* update + write indirect header block */ ID_BLOCK_ID(h, pos) = ID_BLOCK_ID(b, 0); if ( (rc = idl_store( be, db, hkey, h )) != 0 ) { Debug( LDAP_DEBUG_ANY, "idl_change_first: idl_store returned %d\n", rc, 0, 0 ); return( rc ); } return( 0 ); } int idl_insert_key( Backend *be, DBCache *db, Datum key, ID id ) { int i, j, first, rc; ID_BLOCK *idl, *tmp, *tmp2, *tmp3; Datum k2; if ( (idl = idl_fetch_one( be, db, key )) == NULL ) { idl = idl_alloc( 1 ); ID_BLOCK_ID(idl, ID_BLOCK_NIDS(idl)++) = id; rc = idl_store( be, db, key, idl ); idl_free( idl ); return( rc ); } if ( ID_BLOCK_ALLIDS( idl ) ) { /* ALLIDS */ idl_free( idl ); return 0; } if ( ! ID_BLOCK_INDIRECT( idl ) ) { /* regular block */ switch ( idl_insert( &idl, id, db->dbc_maxids ) ) { case 0: /* id inserted - store the updated block */ case 1: rc = idl_store( be, db, key, idl ); break; case 2: /* id already there - nothing to do */ rc = 0; break; case 3: /* id not inserted - block must be split */ /* check threshold for marking this an all-id block */ if ( db->dbc_maxindirect < 2 ) { idl_free( idl ); idl = idl_allids( be ); rc = idl_store( be, db, key, idl ); break; } idl_split_block( idl, id, &tmp, &tmp2 ); idl_free( idl ); /* create the header indirect block */ idl = idl_alloc( 3 ); ID_BLOCK_NMAX(idl) = 3; ID_BLOCK_NIDS(idl) = ID_BLOCK_INDIRECT_VALUE; ID_BLOCK_ID(idl, 0) = ID_BLOCK_ID(tmp, 0); ID_BLOCK_ID(idl, 1) = ID_BLOCK_ID(tmp2, 0); ID_BLOCK_ID(idl, 2) = NOID; /* store it */ rc = idl_store( be, db, key, idl ); cont_alloc( &k2, &key ); cont_id( &k2, ID_BLOCK_ID(tmp, 0) ); rc = idl_store( be, db, k2, tmp ); cont_id( &k2, ID_BLOCK_ID(tmp2, 0) ); rc = idl_store( be, db, k2, tmp2 ); cont_free( &k2 ); idl_free( tmp ); idl_free( tmp2 ); break; } idl_free( idl ); return( rc ); } /* * this is an indirect block which points to other blocks. * we need to read in the block into which the id should be * inserted, then insert the id and store the block. we might * have to split the block if it is full, which means we also * need to write a new "header" block. */ /* select the block to try inserting into *//* XXX linear search XXX */ for ( i = 0; !ID_BLOCK_NOID(idl, i) && id > ID_BLOCK_ID(idl, i); i++ ) ; /* NULL */ if ( i != 0 ) { i--; first = 0; } else { first = 1; } /* get the block */ cont_alloc( &k2, &key ); cont_id( &k2, ID_BLOCK_ID(idl, i) ); if ( (tmp = idl_fetch_one( be, db, k2 )) == NULL ) { Debug( LDAP_DEBUG_ANY, "idl_insert_key: nonexistent continuation block\n", 0, 0, 0 ); cont_free( &k2 ); idl_free( idl ); return( -1 ); } /* insert the id */ switch ( idl_insert( &tmp, id, db->dbc_maxids ) ) { case 0: /* id inserted ok */ if ( (rc = idl_store( be, db, k2, tmp )) != 0 ) { Debug( LDAP_DEBUG_ANY, "idl_insert_key: idl_store returned %d\n", rc, 0, 0 ); } break; case 1: /* id inserted - first id in block has changed */ /* * key for this block has changed, so we have to * write the block under