/* $OpenLDAP$ */ /* This work is part of OpenLDAP Software . * * Copyright 1998-2008 The OpenLDAP Foundation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted only as authorized by the OpenLDAP * Public License. * * A copy of this license is available in file LICENSE in the * top-level directory of the distribution or, alternatively, at * . */ #include "portable.h" #include #include #include #include #include #include #include #include "ldap-int.h" #include "ldap_pvt_thread.h" /* Get the thread interface */ #include "ldap_queue.h" #define LDAP_THREAD_POOL_IMPLEMENTATION #include "ldap_thr_debug.h" /* May rename symbols defined below */ #ifndef LDAP_THREAD_HAVE_TPOOL typedef enum ldap_int_thread_pool_state_e { LDAP_INT_THREAD_POOL_RUNNING, LDAP_INT_THREAD_POOL_FINISHING, LDAP_INT_THREAD_POOL_STOPPING } ldap_int_thread_pool_state_t; /* Thread-specific key with data and optional free function */ typedef struct ldap_int_tpool_key_s { void *ltk_key; void *ltk_data; ldap_pvt_thread_pool_keyfree_t *ltk_free; } ldap_int_tpool_key_t; /* Max number of thread-specific keys we store per thread. * We don't expect to use many... */ #define MAXKEYS 32 /* Max number of threads */ #define LDAP_MAXTHR 1024 /* must be a power of 2 */ /* Context: thread ID and thread-specific key/data pairs */ typedef struct ldap_int_thread_userctx_s { ldap_pvt_thread_t ltu_id; ldap_int_tpool_key_t ltu_key[MAXKEYS]; } ldap_int_thread_userctx_t; /* Simple {thread ID -> context} hash table; key=ctx->ltu_id. * Protected by ldap_pvt_thread_pool_mutex except during pauses, * when it is read-only (used by pool_purgekey and pool_context). * Protected by tpool->ltp_mutex during pauses. */ static struct { ldap_int_thread_userctx_t *ctx; /* ctx is valid when not NULL or DELETED_THREAD_CTX */ # define DELETED_THREAD_CTX (&ldap_int_main_thrctx + 1) /* dummy addr */ } thread_keys[LDAP_MAXTHR]; #define TID_HASH(tid, hash) do { \ unsigned const char *ptr_ = (unsigned const char *)&(tid); \ unsigned i_; \ for (i_ = 0, (hash) = ptr_[0]; ++i_ < sizeof(tid);) \ (hash) += ((hash) << 5) ^ ptr_[i_]; \ } while(0) /* Task for a thread to perform */ typedef struct ldap_int_thread_task_s { union { LDAP_STAILQ_ENTRY(ldap_int_thread_task_s) q; LDAP_SLIST_ENTRY(ldap_int_thread_task_s) l; } ltt_next; ldap_pvt_thread_start_t *ltt_start_routine; void *ltt_arg; } ldap_int_thread_task_t; struct ldap_int_thread_pool_s { LDAP_STAILQ_ENTRY(ldap_int_thread_pool_s) ltp_next; /* protect members below, and protect thread_keys[] during pauses */ ldap_pvt_thread_mutex_t ltp_mutex; /* not paused and something to do for pool_() */ ldap_pvt_thread_cond_t ltp_cond; /* ltp_active_count <= 1 && ltp_pause */ ldap_pvt_thread_cond_t ltp_pcond; /* pending tasks, and unused task objects */ LDAP_STAILQ_HEAD(tcq, ldap_int_thread_task_s) ltp_pending_list; LDAP_SLIST_HEAD(tcl, ldap_int_thread_task_s) ltp_free_list; ldap_int_thread_pool_state_t ltp_state; /* Some active task needs to be the sole active task. * Atomic variable so ldap_pvt_thread_pool_pausing() can read it. */ volatile sig_atomic_t ltp_pause; int ltp_max_count; /* Max