/* idl.c - ldap id list handling routines */ /* $OpenLDAP$ */ /* This work is part of OpenLDAP Software . * * Copyright 2000-2007 The OpenLDAP Foundation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted only as authorized by the OpenLDAP * Public License. * * A copy of this license is available in the file LICENSE in the * top-level directory of the distribution or, alternatively, at * . */ #include "portable.h" #include #include #include "back-bdb.h" #include "idl.h" #define IDL_MAX(x,y) ( x > y ? x : y ) #define IDL_MIN(x,y) ( x < y ? x : y ) #define IDL_CMP(x,y) ( x < y ? -1 : ( x > y ? 1 : 0 ) ) #define IDL_LRU_DELETE( bdb, e ) do { \ if ( e == bdb->bi_idl_lru_head ) bdb->bi_idl_lru_head = e->idl_lru_next; \ if ( e == bdb->bi_idl_lru_tail ) bdb->bi_idl_lru_tail = e->idl_lru_prev; \ e->idl_lru_next->idl_lru_prev = e->idl_lru_prev; \ e->idl_lru_prev->idl_lru_next = e->idl_lru_next; \ } while ( 0 ) static int bdb_idl_entry_cmp( const void *v_idl1, const void *v_idl2 ) { const bdb_idl_cache_entry_t *idl1 = v_idl1, *idl2 = v_idl2; int rc; if ((rc = SLAP_PTRCMP( idl1->db, idl2->db ))) return rc; if ((rc = idl1->kstr.bv_len - idl2->kstr.bv_len )) return rc; return ( memcmp ( idl1->kstr.bv_val, idl2->kstr.bv_val , idl1->kstr.bv_len ) ); } #if IDL_DEBUG > 0 static void idl_check( ID *ids ) { if( BDB_IDL_IS_RANGE( ids ) ) { assert( BDB_IDL_RANGE_FIRST(ids) <= BDB_IDL_RANGE_LAST(ids) ); } else { ID i; for( i=1; i < ids[0]; i++ ) { assert( ids[i+1] > ids[i] ); } } } #if IDL_DEBUG > 1 static void idl_dump( ID *ids ) { if( BDB_IDL_IS_RANGE( ids ) ) { Debug( LDAP_DEBUG_ANY, "IDL: range ( %ld - %ld )\n", (long) BDB_IDL_RANGE_FIRST( ids ), (long) BDB_IDL_RANGE_LAST( ids ) ); } else { ID i; Debug( LDAP_DEBUG_ANY, "IDL: size %ld", (long) ids[0], 0, 0 ); for( i=1; i<=ids[0]; i++ ) { if( i % 16 == 1 ) { Debug( LDAP_DEBUG_ANY, "\n", 0, 0, 0 ); } Debug( LDAP_DEBUG_ANY, " %02lx", (long) ids[i], 0, 0 ); } Debug( LDAP_DEBUG_ANY, "\n", 0, 0, 0 ); } idl_check( ids ); } #endif /* IDL_DEBUG > 1 */ #endif /* IDL_DEBUG > 0 */ unsigned bdb_idl_search( ID *ids, ID id ) { #define IDL_BINARY_SEARCH 1 #ifdef IDL_BINARY_SEARCH /* * binary search of id in ids * if found, returns position of id * if not found, returns first postion greater than id */ unsigned base = 0; unsigned cursor = 0; int val = 0; unsigned n = ids[0]; #if IDL_DEBUG > 0 idl_check( ids ); #endif while( 0 < n ) { int pivot = n >> 1; cursor = base + pivot; val = IDL_CMP( id, ids[cursor + 1] ); if( val < 0 ) { n = pivot; } else if ( val > 0 ) { base = cursor + 1; n -= pivot + 1; } else { return cursor + 1; } } if( val > 0 ) { return cursor + 2; } else { return cursor + 1; } #else /* (reverse) linear search */ int i; #if IDL_DEBUG > 0 idl_check( ids ); #endif for( i=ids[0]; i; i-- ) { if( id > ids[i] ) { break; } } return i+1; #endif } int bdb_idl_insert( ID *ids, ID id ) { unsigned x; #if IDL_DEBUG > 1 Debug( LDAP_DEBUG_ANY, "insert: %04lx at %d\n", (long) id, x, 0 ); idl_dump( ids ); #elif IDL_DEBUG > 0 idl_check( ids ); #endif if (BDB_IDL_IS_RANGE( ids )) { /* if already in range, treat as a dup */ if (id >= BDB_IDL_FIRST(ids) && id <= BDB_IDL_LAST(ids)) return -1; if (id < BDB_IDL_FIRST(ids)) ids[1] = id; else if (id > BDB_IDL_LAST(ids)) ids[2] = id; return 0; } x = bdb_idl_search( ids, id ); assert( x > 0 ); if( x < 1 ) { /* internal error */ return -2; } if ( x <= ids[0] && ids[x] == id ) { /* duplicate */ return -1; } if ( ++ids[0] >= BDB_IDL_DB_MAX ) { if( id < ids[1] ) { ids[1] = id; ids[2] = ids[ids[0]-1]; } else if ( ids[ids[0]-1] < id ) { ids[2] = id; } else { ids[2] = ids[ids[0]-1]; } ids[0] = NOID; } else { /* insert id */ AC_MEMCPY( &ids[x+1], &ids[x], (ids[0]-x) * sizeof(ID) ); ids[x] = id; } #if IDL_DEBUG > 1 idl_dump( ids ); #elif IDL_DEBUG > 0 idl_check( ids ); #endif return 0; } static int bdb_idl_delete( ID *ids, ID id ) { unsigned x; #if IDL_DEBUG > 1 Debug( LDAP_DEBUG_ANY, "delete: %04lx at %d\n", (long) id, x, 0 ); idl_dump( ids ); #elif IDL_DEBUG > 0 idl_check( ids ); #endif if (BDB_IDL_IS_RANGE( ids )) { /* If deleting a range boundary, adjust */ if ( ids[1] == id ) ids[1]++; else if ( ids[2] == id ) ids[2]--; /* deleting from inside a range is a no-op */ /* If the range has collapsed, re-adjust */ if ( ids[1] > ids[2] ) ids[0] = 0; else if ( ids[1] == ids[2] ) ids[1] = 1; return 0; } x = bdb_idl_search( ids, id ); assert( x > 0 ); if( x <= 0 ) { /* internal error */ return -2; } if( x > ids[0] || ids[x] != id ) { /* not found */ return -1; } else if ( --ids[0] == 0 ) { if( x != 1 ) { return -3; } } else { AC_MEMCPY( &ids[x], &ids[x+1], (1+ids[0]-x) * sizeof(ID) ); } #if IDL_DEBUG > 1 idl_dump( ids ); #elif IDL_DEBUG > 0 idl_check( ids ); #endif return 0; } static char * bdb_show_key( DBT *key, char *buf ) { if ( key->size == 4 /* LUTIL_HASH_BYTES */ ) { unsigned char *c = key->data; sprintf( buf, "[%02x%02x%02x%02x]", c[0], c[1], c[2], c[3] ); return buf; } else { return key->data; } } /* Find a db/key pair in the IDL cache. If ids is non-NULL, * copy the cached IDL into it, otherwise just return the status. */ int bdb_idl_cache_get( struct bdb_info *bdb, DB *db, DBT *key, ID *ids ) { bdb_idl_cache_entry_t idl_tmp; bdb_idl_cache_entry_t *matched_idl_entry; int rc = LDAP_NO_SUCH_OBJECT; DBT2bv( key, &idl_tmp.kstr ); idl_tmp.db = db; ldap_pvt_thread_rdwr_rlock( &bdb->bi_idl_tree_rwlock ); matched_idl_entry = avl_find( bdb->bi_idl_tree, &idl_tmp, bdb_idl_entry_cmp ); if ( matched_idl_entry != NULL ) { if ( matched_idl_entry->idl && ids ) BDB_IDL_CPY( ids, matched_idl_entry->idl ); matched_idl_entry->idl_flags |= CACHE_ENTRY_REFERENCED; if ( matched_idl_entry->idl ) rc = LDAP_SUCCESS; else rc = DB_NOTFOUND; } ldap_pvt_thread_rdwr_runlock( &bdb->bi_idl_tree_rwlock ); return rc; } void bdb_idl_cache_put( struct bdb_info *bdb, DB *db, DBT *key, ID *ids, int rc ) { bdb_idl_cache_entry_t idl_tmp; bdb_idl_cache_entry_t *ee, *eprev; if ( rc == DB_NOTFOUND || BDB_IDL_IS_ZERO( ids )) return; DBT2bv( key, &idl_tmp.kstr ); ee = (bdb_idl_cache_entry_t *) ch_malloc( sizeof( bdb_idl_cache_entry_t ) ); ee->db = db; ee->idl = (ID*) ch_malloc( BDB_IDL_SIZEOF ( ids ) ); BDB_IDL_CPY( ee->idl, ids ); ee->idl_lru_prev = NULL; ee->idl_lru_next = NULL; ee->idl_flags = 0; ber_dupbv( &ee->kstr, &idl_tmp.kstr ); ldap_pvt_thread_rdwr_wlock( &bdb->bi_idl_tree_rwlock ); if ( avl_insert( &bdb->bi_idl_tree, (caddr_t) ee, bdb_idl_entry_cmp, avl_dup_error )) { ch_free( ee->kstr.bv_val ); ch_free( ee->idl ); ch_free( ee ); ldap_pvt_thread_rdwr_wunlock( &bdb->bi_idl_tree_rwlock ); return; } ldap_pvt_thread_mutex_lock( &bdb->bi_idl_tree_lrulock ); /* LRU_ADD */ if ( bdb->bi_idl_lru_head ) { ee->idl_lru_next = bdb->bi_idl_lru_head; ee->idl_lru_prev = bdb->bi_idl_lru_head->idl_lru_prev; bdb->bi_idl_lru_head->idl_lru_prev->idl_lru_next = ee; bdb->bi_idl_lru_head->idl_lru_prev = ee; } else { ee->idl_lru_next = ee->idl_lru_prev = ee; bdb->bi_idl_lru_tail = ee; } bdb->bi_idl_lru_head = ee; if ( ++bdb->bi_idl_cache_size > bdb->bi_idl_cache_max_size ) { int i; ee = bdb->bi_idl_lru_tail; for ( i = 0; i < 10; i++, ee = eprev ) { eprev = ee->idl_lru_prev; if ( ee->idl_flags & CACHE_ENTRY_REFERENCED ) { ee->idl_flags ^= CACHE_ENTRY_REFERENCED; continue; } if ( avl_delete( &bdb->bi_idl_tree, (caddr_t) ee, bdb_idl_entry_cmp ) == NULL ) { Debug( LDAP_DEBUG_ANY, "=> bdb_idl_cache_put: " "AVL delete failed\n", 0, 0, 0 ); } IDL_LRU_DELETE( bdb, ee ); i++; --bdb->bi_idl_cache_size; ch_free( ee->kstr.bv_val ); ch_free( ee->idl ); ch_free( ee ); } bdb->bi_idl_lru_tail = eprev; } ldap_pvt_thread_mutex_unlock( &bdb->bi_idl_tree_lrulock ); ldap_pvt_thread_rdwr_wunlock( &bdb->bi_idl_tree_rwlock ); } void bdb_idl_cache_del( struct bdb_info *bdb, DB *db, DBT *key ) { bdb_idl_cache_entry_t *matched_idl_entry, idl_tmp; DBT2bv( key, &idl_tmp.kstr ); idl_tmp.db = db; ldap_pvt_thread_rdwr_wlock( &bdb->bi_idl_tree_rwlock ); matched_idl_entry = avl_find( bdb->bi_idl_tree, &idl_tmp, bdb_idl_entry_cmp ); if ( matched_idl_entry != NULL ) { if ( avl_delete( &bdb->bi_idl_tree, (caddr_t) matched_idl_entry, bdb_idl_entry_cmp ) == NULL ) { Debug( LDAP_DEBUG_ANY, "=> bdb_idl_cache_del: " "AVL delete failed\n", 0, 0, 0 ); } --bdb->bi_idl_cache_size; ldap_pvt_thread_mutex_lock( &bdb->bi_idl_tree_lrulock ); IDL_LRU_DELETE( bdb, matched_idl_entry ); ldap_pvt_thread_mutex_unlock( &bdb->bi_idl_tree_lrulock ); free( matched_idl_entry->kstr.bv_val ); if ( matched_idl_entry->idl ) free( matched_idl_entry->idl ); free( matched_idl_entry ); } ldap_pvt_thread_rdwr_wunlock( &bdb->bi_idl_tree_rwlock ); } void bdb_idl_cache_add_id( struct bdb_info *bdb, DB *db, DBT *key, ID id ) { bdb_idl_cache_entry_t *cache_entry, idl_tmp; DBT2bv( key, &idl_tmp.kstr ); idl_tmp.db = db; ldap_pvt_thread_rdwr_wlock( &bdb->bi_idl_tree_rwlock ); cache_entry = avl_find( bdb->bi_idl_tree, &idl_tmp, bdb_idl_entry_cmp ); if ( cache_entry != NULL ) { if ( !BDB_IDL_IS_RANGE( cache_entry->idl ) && cache_entry->idl[0] < BDB_IDL_DB_MAX ) { size_t s = BDB_IDL_SIZEOF( cache_entry->idl ) + sizeof(ID); cache_entry->idl = ch_realloc( cache_entry->idl, s ); } bdb_idl_insert( cache_entry->idl, id ); } ldap_pvt_thread_rdwr_wunlock( &bdb->bi_idl_tree_rwlock ); } void bdb_idl_cache_del_id( struct bdb_info *bdb, DB *db, DBT *key, ID id ) { bdb_idl_cache_entry_t *cache_entry, idl_tmp; DBT2bv( key, &idl_tmp.kstr ); idl_tmp.db = db; ldap_pvt_thread_rdwr_wlock( &bdb->bi_idl_tree_rwlock ); cache_entry = avl_find( bdb->bi_idl_tree, &idl_tmp, bdb_idl_entry_cmp ); if ( cache_entry != NULL ) { bdb_idl_delete( cache_entry->idl, id ); if ( cache_entry->idl[0] == 0 ) { if ( avl_delete( &bdb->bi_idl_tree, (caddr_t) cache_entry, bdb_idl_entry_cmp ) == NULL ) { Debug( LDAP_DEBUG_ANY, "=> bdb_idl_cache_del: " "AVL delete failed\n", 0, 0, 0 ); } --bdb->bi_idl_cache_size; ldap_pvt_thread_mutex_lock( &bdb->bi_idl_tree_lrulock ); IDL_LRU_DELETE( bdb, cache_entry ); ldap_pvt_thread_mutex_unlock( &bdb->bi_idl_tree_lrulock ); free( cache_entry->kstr.bv_val ); free( cache_entry->idl ); free( cache_entry ); } } ldap_pvt_thread_rdwr_wunlock( &bdb->bi_idl_tree_rwlock ); } int bdb_idl_fetch_key( BackendDB *be, DB *db, BDB_LOCKER locker, DBT *key, ID *ids, DBC **saved_cursor, int get_flag ) { struct bdb_info *bdb = (struct bdb_info *) be->be_private; int rc; DBT data, key2, *kptr; DBC *cursor; ID *i; void *ptr; size_t len; int rc2; int flags = bdb->bi_db_opflags | DB_MULTIPLE; int opflag; /* If using BerkeleyDB 4.0, the buf must be large enough to * grab the entire IDL in one get(), otherwise BDB will leak * resources on subsequent get's. We can safely call get() * twice - once for the data, and once to get the DB_NOTFOUND * result meaning there's no more data. See ITS#2040 for details. * This bug is fixed in BDB 4.1 so a smaller buffer will work if * stack space is too limited. * * configure now requires Berkeley DB 4.1. */ #if DB_VERSION_FULL < 0x04010000 # define BDB_ENOUGH 5 #else /* We sometimes test with tiny IDLs, and BDB always wants buffers * that are at least one page in size. */ # if BDB_IDL_DB_SIZE < 4096 # define BDB_ENOUGH 2048 # else # define BDB_ENOUGH 1 # endif #endif ID buf[BDB_IDL_DB_SIZE*BDB_ENOUGH]; char keybuf[16]; Debug( LDAP_DEBUG_ARGS, "bdb_idl_fetch_key: %s\n", bdb_show_key( key, keybuf ), 0, 0 ); assert( ids != NULL ); if ( saved_cursor && *saved_cursor ) { opflag = DB_NEXT; } else if ( get_flag == LDAP_FILTER_GE ) { opflag = DB_SET_RANGE; } else if ( get_flag == LDAP_FILTER_LE ) { opflag = DB_FIRST; } else { opflag = DB_SET; } /* only non-range lookups can use the IDL cache */ if ( bdb->bi_idl_cache_size && opflag == DB_SET ) { rc = bdb_idl_cache_get( bdb, db, key, ids ); if ( rc != LDAP_NO_SUCH_OBJECT ) return rc; } DBTzero( &data ); data.data = buf; data.ulen = sizeof(buf); data.flags = DB_DBT_USERMEM; /* If we're not reusing an existing cursor, get a new one */ if( opflag != DB_NEXT ) { rc = db->cursor( db, NULL, &cursor, bdb->bi_db_opflags ); if( rc != 0 ) { Debug( LDAP_DEBUG_ANY, "=> bdb_idl_fetch_key: " "cursor failed: %s (%d)\n", db_strerror(rc), rc, 0 ); return rc; } CURSOR_SETLOCKER( cursor, locker ); } else { cursor = *saved_cursor; } /* If this is a LE lookup, save original key so we can determine * when to stop. If this is a GE lookup, save the key since it * will be overwritten. */ if ( get_flag == LDAP_FILTER_LE || get_flag == LDAP_FILTER_GE ) { DBTzero( &key2 ); key2.flags = DB_DBT_USERMEM; key2.ulen = sizeof(keybuf); key2.data = keybuf; key2.size = key->size; AC_MEMCPY( keybuf, key->data, key->size ); kptr = &key2; } else { kptr = key; } len = key->size; rc = cursor->c_get( cursor, kptr, &data, flags | opflag ); /* skip presence key on range inequality lookups */ while (rc == 0 && kptr->size != len) { rc = cursor->c_get( cursor, kptr, &data, flags | DB_NEXT_NODUP ); } /* If we're doing a LE compare and the new key is greater than * our search key, we're done */ if (rc == 0 && get_flag == LDAP_FILTER_LE && memcmp( kptr->data, key->data, key->size ) > 0 ) { rc = DB_NOTFOUND; } if (rc == 0) { i = ids; while (rc == 0) { u_int8_t *j; DB_MULTIPLE_INIT( ptr, &data ); while (ptr) { DB_MULTIPLE_NEXT(ptr, &data, j, len); if (j) { ++i; BDB_DISK2ID( j, i ); } } rc = cursor->c_get( cursor, key, &data, flags | DB_NEXT_DUP ); } if ( rc == DB_NOTFOUND ) rc = 0; ids[0] = i - ids; /* On disk, a range is denoted by 0 in the first element */ if (ids[1] == 0) { if (ids[0] != BDB_IDL_RANGE_SIZE) { Debug( LDAP_DEBUG_ANY, "=> bdb_idl_fetch_key: " "range size mismatch: expected %d, got %ld\n", BDB_IDL_RANGE_SIZE, ids[0], 0 ); cursor->c_close( cursor ); return -1; } BDB_IDL_RANGE( ids, ids[2], ids[3] ); } data.size = BDB_IDL_SIZEOF(ids); } if ( saved_cursor && rc == 0 ) { if ( !*saved_cursor ) *saved_cursor = cursor; rc2 = 0; } else rc2 = cursor->c_close( cursor ); if (rc2) { Debug( LDAP_DEBUG_ANY, "=> bdb_idl_fetch_key: " "close failed: %s (%d)\n", db_strerror(rc2), rc2, 0 ); return rc2; } if( rc == DB_NOTFOUND ) { return rc; } else if( rc != 0 ) { Debug( LDAP_DEBUG_ANY, "=> bdb_idl_fetch_key: " "get failed: %s (%d)\n", db_strerror(rc), rc, 0 ); return rc; } else if ( data.size == 0 || data.size % sizeof( ID ) ) { /* size not multiple of ID size */ Debug( LDAP_DEBUG_ANY, "=> bdb_idl_fetch_key: " "odd size: expected %ld multiple, got %ld\n", (long) sizeof( ID ), (long) data.size, 0 ); return -1; } else if ( data.size != BDB_IDL_SIZEOF(ids) ) { /* size mismatch */ Debug( LDAP_DEBUG_ANY, "=> bdb_idl_fetch_key: " "get size mismatch: expected %ld, got %ld\n", (long) ((1 + ids[0]) * sizeof( ID )), (long) data.size, 0 ); return -1; } if ( bdb->bi_idl_cache_max_size ) { bdb_idl_cache_put( bdb, db, key, ids, rc ); } return rc; } int bdb_idl_insert_key( BackendDB *be, DB *db, DB_TXN *tid, DBT *key, ID id ) { struct bdb_info *bdb = (struct bdb_info *) be->be_private; int rc; DBT data; DBC *cursor; ID lo, hi, nlo, nhi, nid; char *err; { char buf[16]; Debug( LDAP_DEBUG_ARGS, "bdb_idl_insert_key: %lx %s\n", (long) id, bdb_show_key( key, buf ), 0 ); } assert( id != NOID ); if ( bdb->bi_idl_cache_size ) { bdb_idl_cache_del( bdb, db, key ); } DBTzero( &data ); data.size = sizeof( ID ); data.ulen = data.size; data.flags = DB_DBT_USERMEM; BDB_ID2DISK( id, &nid ); rc = db->cursor( db, tid, &cursor, bdb->bi_db_opflags ); if ( rc != 0 ) { Debug( LDAP_DEBUG_ANY, "=> bdb_idl_insert_key: " "cursor failed: %s (%d)\n", db_strerror(rc), rc, 0 ); return rc; } data.data = &nlo; /* Fetch the first data item for this key, to see if it * exists and if it's a range. */ rc = cursor->c_get( cursor, key, &data, DB_SET ); err = "c_get"; if ( rc == 0 ) { if ( nlo != 0 ) { /* not a range, count the number of items */ db_recno_t count; rc = cursor->c_count( cursor, &count, 0 ); if ( rc != 0 ) { err = "c_count"; goto fail; } if ( count >= BDB_IDL_DB_MAX ) { /* No room, convert to a range */ DBT key2 = *key; db_recno_t i; key2.dlen = key2.ulen; key2.flags |= DB_DBT_PARTIAL; BDB_DISK2ID( &nlo, &lo ); data.data = &nhi; rc = cursor->c_get( cursor, &key2, &data, DB_NEXT_NODUP ); if ( rc != 0 && rc != DB_NOTFOUND ) { err = "c_get next_nodup"; goto fail; } if ( rc == DB_NOTFOUND ) { rc = cursor->c_get( cursor, key, &data, DB_LAST ); if ( rc != 0 ) { err = "c_get last"; goto fail; } } else { rc = cursor->c_get( cursor, key, &data, DB_PREV ); if ( rc != 0 ) { err = "c_get prev"; goto fail; } } BDB_DISK2ID( &nhi, &hi ); /* Update hi/lo if needed, then delete all the items * between lo and hi */ if ( id < lo ) { lo = id; nlo = nid; } else if ( id > hi ) { hi = id; nhi = nid; } data.data = &nid; /* Don't fetch anything, just position cursor */ data.flags = DB_DBT_USERMEM | DB_DBT_PARTIAL; data.dlen = data.ulen = 0; rc = cursor->c_get( cursor, key, &data, DB_SET ); if ( rc != 0 ) { err = "c_get 2"; goto fail; } rc = cursor->c_del( cursor, 0 ); if ( rc != 0 ) { err = "c_del range1"; goto fail; } /* Delete all the records */ for ( i=1; ic_get( cursor, &key2, &data, DB_NEXT_DUP ); if ( rc != 0 ) { err = "c_get next_dup"; goto fail; } rc = cursor->c_del( cursor, 0 ); if ( rc != 0 ) { err = "c_del range"; goto fail; } } /* Store the range marker */ data.size = data.ulen = sizeof(ID); data.flags = DB_DBT_USERMEM; nid = 0; rc = cursor->c_put( cursor, key, &data, DB_KEYFIRST ); if ( rc != 0 ) { err = "c_put range"; goto fail; } nid = nlo; rc = cursor->c_put( cursor, key, &data, DB_KEYLAST ); if ( rc != 0 ) { err = "c_put lo"; goto fail; } nid = nhi; rc = cursor->c_put( cursor, key, &data, DB_KEYLAST ); if ( rc != 0 ) { err = "c_put hi"; goto fail; } } else { /* There's room, just store it */ goto put1; } } else { /* It's a range, see if we need to rewrite * the boundaries */ hi = id; data.data = &nlo; rc = cursor->c_get( cursor, key, &data, DB_NEXT_DUP ); if ( rc != 0 ) { err = "c_get lo"; goto fail; } BDB_DISK2ID( &nlo, &lo ); if ( id > lo ) { data.data = &nhi; rc = cursor->c_get( cursor, key, &data, DB_NEXT_DUP ); if ( rc != 0 ) { err = "c_get hi"; goto fail; } BDB_DISK2ID( &nhi, &hi ); } if ( id < lo || id > hi ) { /* Delete the current lo/hi */ rc = cursor->c_del( cursor, 0 ); if ( rc != 0 ) { err = "c_del"; goto fail; } data.data = &nid; rc = cursor->c_put( cursor, key, &data, DB_KEYFIRST ); if ( rc != 0 ) { err = "c_put lo/hi"; goto fail; } } } } else if ( rc == DB_NOTFOUND ) { put1: data.data = &nid; rc = cursor->c_put( cursor, key, &data, DB_NODUPDATA ); /* Don't worry if it's already there */ if ( rc != 0 && rc != DB_KEYEXIST ) { err = "c_put id"; goto fail; } } else { /* initial c_get failed, nothing was done */ fail: Debug( LDAP_DEBUG_ANY, "=> bdb_idl_insert_key: " "%s failed: %s (%d)\n", err, db_strerror(rc), rc ); cursor->c_close( cursor ); return rc; } rc = cursor->c_close( cursor ); if( rc != 0 ) { Debug( LDAP_DEBUG_ANY, "=> bdb_idl_insert_key: " "c_close failed: %s (%d)\n", db_strerror(rc), rc, 0 ); } return rc; } int bdb_idl_delete_key( BackendDB *be, DB *db, DB_TXN *tid, DBT *key, ID id ) { struct bdb_info *bdb = (struct bdb_info *) be->be_private; int rc; DBT data; DBC *cursor; ID