the new key, delete the * old key block + update and write the indirect * header block. */ rc = idl_change_first( be, db, key, idl, i, k2, tmp ); break; case 2: /* id not inserted - already there, do nothing */ rc = 0; break; case 3: /* id not inserted - block is full */ /* * first, see if it will fit in the next block, * without splitting, unless we're trying to insert * into the beginning of the first block. */ /* is there a next block? */ if ( !first && !ID_BLOCK_NOID(idl, i + 1) ) { /* read it in */ cont_alloc( &k2, &key ); cont_id( &k2, ID_BLOCK_ID(idl, i) ); if ( (tmp2 = idl_fetch_one( be, db, k2 )) == NULL ) { Debug( LDAP_DEBUG_ANY, "idl_insert_key: idl_fetch_one returned NULL\n", 0, 0, 0 ); /* split the original block */ cont_free( &k2 ); goto split; } /* If the new id is less than the last id in the * current block, it must not be put into the next * block. Push the last id of the current block * into the next block instead. */ if (id < ID_BLOCK_ID(tmp, ID_BLOCK_NIDS(tmp) - 1)) { ID id2 = ID_BLOCK_ID(tmp, ID_BLOCK_NIDS(tmp) - 1); Datum k3; ldbm_datum_init( k3 ); --ID_BLOCK_NIDS(tmp); /* This must succeed since we just popped one * ID off the end of it. */ rc = idl_insert( &tmp, id, db->dbc_maxids ); k3.dptr = ch_malloc(k2.dsize); k3.dsize = k2.dsize; AC_MEMCPY(k3.dptr, k2.dptr, k3.dsize); if ( (rc = idl_store( be, db, k3, tmp )) != 0 ) { Debug( LDAP_DEBUG_ANY, "idl_insert_key: idl_store returned %d\n", rc, 0, 0 ); } free( k3.dptr ); id = id2; /* This new id will necessarily be inserted * as the first id of the next block by the * following switch() statement. */ } switch ( (rc = idl_insert( &tmp2, id, db->dbc_maxids )) ) { case 1: /* id inserted first in block */ rc = idl_change_first( be, db, key, idl, i + 1, k2, tmp2 ); /* FALL */ case 2: /* id already there - how? */ case 0: /* id inserted: this can never be * the result of idl_insert, because * we guaranteed that idl_change_first * will always be called. */ if ( rc == 2 ) { Debug( LDAP_DEBUG_ANY, "idl_insert_key: id %ld already in next block\n", id, 0, 0 ); } idl_free( tmp ); idl_free( tmp2 ); idl_free( idl ); return( 0 ); case 3: /* split the original block */ break; } idl_free( tmp2 ); } split: /* * must split the block, write both new blocks + update * and write the indirect header block. */ rc = 0; /* optimistic */ /* count how many indirect blocks *//* XXX linear count XXX */ for ( j = 0; !ID_BLOCK_NOID(idl, j); j++ ) ; /* NULL */ /* check it against all-id thresholed */ if ( j + 1 > db->dbc_maxindirect ) { /* * we've passed the all-id threshold, meaning * that this set of blocks should be replaced * by a single "all-id" block. our job: delete * all the indirect blocks, and replace the header * block by an all-id block. */ /* delete all indirect blocks */ for ( j = 0; !ID_BLOCK_NOID(idl, j); j++ ) { cont_id( &k2, ID_BLOCK_ID(idl, j) ); rc = ldbm_cache_delete( db, k2 ); } /* store