number of threads in pool, or 0 */ int ltp_max_pending; /* Max pending or paused requests, or 0 */ int ltp_pending_count; /* Pending or paused requests */ int ltp_active_count; /* Active, not paused requests */ int ltp_open_count; /* Number of threads */ int ltp_starting; /* Currenlty starting threads */ }; static int ldap_int_has_thread_pool = 0; static LDAP_STAILQ_HEAD(tpq, ldap_int_thread_pool_s) ldap_int_thread_pool_list = LDAP_STAILQ_HEAD_INITIALIZER(ldap_int_thread_pool_list); static ldap_pvt_thread_mutex_t ldap_pvt_thread_pool_mutex; static void *ldap_int_thread_pool_wrapper( void *pool ); static ldap_pvt_thread_key_t ldap_tpool_key; /* Context of the main thread */ static ldap_int_thread_userctx_t ldap_int_main_thrctx; int ldap_int_thread_pool_startup ( void ) { ldap_int_main_thrctx.ltu_id = ldap_pvt_thread_self(); ldap_pvt_thread_key_create( &ldap_tpool_key ); return ldap_pvt_thread_mutex_init(&ldap_pvt_thread_pool_mutex); } int ldap_int_thread_pool_shutdown ( void ) { struct ldap_int_thread_pool_s *pool; while ((pool = LDAP_STAILQ_FIRST(&ldap_int_thread_pool_list)) != NULL) { (ldap_pvt_thread_pool_destroy)(&pool, 0); /* ignore thr_debug macro */ } ldap_pvt_thread_mutex_destroy(&ldap_pvt_thread_pool_mutex); ldap_pvt_thread_key_destroy( ldap_tpool_key ); return(0); } /* Create a thread pool */ int ldap_pvt_thread_pool_init ( ldap_pvt_thread_pool_t *tpool, int max_threads, int max_pending ) { ldap_pvt_thread_pool_t pool; int rc; /* multiple pools are currently not supported (ITS#4943) */ assert(!ldap_int_has_thread_pool); if (! (0 <= max_threads && max_threads <= LDAP_MAXTHR)) max_threads = 0; if (max_pending < 0) max_pending = 0; *tpool = NULL; pool = (ldap_pvt_thread_pool_t) LDAP_CALLOC(1, sizeof(struct ldap_int_thread_pool_s)); if (pool == NULL) return(-1); rc = ldap_pvt_thread_mutex_init(&pool->ltp_mutex); if (rc != 0) return(rc); rc = ldap_pvt_thread_cond_init(&pool->ltp_cond); if (rc != 0) return(rc); rc = ldap_pvt_thread_cond_init(&pool->ltp_pcond); if (rc != 0) return(rc); ldap_int_has_thread_pool = 1; pool->ltp_state = LDAP_INT_THREAD_POOL_RUNNING; pool->ltp_max_count = max_threads; pool->ltp_max_pending = max_pending; LDAP_STAILQ_INIT(&pool->ltp_pending_list); LDAP_SLIST_INIT(&pool->ltp_free_list); ldap_pvt_thread_mutex_lock(&ldap_pvt_thread_pool_mutex); LDAP_STAILQ_INSERT_TAIL(&ldap_int_thread_pool_list, pool, ltp_next); ldap_pvt_thread_mutex_unlock(&ldap_pvt_thread_pool_mutex); #if 0 /* THIS WILL NOT WORK on some systems. If the process * forks after starting a thread, there is no guarantee * that the thread will survive the fork. For example, * slapd forks in order to daemonize, and does so after * calling ldap_pvt_thread_pool_init. On some systems, * this initial thread does not run in the child process, * but ltp_open_count == 1, so two things happen: * 1) the first client connection fails, and 2) when * slapd is kill'ed, it never terminates since it waits * for all worker threads to exit. */ /* start up one thread, just so there is one. no need to * lock the mutex right now, since no threads are running. */ pool->ltp_open_count++; ldap_pvt_thread_t thr; rc = ldap_pvt_thread_create( &thr, 1, ldap_int_thread_pool_wrapper, pool ); if( rc != 0) { /* couldn't start one? then don't start any */ ldap_pvt_thread_mutex_lock(&ldap_pvt_thread_pool_mutex); LDAP_STAILQ_REMOVE(ldap_int_thread_pool_list, pool, ldap_int_thread_pool_s, ltp_next); ldap_int_has_thread_pool = 0; ldap_pvt_thread_mutex_unlock(&ldap_pvt_thread_pool_mutex); ldap_pvt_thread_cond_destroy(&pool->ltp_pcond); ldap_pvt_thread_cond_destroy(&pool->ltp_cond); ldap_pvt_thread_mutex_destroy(&pool->ltp_mutex); LDAP_FREE(pool); return(-1); } #endif *tpool = pool; return(0); } /* Submit a task to be performed by the thread pool */ int ldap_pvt_thread_pool_submit ( ldap_pvt_thread_pool_t *tpool, ldap_pvt_thread_start_t *start_routine, void *arg ) { struct ldap_int_thread_pool_s *pool; ldap_int_thread_task_t *task; ldap_pvt_thread_t thr; if (tpool == NULL) return(-1); pool = *tpool; if (pool == NULL) return(-1); ldap_pvt_thread_mutex_lock(&pool->ltp_mutex); if (pool->ltp_state != LDAP_INT_THREAD_POOL_RUNNING || (pool->ltp_max_pending && pool->ltp_pending_count >= pool->ltp_max_pending)) goto failed; task = LDAP_SLIST_FIRST(&pool->ltp_free_list); if (task) { LDAP_SLIST_REMOVE_HEAD(&pool->ltp_free_list, ltt_next.l); } else { task = (ldap_int_thread_task_t *) LDAP_MALLOC(sizeof(*task)); if (task == NULL) goto failed; } task->ltt_start_routine = start_routine; task->ltt_arg = arg; pool->ltp_pending_count++; LDAP_STAILQ_INSERT_TAIL(&pool->ltp_pending_list, task, ltt_next.q); if (pool->ltp_pause) { ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex); return(0); } ldap_pvt_thread_cond_signal(&pool->ltp_cond); if (pool->ltp_open_count < pool->ltp_active_count + pool->ltp_pending_count && (pool->ltp_open_count < (pool->ltp_max_count ? pool->ltp_max_count : LDAP_MAXTHR))) { pool->ltp_open_count++; pool->ltp_starting++; if (0 != ldap_pvt_thread_create( &thr, 1, ldap_int_thread_pool_wrapper, pool)) { /* couldn't create thread. back out of * ltp_open_count and check for even worse things. */ pool->ltp_starting--; pool->ltp_open_count--; if (pool->ltp_open_count == 0) { /* no open threads at all?!? */ ldap_int_thread_task_t *ptr; /* let pool_destroy know there are no more threads */ ldap_pvt_thread_cond_signal(&pool->ltp_cond); LDAP_STAILQ_FOREACH(ptr, &pool->ltp_pending_list, ltt_next.q) if (ptr == task) break; if (ptr == task) { /* no open threads, task not handled, so * back out of ltp_pending_count, free the task, * report the error. */ pool->ltp_pending_count--; LDAP_STAILQ_REMOVE(&pool->ltp_pending_list, task, ldap_int_thread_task_s, ltt_next.q); LDAP_SLIST_INSERT_HEAD(&pool->ltp_free_list, task, ltt_next.l); goto failed; } } /* there is another open thread, so this * task will be handled eventually. * continue on, we have signalled that * the task is waiting. */ } } ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex); return(0); failed: ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex); return(-1); } /* Set max #threads. value <= 0 means max supported #threads (LDAP_MAXTHR) */ int