lo, hi, tmp, nid, nlo, nhi; char *err; { char buf[16]; Debug( LDAP_DEBUG_ARGS, "bdb_idl_delete_key: %lx %s\n", (long) id, bdb_show_key( key, buf ), 0 ); } assert( id != NOID ); if ( bdb->bi_idl_cache_max_size ) { bdb_idl_cache_del( bdb, db, key ); } BDB_ID2DISK( id, &nid ); DBTzero( &data ); data.data = &tmp; data.size = sizeof( id ); data.ulen = data.size; data.flags = DB_DBT_USERMEM; rc = db->cursor( db, tid, &cursor, bdb->bi_db_opflags ); if ( rc != 0 ) { Debug( LDAP_DEBUG_ANY, "=> bdb_idl_delete_key: " "cursor failed: %s (%d)\n", db_strerror(rc), rc, 0 ); return rc; } /* Fetch the first data item for this key, to see if it * exists and if it's a range. */ rc = cursor->c_get( cursor, key, &data, DB_SET ); err = "c_get"; if ( rc == 0 ) { if ( tmp != 0 ) { /* Not a range, just delete it */ if (tmp != nid) { /* position to correct item */ tmp = nid; rc = cursor->c_get( cursor, key, &data, DB_GET_BOTH ); if ( rc != 0 ) { err = "c_get id"; goto fail; } } rc = cursor->c_del( cursor, 0 ); if ( rc != 0 ) { err = "c_del id"; goto fail; } } else { /* It's a range, see if we need to rewrite * the boundaries */ data.data = &nlo; rc = cursor->c_get( cursor, key, &data, DB_NEXT_DUP ); if ( rc != 0 ) { err = "c_get lo"; goto fail; } BDB_DISK2ID( &nlo, &lo ); data.data = &nhi; rc = cursor->c_get( cursor, key, &data, DB_NEXT_DUP ); if ( rc != 0 ) { err = "c_get hi"; goto fail; } BDB_DISK2ID( &nhi, &hi ); if ( id == lo || id == hi ) { if ( id == lo ) { id++; lo = id; } else if ( id == hi ) { id--; hi = id; } if ( lo >= hi ) { /* The range has collapsed... */ rc = db->del( db, tid, key, 0 ); if ( rc != 0 ) { err = "del"; goto fail; } } else { if ( id == lo ) { /* reposition on lo slot */ data.data = &nlo; cursor->c_get( cursor, key, &data, DB_PREV ); } rc = cursor->c_del( cursor, 0 ); if ( rc != 0 ) { err = "c_del"; goto fail; } } if ( lo <= hi ) { BDB_ID2DISK( id, &nid ); data.data = &nid; rc = cursor->c_put( cursor, key, &data, DB_KEYFIRST ); if ( rc != 0 ) { err = "c_put lo/hi"; goto fail; } } } } } else { /* initial c_get failed, nothing was done */ fail: if ( rc != DB_NOTFOUND ) { Debug( LDAP_DEBUG_ANY, "=> bdb_idl_delete_key: " "%s failed: %s (%d)\n", err, db_strerror(rc), rc ); } cursor->c_close( cursor ); return rc; } rc = cursor->c_close( cursor ); if( rc != 0 ) { Debug( LDAP_DEBUG_ANY, "=> bdb_idl_delete_key: c_close failed: %s (%d)\n", db_strerror(rc), rc, 0 ); } return rc; } /* * idl_intersection - return a = a intersection b */ int bdb_idl_intersection( ID *a, ID *b ) { ID ida, idb; ID idmax, idmin; ID cursora = 0, cursorb = 0, cursorc; int swap = 0; if ( BDB_IDL_IS_ZERO( a ) || BDB_IDL_IS_ZERO( b ) ) { a[0] = 0; return 0; } idmin = IDL_MAX( BDB_IDL_FIRST(a), BDB_IDL_FIRST(b) ); idmax = IDL_MIN( BDB_IDL_LAST(a), BDB_IDL_LAST(b) ); if ( idmin > idmax ) { a[0] = 0; return 0; } else if ( idmin == idmax ) { a[0] = 1; a[1] = idmin; return 0; } if ( BDB_IDL_IS_RANGE( a ) ) { if ( BDB_IDL_IS_RANGE(b) ) { /* If both are ranges, just shrink the boundaries */ a[1] = idmin; a[2] = idmax; return 0; } else { /* Else swap so that b is the range, a is a list */ ID *tmp = a; a = b; b = tmp; swap = 1; } } /* If a range completely covers the list, the result is * just the list. If idmin to idmax is contiguous, just * turn it into a range. */ if ( BDB_IDL_IS_RANGE( b ) && BDB_IDL_FIRST( b ) <= BDB_IDL_FIRST( a ) && BDB_IDL_LAST( b ) >= BDB_IDL_LAST( a ) ) { if (idmax - idmin + 1 == a[0]) { a[0] = NOID; a[1] = idmin; a[2] = idmax; } goto done; } /* Fine, do the intersection one element at a time. * First advance to idmin in both IDLs. */ cursora = cursorb = idmin; ida = bdb_idl_first( a, &cursora ); idb = bdb_idl_first( b, &cursorb ); cursorc = 0; while( ida <= idmax || idb <= idmax ) { if( ida == idb ) { a[++cursorc] = ida; ida = bdb_idl_next( a, &cursora ); idb = bdb_idl_next( b, &cursorb ); } else if ( ida < idb ) { ida = bdb_idl_next( a, &cursora ); } else { idb = bdb_idl_next( b, &cursorb ); } } a[0] = cursorc; done: if (swap) BDB_IDL_CPY( b, a ); return 0; } /* * idl_union - return a = a union b */ int bdb_idl_union( ID *a, ID *b ) { ID ida, idb; ID cursora = 0, cursorb = 0, cursorc; if ( BDB_IDL_IS_ZERO( b ) ) { return 0; } if ( BDB_IDL_IS_ZERO( a ) ) { BDB_IDL_CPY( a, b ); return 0; } if ( BDB_IDL_IS_RANGE( a ) || BDB_IDL_IS_RANGE(b) ) { over: ida = IDL_MIN( BDB_IDL_FIRST(a), BDB_IDL_FIRST(b) ); idb = IDL_MAX( BDB_IDL_LAST(a), BDB_IDL_LAST(b) ); a[0] = NOID; a[1] = ida; a[2] = idb; return 0; } ida = bdb_idl_first( a, &cursora ); idb = bdb_idl_first( b, &cursorb ); cursorc = b[0]; /* The distinct elements of a are cat'd to b */ while( ida != NOID || idb != NOID ) { if ( ida < idb ) { if( ++cursorc > BDB_IDL_UM_MAX ) { goto over; } b[cursorc] = ida; ida = bdb_idl_next( a, &cursora ); } else { if ( ida == idb ) ida = bdb_idl_next( a, &cursora ); idb = bdb_idl_next( b, &cursorb ); } } /* b is copied back to a in sorted order */ a[0] = cursorc; cursora = 1; cursorb = 1; cursorc = b[0]+1; while (cursorb <= b[0] || cursorc <= a[0]) { if (cursorc > a[0]) idb = NOID; else idb = b[cursorc]; if (cursorb <= b[0] && b[cursorb] < idb) a[cursora++] = b[cursorb++]; else { a[cursora++] = idb; cursorc++; } } return 0; } #if 0 /* * bdb_idl_notin - return a intersection ~b (or a minus b) */ int bdb_idl_notin( ID *a, ID *b, ID *ids ) { ID ida, idb; ID cursora = 0, cursorb = 0; if( BDB_IDL_IS_ZERO( a ) || BDB_IDL_IS_ZERO( b ) || BDB_IDL_IS_RANGE( b ) ) { BDB_IDL_CPY( ids, a ); return 0; } if( BDB_IDL_IS_RANGE( a ) ) { BDB_IDL_CPY( ids, a ); return 0; } ida = bdb_idl_first( a, &cursora ), idb = bdb_idl_first( b, &cursorb ); ids[0] = 0; while( ida != NOID ) { if ( idb == NOID ) { /* we could shortcut this */ ids[++ids[0]] = ida; ida = bdb_idl_next( a, &cursora ); } else if ( ida < idb ) { ids[++ids[0]] = ida; ida = bdb_idl_next( a, &cursora ); } else if ( ida > idb ) { idb = bdb_idl_next( b, &cursorb ); } else { ida = bdb_idl_next( a, &cursora ); idb = bdb_idl_next( b, &cursorb ); } } return 0; } #endif ID bdb_idl_first( ID *ids, ID *cursor ) { ID pos; if ( ids[0] == 0 ) { *cursor = NOID; return NOID; } if ( BDB_IDL_IS_RANGE( ids ) ) { if( *cursor < ids[1] ) { *cursor = ids[1]; } return *cursor; } if ( *cursor == 0 ) pos = 1; else pos = bdb_idl_search( ids, *cursor ); if( pos > ids[0] ) { return NOID; } *cursor = pos; return ids[pos]; } ID bdb_idl_next( ID *ids, ID *cursor ) { if ( BDB_IDL_IS_RANGE( ids ) ) { if( ids[2] < ++(*cursor) ) { return NOID; } return *cursor; } if ( ++(*cursor) <= ids[0] ) { return ids[*cursor]; } return NOID; } #ifdef BDB_HIER /* Add one ID to an unsorted list. We ensure that the first element is the * minimum and the last element is the maximum, for fast range compaction. * this means IDLs up to length 3 are always sorted... */ int bdb_idl_append_one( ID *ids, ID id ) { if (BDB_IDL_IS_RANGE( ids )) { /* if already in range, treat as a dup */ if (id >= BDB_IDL_FIRST(ids) && id <= BDB_IDL_LAST(ids)) return -1; if (id < BDB_IDL_FIRST(ids)) ids[1] = id; else if (id > BDB_IDL_LAST(ids)) ids[2] = id; return 0; } if ( ids[0] ) { ID tmp; if (id < ids[1]) { tmp = ids[1]; ids[1] = id; id = tmp; } if ( ids[0] > 1 && id < ids[ids[0]] ) { tmp = ids[ids[0]]; ids[ids[0]] = id; id = tmp; } } ids[0]++; if ( ids[0] >= BDB_IDL_UM_MAX ) { ids[0] = NOID; ids[2] = id; } else { ids[ids[0]] = id; } return 0; } /* Append sorted list b to sorted list a. The result is unsorted but * a[1] is the min of the result and a[a[0]] is the max. */ int bdb_idl_append( ID *a, ID *b ) { ID ida, idb, tmp, swap = 0; if ( BDB_IDL_IS_ZERO( b ) ) { return 0; } if ( BDB_IDL_IS_ZERO( a ) ) { BDB_IDL_CPY( a, b ); return 0; } ida = BDB_IDL_LAST( a ); idb = BDB_IDL_LAST( b ); if ( BDB_IDL_IS_RANGE( a ) || BDB_IDL_IS_RANGE(b) || a[0] + b[0] >= BDB_IDL_UM_MAX ) { a[2] = IDL_MAX( ida, idb ); a[1] = IDL_MIN( a[1], b[1] ); a[0] = NOID; return 0; } if ( b[0] > 1 && ida > idb ) { swap = idb; a[a[0]] = idb; b[b[0]] = ida; } if ( b[1] < a[1] ) { tmp = a[1]; a[1] = b[1]; } else { tmp = b[1]; } a[0]++; a[a[0]] = tmp; if ( b[0] > 1 ) { int i = b[0] - 1; AC_MEMCPY(a+a[0]+1, b+2, i * sizeof(ID)); a[0] += i; } if ( swap ) { b[b[0]] = swap; } return 0; } #if 1 /* Quicksort + Insertion sort for small arrays */ #define SMALL 8 #define SWAP(a,b) itmp=(a);(a)=(b);(b)=itmp void bdb_idl_sort( ID *ids, ID *tmp ) { int *istack = (int *)tmp; int i,j,k,l,ir,jstack; ID a, itmp; if ( BDB_IDL_IS_RANGE( ids )) return; ir = ids[0]; l = 1; jstack = 0; for(;;) { if (ir - l < SMALL) { /* Insertion sort */ for (j=l+1;j<=ir;j++) { a = ids[j]; for (i=j-1;i>=1;i--) { if (ids[i] <= a) break; ids[i+1] = ids[i]; } ids[i+1] = a; } if (jstack == 0) break; ir = istack[jstack--]; l = istack[jstack--]; } else { k = (l + ir) >> 1; /* Choose median of left, center, right */ SWAP(ids[k], ids[l+1]); if (ids[l] > ids[ir]) { SWAP(ids[l], ids[ir]); } if (ids[l+1] > ids[ir]) { SWAP(ids[l+1], ids[ir]); } if (ids[l] > ids[l+1]) { SWAP(ids[l], ids[l+1]); } i = l+1; j = ir; a = ids[l+1]; for(;;) { do i++; while(ids[i] < a); do j--; while(ids[j] > a); if (j < i) break; SWAP(ids[i],ids[j]); } ids[l+1] = ids[j]; ids[j] = a; jstack += 2; if (ir-i+1 >= j-1) { istack[jstack] = ir; istack[jstack-1] = i; ir = j-1; } else { istack[jstack] = j-1; istack[jstack-1] = l; l = i; } } } } #else /* 8 bit Radix sort + insertion sort * * based on code from http://www.cubic.org/docs/radix.htm * with improvements by mbackes@symas.com and hyc@symas.com * * This code is O(n) but has a relatively high constant factor. For lists * up to ~50 Quicksort is slightly faster; up to ~100 they are even. * Much faster than quicksort for lists longer than ~100. Insertion * sort is actually superior for lists <50. */ #define BUCKETS (1<<8) #define SMALL 50 void bdb_idl_sort( ID *ids, ID *tmp ) { int count, soft_limit, phase = 0, size = ids[0]; ID *idls[2]; unsigned char *maxv = (unsigned char *)&ids[size]; if ( BDB_IDL_IS_RANGE( ids )) return; /* Use insertion sort for small lists */ if ( size <= SMALL ) { int i,j; ID a; for (j=1;j<=size;j++) { a = ids[j]; for (i=j-1;i>=1;i--) { if (ids[i] <= a) break; ids[i+1] = ids[i]; } ids[i+1] = a; } return; } tmp[0] = size; idls[0] = ids; idls[1] = tmp; #if BYTE_ORDER == BIG_ENDIAN for (soft_limit = 0; !maxv[soft_limit]; soft_limit++); #else for (soft_limit = sizeof(ID)-1; !maxv[soft_limit]; soft_limit--); #endif for ( #if BYTE_ORDER == BIG_ENDIAN count = sizeof(ID)-1; count >= soft_limit; --count #else count = 0; count <= soft_limit; ++count #endif ) { unsigned int num[BUCKETS], * np, n, sum; int i; ID *sp, *source, *dest; unsigned char *bp, *source_start; source = idls[phase]+1; dest = idls[phase^1]+1; source_start = ((unsigned char *) source) + count; np = num; for ( i = BUCKETS; i > 0; --i ) *np++ = 0; /* count occurences of every byte value */ bp = source_start; for ( i = size; i > 0; --i, bp += sizeof(ID) ) num[*bp]++; /* transform count into index by summing elements and storing * into same array */ sum = 0; np = num; for ( i = BUCKETS; i > 0; --i ) { n = *np; *np++ = sum; sum += n; } /* fill dest with the right values in the right place */ bp = source_start; sp = source; for ( i = size; i > 0; --i, bp += sizeof(ID) ) { np = num + *bp; dest[*np] = *sp++; ++(*np); } phase ^= 1; } /* copy back from temp if needed */ if ( phase ) { ids++; tmp++; for ( count = 0; count < size; ++count ) *ids++ = *tmp++; } } #endif /* Quick vs Radix */ #endif /* BDB_HIER */