allid block in place of header block */ idl_free( idl ); idl = idl_allids( be ); rc = idl_store( be, db, key, idl ); cont_free( &k2 ); idl_free( idl ); idl_free( tmp ); return( rc ); } idl_split_block( tmp, id, &tmp2, &tmp3 ); idl_free( tmp ); /* create a new updated indirect header block */ tmp = idl_alloc( ID_BLOCK_NMAX(idl) + 1 ); ID_BLOCK_NIDS(tmp) = ID_BLOCK_INDIRECT_VALUE; /* everything up to the split block */ AC_MEMCPY( (char *) &ID_BLOCK_ID(tmp, 0), (char *) &ID_BLOCK_ID(idl, 0), i * sizeof(ID) ); /* the two new blocks */ ID_BLOCK_ID(tmp, i) = ID_BLOCK_ID(tmp2, 0); ID_BLOCK_ID(tmp, i + 1) = ID_BLOCK_ID(tmp3, 0); /* everything after the split block */ AC_MEMCPY( (char *) &ID_BLOCK_ID(tmp, i + 2), (char *) &ID_BLOCK_ID(idl, i + 1), (ID_BLOCK_NMAX(idl) - i - 1) * sizeof(ID) ); /* store the header block */ rc = idl_store( be, db, key, tmp ); /* store the first id block */ cont_id( &k2, ID_BLOCK_ID(tmp2, 0) ); rc = idl_store( be, db, k2, tmp2 ); /* store the second id block */ cont_id( &k2, ID_BLOCK_ID(tmp3, 0) ); rc = idl_store( be, db, k2, tmp3 ); idl_free( tmp2 ); idl_free( tmp3 ); break; } cont_free( &k2 ); idl_free( tmp ); idl_free( idl ); return( rc ); } /* * idl_insert - insert an id into an id list. * * returns * 0 id inserted * 1 id inserted, first id in block has changed * 2 id not inserted, already there * 3 id not inserted, block must be split */ int idl_insert( ID_BLOCK **idl, ID id, unsigned int maxids ) { unsigned int i; if ( ID_BLOCK_ALLIDS( *idl ) ) { return( 2 ); /* already there */ } /* is it already there? *//* XXX linear search XXX */ for ( i = 0; i < ID_BLOCK_NIDS(*idl) && id > ID_BLOCK_ID(*idl, i); i++ ) { ; /* NULL */ } if ( i < ID_BLOCK_NIDS(*idl) && ID_BLOCK_ID(*idl, i) == id ) { return( 2 ); /* already there */ } /* do we need to make room for it? */ if ( ID_BLOCK_NIDS(*idl) == ID_BLOCK_NMAX(*idl) ) { /* make room or indicate block needs splitting */ if ( ID_BLOCK_NMAX(*idl) >= maxids ) { return( 3 ); /* block needs splitting */ } ID_BLOCK_NMAX(*idl) *= 2; if ( ID_BLOCK_NMAX(*idl) > maxids ) { ID_BLOCK_NMAX(*idl) = maxids; } *idl = (ID_BLOCK *) ch_realloc( (char *) *idl, (ID_BLOCK_NMAX(*idl) + ID_BLOCK_IDS_OFFSET) * sizeof(ID) ); } /* make a slot for the new id */ AC_MEMCPY( &ID_BLOCK_ID(*idl, i+1), &ID_BLOCK_ID(*idl, i), (ID_BLOCK_NIDS(*idl) - i) * sizeof(ID) ); ID_BLOCK_ID(*idl, i) = id; ID_BLOCK_NIDS(*idl)++; (void) memset( (char *) &ID_BLOCK_ID((*idl), ID_BLOCK_NIDS(*idl)), '\0', (ID_BLOCK_NMAX(*idl) - ID_BLOCK_NIDS(*idl)) * sizeof(ID) ); return( i == 0 ? 