ldap_pvt_thread_pool_maxthreads( ldap_pvt_thread_pool_t *tpool, int max_threads ) { struct ldap_int_thread_pool_s *pool; if (! (0 <= max_threads && max_threads <= LDAP_MAXTHR)) max_threads = 0; if (tpool == NULL) return(-1); pool = *tpool; if (pool == NULL) return(-1); ldap_pvt_thread_mutex_lock(&pool->ltp_mutex); pool->ltp_max_count = max_threads; ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex); return(0); } /* Inspect the pool */ int ldap_pvt_thread_pool_query( ldap_pvt_thread_pool_t *tpool, ldap_pvt_thread_pool_param_t param, void *value ) { struct ldap_int_thread_pool_s *pool; int count = -1; if ( tpool == NULL || value == NULL ) { return -1; } pool = *tpool; if ( pool == NULL ) { return 0; } ldap_pvt_thread_mutex_lock(&pool->ltp_mutex); switch ( param ) { case LDAP_PVT_THREAD_POOL_PARAM_MAX: count = pool->ltp_max_count; break; case LDAP_PVT_THREAD_POOL_PARAM_MAX_PENDING: count = pool->ltp_max_pending; break; case LDAP_PVT_THREAD_POOL_PARAM_OPEN: count = pool->ltp_open_count; break; case LDAP_PVT_THREAD_POOL_PARAM_STARTING: count = pool->ltp_starting; break; case LDAP_PVT_THREAD_POOL_PARAM_ACTIVE: count = pool->ltp_active_count; break; case LDAP_PVT_THREAD_POOL_PARAM_PAUSING: count = pool->ltp_pause; break; case LDAP_PVT_THREAD_POOL_PARAM_PENDING: count = pool->ltp_pending_count; break; case LDAP_PVT_THREAD_POOL_PARAM_BACKLOAD: count = pool->ltp_pending_count + pool->ltp_active_count; break; case LDAP_PVT_THREAD_POOL_PARAM_ACTIVE_MAX: break; case LDAP_PVT_THREAD_POOL_PARAM_PENDING_MAX: break; case LDAP_PVT_THREAD_POOL_PARAM_BACKLOAD_MAX: break; case LDAP_PVT_THREAD_POOL_PARAM_STATE: { static struct { char *name; ldap_int_thread_pool_state_t state; } str2state[] = { { "running", LDAP_INT_THREAD_POOL_RUNNING }, { "finishing", LDAP_INT_THREAD_POOL_FINISHING }, { "stopping", LDAP_INT_THREAD_POOL_STOPPING }, { NULL } }; int i; if ( pool->ltp_pause ) { *((char **)value) = "pausing"; } else { for ( i = 0; str2state[ i ].name != NULL; i++ ) { if ( str2state[ i ].state == pool->ltp_state ) { break; } } *((char **)value) = str2state[ i ].name; } if ( *((char **)value) != NULL ) { count = -2; } } break; case LDAP_PVT_THREAD_POOL_PARAM_UNKNOWN: break; } ldap_pvt_thread_mutex_unlock( &pool->ltp_mutex ); if ( count > -1 ) { *((int *)value) = count; } return ( count == -1 ? -1 : 0 ); } /* * true if pool is pausing; does not lock any mutex to check. * 0 if not pause, 1 if pause, -1 if error or no pool. */ int ldap_pvt_thread_pool_pausing( ldap_pvt_thread_pool_t *tpool ) { int rc = -1; struct ldap_int_thread_pool_s *pool; if ( tpool != NULL && (pool = *tpool) != NULL ) { rc = pool->ltp_pause; } return rc; } /* * wrapper for ldap_pvt_thread_pool_query(), left around * for backwards compatibility */ int ldap_pvt_thread_pool_backload ( ldap_pvt_thread_pool_t *tpool ) { int rc, count; rc = ldap_pvt_thread_pool_query( tpool, LDAP_PVT_THREAD_POOL_PARAM_BACKLOAD, (void *)&count ); if ( rc == 0 ) { return count; } return rc; } /* Destroy the pool after making its threads finish */ int ldap_pvt_thread_pool_destroy ( ldap_pvt_thread_pool_t *tpool, int run_pending ) { struct