1 : 0 ); /* inserted - first id changed or not */ } int idl_delete_key ( Backend *be, DBCache *db, Datum key, ID id ) { Datum data; ID_BLOCK *idl; unsigned i; int j, nids; if ( (idl = idl_fetch_one( be, db, key ) ) == NULL ) { /* It wasn't found. Hmm... */ return -1; } if ( ID_BLOCK_ALLIDS( idl ) ) { idl_free( idl ); return 0; } if ( ! ID_BLOCK_INDIRECT( idl ) ) { for ( i=0; i < ID_BLOCK_NIDS(idl); i++ ) { if ( ID_BLOCK_ID(idl, i) == id ) { if( --ID_BLOCK_NIDS(idl) == 0 ) { ldbm_cache_delete( db, key ); } else { AC_MEMCPY( &ID_BLOCK_ID(idl, i), &ID_BLOCK_ID(idl, i+1), (ID_BLOCK_NIDS(idl)-i) * sizeof(ID) ); ID_BLOCK_ID(idl, ID_BLOCK_NIDS(idl)) = NOID; idl_store( be, db, key, idl ); } idl_free( idl ); return 0; } /* We didn't find the ID. Hmmm... */ } idl_free( idl ); return -1; } /* We have to go through an indirect block and find the ID in the list of IDL's */ for ( nids = 0; !ID_BLOCK_NOID(idl, nids); nids++ ) ; /* NULL */ cont_alloc( &data, &key ); for ( j = 0; !ID_BLOCK_NOID(idl, j); j++ ) { ID_BLOCK *tmp; cont_id( &data, ID_BLOCK_ID(idl, j) ); if ( (tmp = idl_fetch_one( be, db, data )) == NULL ) { Debug( LDAP_DEBUG_ANY, "idl_delete_key: idl_fetch of returned NULL\n", 0, 0, 0 ); continue; } /* Now try to find the ID in tmp */ for ( i=0; i < ID_BLOCK_NIDS(tmp); i++ ) { if ( ID_BLOCK_ID(tmp, i) == id ) { AC_MEMCPY( &ID_BLOCK_ID(tmp, i), &ID_BLOCK_ID(tmp, i+1), (ID_BLOCK_NIDS(tmp)-(i+1)) * sizeof(ID)); ID_BLOCK_ID(tmp, ID_BLOCK_NIDS(tmp)-1 ) = NOID; ID_BLOCK_NIDS(tmp)--; if ( ID_BLOCK_NIDS(tmp) ) { idl_store ( be, db, data, tmp ); } else { ldbm_cache_delete( db, data ); AC_MEMCPY( &ID_BLOCK_ID(idl, j), &ID_BLOCK_ID(idl, j+1), (nids-(j+1)) * sizeof(ID)); ID_BLOCK_ID(idl, nids-1) = NOID; nids--; if ( ! nids ) ldbm_cache_delete( db, key ); else idl_store( be, db, key, idl ); } idl_free( tmp ); cont_free( &data ); idl_free( idl ); return 0; } } idl_free( tmp ); } cont_free( &data ); idl_free( idl ); return -1; } /* return a duplicate of a single ID_BLOCK */ static ID_BLOCK * idl_dup( ID_BLOCK *idl ) { ID_BLOCK *new; if ( idl == NULL ) { return( NULL ); } new = idl_alloc( ID_BLOCK_NMAX(idl) ); AC_MEMCPY( (char *) new, (char *) idl, (ID_BLOCK_NMAX(idl) + ID_BLOCK_IDS_OFFSET) * sizeof(ID) ); return( new ); } /* return the smaller ID_BLOCK */ static ID_BLOCK * idl_min( ID_BLOCK *a, ID_BLOCK *b ) { return( ID_BLOCK_NIDS(a) > ID_BLOCK_NIDS(b) ? b : a ); } /* * idl_intersection - return a intersection b */ ID_BLOCK * idl_intersection( Backend *be, ID_BLOCK *a, ID_BLOCK *b ) { unsigned int ai, bi, ni; ID_BLOCK *n; if ( a == NULL || b == NULL ) { return( NULL ); } if ( ID_BLOCK_ALLIDS( a ) ) { return( idl_dup( b ) ); } if ( ID_BLOCK_ALLIDS( b ) ) { return( idl_dup( a ) ); } n = idl_dup( idl_min( a, b ) ); for ( ni = 0, ai = 0, bi = 0; ai < ID_BLOCK_NIDS(a); ai++ ) { for ( ; bi < ID_BLOCK_NIDS(b) && ID_BLOCK_ID(b, bi) < ID_BLOCK_ID(a, ai); bi++ ) { ; /* NULL */ } if ( bi == ID_BLOCK_NIDS(b) ) { break; } if ( ID_BLOCK_ID(b, bi) == ID_BLOCK_ID(a, ai) ) { ID_BLOCK_ID(n, ni++) = ID_BLOCK_ID(a, ai); } } if ( ni == 0 ) { idl_free( n ); return( NULL ); } ID_BLOCK_NIDS(n) = ni; return( n ); } /* * idl_union - return a union b */ ID_BLOCK * idl_union( Backend *be, ID_BLOCK *a, ID_BLOCK *b ) { unsigned int ai, bi, ni; ID_BLOCK *n; if ( a == NULL ) { return( idl_dup( b ) ); } if ( b == NULL ) { return( idl_dup( a ) ); } if ( ID_BLOCK_ALLIDS( a ) || ID_BLOCK_ALLIDS( b ) ) { return( idl_allids( be ) ); } if ( ID_BLOCK_NIDS(b) < ID_BLOCK_NIDS(a) ) { n = a; a = b; b = n; } n = idl_alloc( ID_BLOCK_NIDS(a) + ID_BLOCK_NIDS(b) ); for ( ni = 0, ai = 0, bi = 0; ai < ID_BLOCK_NIDS(a) && bi < ID_BLOCK_NIDS(b); ) { if ( ID_BLOCK_ID(a, ai) < ID_BLOCK_ID(b, bi) ) { ID_BLOCK_ID(n, ni++) = ID_BLOCK_ID(a, ai++); } else if ( ID_BLOCK_ID(b, bi) < ID_BLOCK_ID(a, ai) ) { ID_BLOCK_ID(n, ni++) = ID_BLOCK_ID(b, bi++); } else { ID_BLOCK_ID(n, ni++) = ID_BLOCK_ID(a, ai); ai++, bi++; } } for ( ; ai < ID_BLOCK_NIDS(a); ai++ ) { ID_BLOCK_ID(n, ni++) = ID_BLOCK_ID(a, ai); } for ( ; bi < ID_BLOCK_NIDS(b); bi++ ) { ID_BLOCK_ID(n, ni++) = ID_BLOCK_ID(b, bi); } ID_BLOCK_NIDS(n) = ni; return( n ); } /* * idl_notin - return a intersection ~b (or a minus b) */ ID_BLOCK * idl_notin( Backend *be, ID_BLOCK *a, ID_BLOCK *b ) { unsigned int ni, ai, bi; ID_BLOCK *n; if ( a == NULL ) { return( NULL ); } if ( b == NULL || ID_BLOCK_ALLIDS( b )) { return( idl_dup( a ) ); } if ( ID_BLOCK_ALLIDS( a ) ) { n = idl_alloc( SLAPD_LDBM_MIN_MAXIDS ); ni = 0; for ( ai = 1, bi = 0; ai < ID_BLOCK_NIDS(a) && ni < ID_BLOCK_NMAX(n) && bi < ID_BLOCK_NMAX(b); ai++ ) { if ( ID_BLOCK_ID(b, bi) == ai ) { bi++; } else { ID_BLOCK_ID(n, ni++) = ai; } } for ( ; ai < ID_BLOCK_NIDS(a) && ni < ID_BLOCK_NMAX(n); ai++ ) { ID_BLOCK_ID(n, ni++) = ai; } if ( ni == ID_BLOCK_NMAX(n) ) { idl_free( n ); return( idl_allids( be ) ); } else { ID_BLOCK_NIDS(n) = ni; return( n ); } } n = idl_dup( a ); ni = 0; for ( ai = 0, bi = 0; ai < ID_BLOCK_NIDS(a); ai++ ) { for ( ; bi < ID_BLOCK_NIDS(b) && ID_BLOCK_ID(b, bi) < ID_BLOCK_ID(a, ai); bi++ ) { ; /* NULL */ } if ( bi == ID_BLOCK_NIDS(b) ) { break; } if ( ID_BLOCK_ID(b, bi) != ID_BLOCK_ID(a, ai) ) { ID_BLOCK_ID(n, ni++) = ID_BLOCK_ID(a, ai); } } for ( ; ai < ID_BLOCK_NIDS(a); ai++ ) { ID_BLOCK_ID(n, ni++) = ID_BLOCK_ID(a, ai); } ID_BLOCK_NIDS(n) = ni; return( n ); } /* return the first ID in the block * if ALLIDS block * NIDS > 1 return 1 * otherwise return NOID * otherwise return first ID * * cursor is set to 1 */ ID idl_firstid( ID_BLOCK *idl, ID *cursor ) { *cursor = 1; if ( idl == NULL || ID_BLOCK_NIDS(idl) == 0 ) { return( NOID ); } if ( ID_BLOCK_ALLIDS( idl ) ) { return( ID_BLOCK_NIDS(idl) > 1 ? 1 : NOID ); } return( ID_BLOCK_ID(idl, 0) ); } /* return next ID * if ALLIDS block, cursor is id. * increment id * if id < NIDS return id * otherwise NOID. * otherwise cursor is index into block * if index < nids * return id at index then increment */ ID idl_nextid( ID_BLOCK *idl, ID *cursor ) { if ( ID_BLOCK_ALLIDS( idl ) ) { if( ++(*cursor) < ID_BLOCK_NIDS(idl) ) { return *cursor; } else { return NOID; } } if ( *cursor < ID_BLOCK_NIDS(idl) ) { return( ID_BLOCK_ID(idl, (*cursor)++) ); } return( NOID ); }