ldap_int_thread_pool_s *pool, *pptr; ldap_int_thread_task_t *task; if (tpool == NULL) return(-1); pool = *tpool; if (pool == NULL) return(-1); ldap_pvt_thread_mutex_lock(&ldap_pvt_thread_pool_mutex); LDAP_STAILQ_FOREACH(pptr, &ldap_int_thread_pool_list, ltp_next) if (pptr == pool) break; if (pptr == pool) LDAP_STAILQ_REMOVE(&ldap_int_thread_pool_list, pool, ldap_int_thread_pool_s, ltp_next); ldap_pvt_thread_mutex_unlock(&ldap_pvt_thread_pool_mutex); if (pool != pptr) return(-1); ldap_pvt_thread_mutex_lock(&pool->ltp_mutex); pool->ltp_state = run_pending ? LDAP_INT_THREAD_POOL_FINISHING : LDAP_INT_THREAD_POOL_STOPPING; while (pool->ltp_open_count) { if (!pool->ltp_pause) ldap_pvt_thread_cond_broadcast(&pool->ltp_cond); ldap_pvt_thread_cond_wait(&pool->ltp_cond, &pool->ltp_mutex); } ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex); while ((task = LDAP_STAILQ_FIRST(&pool->ltp_pending_list)) != NULL) { LDAP_STAILQ_REMOVE_HEAD(&pool->ltp_pending_list, ltt_next.q); LDAP_FREE(task); } while ((task = LDAP_SLIST_FIRST(&pool->ltp_free_list)) != NULL) { LDAP_SLIST_REMOVE_HEAD(&pool->ltp_free_list, ltt_next.l); LDAP_FREE(task); } ldap_pvt_thread_cond_destroy(&pool->ltp_pcond); ldap_pvt_thread_cond_destroy(&pool->ltp_cond); ldap_pvt_thread_mutex_destroy(&pool->ltp_mutex); LDAP_FREE(pool); *tpool = NULL; ldap_int_has_thread_pool = 0; return(0); } /* Thread loop. Accept and handle submitted tasks. */ static void * ldap_int_thread_pool_wrapper ( void *xpool ) { struct ldap_int_thread_pool_s *pool = xpool; ldap_int_thread_task_t *task; ldap_int_thread_userctx_t ctx, *kctx; unsigned i, keyslot, hash; assert(pool != NULL); for ( i=0; iltp_mutex); /* thread_keys[] is read-only when paused */ while (pool->ltp_pause) ldap_pvt_thread_cond_wait(&pool->ltp_cond, &pool->ltp_mutex); /* find a key slot to give this thread ID and store a * pointer to our keys there; start at the thread ID * itself (mod LDAP_MAXTHR) and look for an empty slot. */ ldap_pvt_thread_mutex_lock(&ldap_pvt_thread_pool_mutex); for (keyslot = hash & (LDAP_MAXTHR-1); (kctx = thread_keys[keyslot].ctx) && kctx != DELETED_THREAD_CTX; keyslot = (keyslot+1) & (LDAP_MAXTHR-1)); thread_keys[keyslot].ctx = &ctx; ldap_pvt_thread_mutex_unlock(&ldap_pvt_thread_pool_mutex); pool->ltp_starting--; for (;;) { while (pool->ltp_pause) ldap_pvt_thread_cond_wait(&pool->ltp_cond, &pool->ltp_mutex); if (pool->ltp_state == LDAP_INT_THREAD_POOL_STOPPING) break; task = LDAP_STAILQ_FIRST(&pool->ltp_pending_list); if (task == NULL) { if (pool->ltp_state == LDAP_INT_THREAD_POOL_FINISHING) break; if (pool->ltp_open_count > (pool->ltp_max_count ? pool->ltp_max_count : LDAP_MAXTHR)) { /* too many threads running (can happen if the * maximum threads value is set during ongoing * operation using ldap_pvt_thread_pool_maxthreads) * so let this thread die. */ break; } /* we could check an idle timer here, and let the * thread die if it has been inactive for a while. * only die if there are other open threads (i.e., * always have at least one thread open). the check * should be like this: * if (pool->ltp_open_count > 1 && pool->ltp_starting == 0) * check timer, wait if ltp_pause, leave thread (break;) * * Just use pthread_cond_timedwait if we want to * check idle time. */ assert(pool->ltp_state == LDAP_INT_THREAD_POOL_RUNNING); ldap_pvt_thread_cond_wait(&pool->ltp_cond, &pool->ltp_mutex); continue; } LDAP_STAILQ_REMOVE_HEAD(&pool->ltp_pending_list, ltt_next.q); pool->ltp_pending_count--; pool->ltp_active_count++; ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex); task->ltt_start_routine(&ctx, task->ltt_arg); ldap_pvt_thread_mutex_lock(&pool->ltp_mutex); LDAP_SLIST_INSERT_HEAD(&pool->ltp_free_list, task, ltt_next.l); pool->ltp_active_count--; /* let pool_pause know when it is the sole active thread */ if (pool->ltp_active_count < 2) ldap_pvt_thread_cond_signal(&pool->ltp_pcond); } /* The ltp_mutex lock protects ctx->ltu_key from pool_purgekey() * during this call, since it prevents new pauses. */ ldap_pvt_thread_pool_context_reset(&ctx); ldap_pvt_thread_mutex_lock(&ldap_pvt_thread_pool_mutex); thread_keys[keyslot].ctx = DELETED_THREAD_CTX; ldap_pvt_thread_mutex_unlock(&ldap_pvt_thread_pool_mutex); pool->ltp_open_count--; /* let pool_destroy know we're all done */ if (pool->ltp_open_count < 1) ldap_pvt_thread_cond_signal(&pool->ltp_cond); ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex); ldap_pvt_thread_exit(NULL); return(NULL); } /* Pause the pool. Return when all other threads are paused. */ int ldap_pvt_thread_pool_pause ( ldap_pvt_thread_pool_t *tpool ) { struct ldap_int_thread_pool_s *pool; if (tpool == NULL) return(-1); pool = *tpool; if (pool == NULL) return(0); ldap_pvt_thread_mutex_lock(&pool->ltp_mutex); /* If someone else has already requested a pause, we have to wait */ if (pool->ltp_pause) { pool->ltp_pending_count++; pool->ltp_active_count--; /* let the other pool_pause() know when it can proceed */ if (pool->ltp_active_count < 2) ldap_pvt_thread_cond_signal(&pool->ltp_pcond); do { ldap_pvt_thread_cond_wait(&pool->ltp_cond, &pool->ltp_mutex); } while (pool->ltp_pause); pool->ltp_pending_count--; pool->ltp_active_count++; } /* Wait for everyone else to pause or finish */ pool->ltp_pause = 1; while (pool->ltp_active_count > 1) { ldap_pvt_thread_cond_wait(&pool->ltp_pcond, &pool->ltp_mutex); } ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex); return(0); } /* End a pause */ int ldap_pvt_thread_pool_resume ( ldap_pvt_thread_pool_t *tpool ) { struct ldap_int_thread_pool_s *pool; if (tpool == NULL) return(-1); pool = *tpool; if (pool == NULL) return(0); ldap_pvt_thread_mutex_lock(&pool->ltp_mutex); pool->ltp_pause = 0; if (pool->ltp_state == LDAP_INT_THREAD_POOL_RUNNING) ldap_pvt_thread_cond_broadcast(&pool->ltp_cond); ldap_pvt_thread_mutex_unlock(&pool->ltp_mutex); return(0); } /* * Get the key's data and optionally free function in the given context. */ int ldap_pvt_thread_pool_getkey( void *xctx, void *key, void **data, ldap_pvt_thread_pool_keyfree_t **kfree ) { ldap_int_thread_userctx_t *ctx = xctx; int i; if ( !ctx || !key || !data ) return EINVAL; for ( i=0; iltu_key[i].ltk_key; i++ ) { if ( ctx->ltu_key[i].ltk_key == key ) { *data = ctx->ltu_key[i].ltk_data; if ( kfree ) *kfree = ctx->ltu_key[i].ltk_free; return 0; } } return ENOENT; } static void clear_key_idx( ldap_int_thread_userctx_t *ctx, int i ) { for ( ; i < MAXKEYS-1 && ctx->ltu_key[i+1].ltk_key; i++ ) ctx->ltu_key[i] = ctx->ltu_key[i+1]; ctx->ltu_key[i].ltk_key = NULL; } /* * Set or remove data for the key in the given context. * key can be any unique pointer. * kfree() is an optional function to free the data (but not the key): * pool_context_reset() and pool_purgekey() call kfree(key, data), * but pool_setkey() does not. For pool_setkey() it is the caller's * responsibility to free any existing data with the same key. * kfree() must not call functions taking a tpool argument. */ int ldap_pvt_thread_pool_setkey( void *xctx, void *key, void *data, ldap_pvt_thread_pool_keyfree_t *kfree, void **olddatap, ldap_pvt_thread_pool_keyfree_t **oldkfreep ) { ldap_int_thread_userctx_t *ctx = xctx; int i, found; if ( !ctx || !key ) return EINVAL; for ( i=found=0; iltu_key[i].ltk_key == key ) { found = 1; break; } else if ( !ctx->ltu_key[i].ltk_key ) { break; } } if ( olddatap ) { if ( found ) { *olddatap = ctx->ltu_key[i].ltk_data; } else { *olddatap = NULL; } } if ( oldkfreep ) { if ( found ) { *oldkfreep = ctx->ltu_key[i].ltk_free; } else { *oldkfreep = 0; } } if ( data || kfree ) { if ( i>=MAXKEYS ) return ENOMEM; ctx->ltu_key[i].ltk_key = key; ctx->ltu_key[i].ltk_data = data; ctx->ltu_key[i].ltk_free = kfree; } else if ( found ) { clear_key_idx( ctx, i ); } return 0; } /* Free all elements with this key, no matter which thread they're in. * May only be called while the pool is paused. */ void ldap_pvt_thread_pool_purgekey( void *key ) { int i, j; ldap_int_thread_userctx_t *ctx; assert ( key != NULL ); for ( i=0; iltu_key[j].ltk_key; j++ ) { if ( ctx->ltu_key[j].ltk_key == key ) { if (ctx->ltu_key[j].ltk_free) ctx->ltu_key[j].ltk_free( ctx->ltu_key[j].ltk_key, ctx->ltu_key[j].ltk_data ); clear_key_idx( ctx, j ); break; } } } } } /* * Find the context of the current thread. * This is necessary if the caller does not have access to the * thread context handle (for example, a slapd plugin calling * slapi_search_internal()). No doubt it is more efficient * for the application to keep track of the thread context * handles itself. */ void *ldap_pvt_thread_pool_context( ) { void *ctx = NULL; ldap_pvt_thread_key_getdata( ldap_tpool_key, &ctx ); return ctx ? ctx : &ldap_int_main_thrctx; } /* * Free the context's keys. * Must not call functions taking a tpool argument (because this * thread already holds ltp_mutex when called from pool_wrapper()). */ void ldap_pvt_thread_pool_context_reset( void *vctx ) { ldap_int_thread_userctx_t *ctx = vctx; int i; for ( i=MAXKEYS-1; i>=0; i--) { if ( !ctx->ltu_key[i].ltk_key ) continue; if ( ctx->ltu_key[i].ltk_free ) ctx->ltu_key[i].ltk_free( ctx->ltu_key[i].ltk_key, ctx->ltu_key[i].ltk_data ); ctx->ltu_key[i].ltk_key = NULL; } } ldap_pvt_thread_t ldap_pvt_thread_pool_tid( void *vctx ) { ldap_int_thread_userctx_t *ctx = vctx; return ctx->ltu_id; } #endif /* LDAP_THREAD_HAVE_TPOOL */