/* dn2id.c - routines to deal with the dn2id index */ /* $OpenLDAP$ */ /* * Copyright 1998-2000 The OpenLDAP Foundation, All Rights Reserved. * COPYING RESTRICTIONS APPLY, see COPYRIGHT file */ #include "portable.h" #include #include #include "back-bdb.h" #include "idl.h" #ifndef BDB_HIER int bdb_dn2id_add( BackendDB *be, DB_TXN *txn, char *pdn, Entry *e ) { struct bdb_info *bdb = (struct bdb_info *) be->be_private; DB *db = bdb->bi_dn2id->bdi_db; int rc; DBT key, data; char *buf, *ptr; Debug( LDAP_DEBUG_TRACE, "=> bdb_dn2id_add( \"%s\", 0x%08lx )\n", e->e_ndn, (long) e->e_id, 0 ); assert( e->e_id != NOID ); DBTzero( &key ); key.size = e->e_nname.bv_len + 2; buf = ch_malloc( key.size ); key.data = buf; buf[0] = DN_BASE_PREFIX; ptr = buf + 1; AC_MEMCPY( ptr, e->e_ndn, key.size - 1 ); DBTzero( &data ); data.data = (char *) &e->e_id; data.size = sizeof( e->e_id ); /* store it -- don't override */ rc = db->put( db, txn, &key, &data, DB_NOOVERWRITE ); if( rc != 0 ) { Debug( LDAP_DEBUG_ANY, "=> bdb_dn2id_add: put failed: %s %d\n", db_strerror(rc), rc, 0 ); goto done; } if( !be_issuffix( be, ptr )) { buf[0] = DN_SUBTREE_PREFIX; rc = bdb_idl_insert_key( be, db, txn, &key, e->e_id ); if( rc != 0 ) { Debug( LDAP_DEBUG_ANY, "=> bdb_dn2id_add: subtree (%s) insert failed: %d\n", ptr, rc, 0 ); goto done; } } pdn = dn_parent( be, ptr ); if( pdn != NULL ) { key.size -= pdn - ptr; pdn[-1] = DN_ONE_PREFIX; key.data = pdn - 1; rc = bdb_idl_insert_key( be, db, txn, &key, e->e_id ); if( rc != 0 ) { Debug( LDAP_DEBUG_ANY, "=> bdb_dn2id_add: parent (%s) insert failed: %d\n", pdn, rc, 0 ); goto done; } } while( pdn != NULL ) { if ( be_issuffix( be, pdn )) break; pdn[-1] = DN_SUBTREE_PREFIX; rc = bdb_idl_insert_key( be, db, txn, &key, e->e_id ); if( rc != 0 ) { Debug( LDAP_DEBUG_ANY, "=> bdb_dn2id_add: subtree (%s) insert failed: %d\n", pdn, rc, 0 ); break; } ptr = pdn; pdn = dn_parent( be, pdn ); key.size -= pdn - ptr; key.data = pdn - 1; } done: ch_free( buf ); Debug( LDAP_DEBUG_TRACE, "<= bdb_dn2id_add: %d\n", rc, 0, 0 ); return rc; } int bdb_dn2id_delete( BackendDB *be, DB_TXN *txn, char *pdn, Entry *e ) { struct bdb_info *bdb = (struct bdb_info *) be->be_private; DB *db = bdb->bi_dn2id->bdi_db; int rc; DBT key; char *buf, *ptr; Debug( LDAP_DEBUG_TRACE, "=> bdb_dn2id_delete( \"%s\", 0x%08lx )\n", e->e_ndn, e->e_id, 0 ); DBTzero( &key ); key.size = e->e_nname.bv_len + 2; buf = ch_malloc( key.size ); key.data = buf; key.flags = DB_DBT_USERMEM; buf[0] = DN_BASE_PREFIX; ptr = buf+1; AC_MEMCPY( ptr, e->e_ndn, key.size - 1 ); /* delete it */ rc = db->del( db, txn, &key, 0 ); if( rc != 0 ) { Debug( LDAP_DEBUG_ANY, "=> bdb_dn2id_delete: delete failed: %s %d\n", db_strerror(rc), rc, 0 ); goto done; } if( !be_issuffix( be, ptr )) { buf[0] = DN_SUBTREE_PREFIX; rc = bdb_idl_delete_key( be, db, txn, &key, e->e_id ); if( rc != 0 ) { Debug( LDAP_DEBUG_ANY, "=> bdb_dn2id_delete: subtree (%s) delete failed: %d\n", ptr, rc, 0 ); goto done; } } pdn = dn_parent( be, ptr ); if( pdn != NULL ) { key.size -= pdn - ptr; pdn[-1] = DN_ONE_PREFIX; key.data = pdn - 1; rc = bdb_idl_delete_key( be, db, txn, &key, e->e_id ); if( rc != 0 ) { Debug( LDAP_DEBUG_ANY, "=> bdb_dn2id_delete: parent (%s) delete failed: %d\n", pdn, rc, 0 ); goto done; } } while( pdn != NULL ) { if ( be_issuffix( be, pdn )) break; pdn[-1] = DN_SUBTREE_PREFIX; rc = bdb_idl_delete_key( be, db, txn, &key, e->e_id ); if( rc != 0 ) { Debug( LDAP_DEBUG_ANY, "=> bdb_dn2id_delete: subtree (%s) delete failed: %d\n", pdn, rc, 0 ); goto done; } ptr = pdn; pdn = dn_parent( be, pdn ); key.size -= pdn - ptr; key.data = pdn - 1; } done: ch_free( buf ); Debug( LDAP_DEBUG_TRACE, "<= bdb_dn2id_delete %d\n", rc, 0, 0 ); return rc; } int bdb_dn2id( BackendDB *be, DB_TXN *txn, const char *dn, ID *id ) { int rc; DBT key, data; struct bdb_info *bdb = (struct bdb_info *) be->be_private; DB *db = bdb->bi_dn2id->bdi_db; Debug( LDAP_DEBUG_TRACE, "=> bdb_dn2id( \"%s\" )\n", dn, 0, 0 ); DBTzero( &key ); key.size = strlen( dn ) + 2; key.data = ch_malloc( key.size ); ((char *)key.data)[0] = DN_BASE_PREFIX; AC_MEMCPY( &((char *)key.data)[1], dn, key.size - 1 ); /* store the ID */ DBTzero( &data ); data.data = id; data.ulen = sizeof(ID); data.flags = DB_DBT_USERMEM; /* fetch it */ rc = db->get( db, txn, &key, &data, bdb->bi_db_opflags ); if( rc != 0 ) { Debug( LDAP_DEBUG_TRACE, "<= bdb_dn2id: get failed: %s (%d)\n", db_strerror( rc ), rc, 0 ); } else { Debug( LDAP_DEBUG_TRACE, "<= bdb_dn2id: got id=0x%08lx\n", *id, 0, 0 ); } ch_free( key.data ); return rc; } int bdb_dn2id_matched( BackendDB *be, DB_TXN *txn, const char *in, ID *id, char **matchedDN ) { int rc; DBT key, data; struct bdb_info *bdb = (struct bdb_info *) be->be_private; DB *db = bdb->bi_dn2id->bdi_db; const char *dn = in; Debug( LDAP_DEBUG_TRACE, "=> bdb_dn2id_matched( \"%s\" )\n", dn, 0, 0 ); DBTzero( &key ); key.size = strlen( dn ) + 2; key.data = ch_malloc( key.size ); ((char *)key.data)[0] = DN_BASE_PREFIX; /* store the ID */ DBTzero( &data ); data.data = id; data.ulen = sizeof(ID); data.flags = DB_DBT_USERMEM; *matchedDN = NULL; while(1) { AC_MEMCPY( &((char *)key.data)[1], dn, key.size - 1 ); *id = NOID; /* fetch it */ rc = db->get( db, txn, &key, &data, bdb->bi_db_opflags ); if( rc == DB_NOTFOUND ) { char *pdn = dn_parent( be, dn ); if( pdn == NULL || *pdn == '\0' ) { Debug( LDAP_DEBUG_TRACE, "<= bdb_dn2id_matched: no match\n", 0, 0, 0 ); break; } dn = pdn; key.size = strlen( dn ) + 2; } else if ( rc == 0 ) { if( data.size != sizeof( ID ) ) { Debug( LDAP_DEBUG_ANY, "<= bdb_dn2id_matched: get size mismatch: " "expected %ld, got %ld\n", (long) sizeof(ID), (long) data.size, 0 ); } if( in != dn ) { *matchedDN = (char *) dn; } Debug( LDAP_DEBUG_TRACE, "<= bdb_dn2id_matched: id=0x%08lx: %s %s\n", (long) *id, *matchedDN == NULL ? "entry" : "matched", dn ); break; } else { Debug( LDAP_DEBUG_ANY, "<= bdb_dn2id_matched: get failed: %s (%d)\n", db_strerror(rc), rc, 0 ); break; } } ch_free( key.data ); return rc; } int bdb_dn2id_children( BackendDB *be, DB_TXN *txn, const char *dn ) { int rc; DBT key, data; struct bdb_info *bdb = (struct bdb_info *) be->be_private; DB *db = bdb->bi_dn2id->bdi_db; ID id; Debug( LDAP_DEBUG_TRACE, "=> bdb_dn2id_children( %s )\n", dn, 0, 0 ); DBTzero( &key ); key.size = strlen( dn ) + 2; key.data = ch_malloc( key.size ); ((char *)key.data)[0] = DN_ONE_PREFIX; AC_MEMCPY( &((char *)key.data)[1], dn, key.size - 1 ); /* we actually could do a empty get... */ DBTzero( &data ); data.data = &id; data.ulen = sizeof(id); data.flags = DB_DBT_USERMEM; data.doff = 0; data.dlen = sizeof(id); rc = db->get( db, txn, &key, &data, bdb->bi_db_opflags ); Debug( LDAP_DEBUG_TRACE, "<= bdb_dn2id_children( %s ): %schildren (%d)\n", dn, rc == 0 ? "" : ( rc == DB_NOTFOUND ? "no " : db_strerror(rc) ), rc ); return rc; } int bdb_dn2idl( BackendDB *be, const char *dn, int prefix, ID *ids ) { int rc; DBT key; struct bdb_info *bdb = (struct bdb_info *) be->be_private; DB *db = bdb->bi_dn2id->bdi_db; Debug( LDAP_DEBUG_TRACE, "=> bdb_dn2idl( \"%s\" )\n", dn, 0, 0 ); if (prefix == DN_SUBTREE_PREFIX && be_issuffix(be, dn)) { BDB_IDL_ALL(bdb, ids); return 0; } DBTzero( &key ); key.size = strlen( dn ) + 2; key.data = ch_malloc( key.size ); ((char *)key.data)[0] = prefix; AC_MEMCPY( &((char *)key.data)[1], dn, key.size - 1 ); rc = bdb_idl_fetch_key( be, db, NULL, &key, ids ); if( rc != 0 ) { Debug( LDAP_DEBUG_TRACE, "<= bdb_dn2idl: get failed: %s (%d)\n", db_strerror( rc ), rc, 0 ); } else { Debug( LDAP_DEBUG_TRACE, "<= bdb_dn2idl: id=%ld first=%ld last=%ld\n", (long) ids[0], (long) BDB_IDL_FIRST( ids ), (long) BDB_IDL_LAST( ids ) ); } ch_free( key.data ); return rc; } #else /* BDB_HIER */ /* Experimental management routines for a hierarchically structured backend. * * Unsupported! Use at your own risk! * * Instead of a dn2id database, we use an id2parent database. Each entry in * this database is a struct diskNode, containing the ID of the node's parent * and the RDN of the node. */ typedef struct diskNode { ID parent; struct berval rdn; struct berval nrdn; } diskNode; /* In bdb_db_open() we call bdb_build_tree() which reads the entire id2parent * database into memory (into an AVL tree). Next we iterate through each node * of this tree, connecting each child to its parent. The nodes in this AVL * tree are a struct idNode. The immediate (Onelevel) children of a node are * referenced in the i_kids AVL tree. With this arrangement, there is no need * to maintain the DN_ONE_PREFIX or DN_SUBTREE_PREFIX database keys. Note that * the DN of an entry is constructed by walking up the list of i_parent * pointers, so no full DN is stored on disk anywhere. This makes modrdn * extremely efficient, even when operating on a populated subtree. * * The idNode tree is searched directly from the root when performing id to * entry lookups. The tree is traversed using the i_kids subtrees when * performing dn to id lookups. */ typedef struct idNode { ID i_id; struct idNode *i_parent; diskNode *i_rdn; Avlnode *i_kids; ldap_pvt_thread_rdwr_t i_kids_rdwr; } idNode; /* strcopy is like strcpy except it returns a pointer to the trailing NUL of * the result string. This allows fast construction of catenated strings * without the overhead of strlen/strcat. */ char * bdb_strcopy( char *a, char *b ) { if (!a || !b) return a; while (*a++ = *b++) ; return a-1; } /* The main AVL tree is sorted in ID order. The i_kids AVL trees are * sorted in lexical order. These are the various helper routines used * for the searches and sorts. */ static int node_find_cmp( ID id, idNode *n ) { return id - n->i_id; } static int node_frdn_cmp( char *nrdn, idNode *n ) { return strcmp(nrdn, n->i_rdn->nrdn.bv_val); } static int node_add_cmp( idNode *a, idNode *b ) { return a->i_id - b->i_id; } static int node_rdn_cmp( idNode *a, idNode *b ) { return strcmp(a->i_rdn->nrdn.bv_val, b->i_rdn->nrdn.bv_val); } idNode * bdb_find_id_node( ID id, Avlnode *tree ) { return avl_find(tree, (const void *)id, (AVL_CMP)node_find_cmp); } idNode * bdb_find_rdn_node( char *nrdn, Avlnode *tree ) { return avl_find(tree, (const void *)nrdn, (AVL_CMP)node_frdn_cmp); } /* This function links a node into its parent's i_kids tree. */ int bdb_insert_kid( idNode *a, Avlnode *tree ) { int rc; if (a->i_rdn->parent == 0) return 0; a->i_parent = bdb_find_id_node(a->i_rdn->parent, tree); if (!a->i_parent) return -1; ldap_pvt_thread_rdwr_wlock(&a->i_parent->i_kids_rdwr); rc = avl_insert( &a->i_parent->i_kids, (caddr_t) a, (AVL_CMP)node_rdn_cmp, (AVL_DUP) avl_dup_error ); ldap_pvt_thread_rdwr_wunlock(&a->i_parent->i_kids_rdwr); return rc; } /* This function adds a node into the main AVL tree */ idNode *bdb_add_node( ID id, char *d, struct bdb_info *bdb ) { idNode *node; node = (idNode *)ch_malloc(sizeof(idNode)); node->i_id = id; node->i_parent = NULL; node->i_kids = NULL; node->i_rdn = (diskNode *)d; node->i_rdn->rdn.bv_val += (long)d; node->i_rdn->nrdn.bv_val += (long)d; ldap_pvt_thread_rdwr_init(&node->i_kids_rdwr); avl_insert( &bdb->bi_tree, (caddr_t) node, (AVL_CMP)node_add_cmp, (AVL_DUP) avl_dup_error ); if (id == 1) bdb->bi_troot = node; return node; } /* This function initializes the trees at startup time. */ int bdb_build_tree( Backend *be ) { struct bdb_info *bdb = (struct bdb_info *) be->be_private; int i, rc; DBC *cursor; DBT key, data; ID id; idNode *node; char **rdns; bdb->bi_tree = NULL; rc = bdb->bi_id2parent->bdi_db->cursor( bdb->bi_id2parent->bdi_db, NULL, &cursor, bdb->bi_db_opflags ); if( rc != 0 ) { return NOID; } /* When be_suffix is turned into struct berval or LDAPDN * life will get a lot easier... Since no DNs live on disk, we * need to operate on the be_suffix to fully qualify our DNs. * We need to know how many components are in the suffix DN, * so we can tell where the suffix ends and our nodes begin. * * Note that this code always uses be_suffix[0], so defining * multiple suffixes for a single backend won't work! */ bdb->bi_sufflen = be->be_suffix[0]->bv_len; rdns = ldap_explode_dn(be->be_nsuffix[0]->bv_val, 0); for (i=0; rdns[i]; i++); bdb->bi_nrdns = i; charray_free(rdns); DBTzero( &key ); DBTzero( &data ); key.data = (char *)&id; key.ulen = sizeof( id ); key.flags = DB_DBT_USERMEM; data.flags = DB_DBT_MALLOC; while (cursor->c_get( cursor, &key, &data, DB_NEXT ) == 0) { bdb_add_node( id, data.data, bdb ); } cursor->c_close( cursor ); rc = avl_apply(bdb->bi_tree, (AVL_APPLY)bdb_insert_kid, bdb->bi_tree, -1, AVL_INORDER ); return rc; } /* This function constructs a full DN for a given id. We really should * be passing idNodes directly, to save some effort... */ int bdb_fix_dn( BackendDB *be, ID id, Entry *e ) { struct bdb_info *bdb = (struct bdb_info *) be->be_private; idNode *n, *o; int rlen, nrlen; char *ptr, *nptr; ldap_pvt_thread_rdwr_rlock(&bdb->bi_tree_rdwr); o = bdb_find_id_node(id, bdb->bi_tree); rlen = bdb->bi_sufflen + 1; nrlen = be->be_nsuffix[0]->bv_len + 1; for (n = o; n; n=n->i_parent) { rlen += n->i_rdn->rdn.bv_len + 1; nrlen += n->i_rdn->nrdn.bv_len + 1; } e->e_dn = ch_malloc(rlen + nrlen); e->e_ndn = e->e_dn + rlen; ptr = e->e_dn; nptr = e->e_ndn; for (n = o; n; n=n->i_parent) { ptr = bdb_strcopy(ptr, n->i_rdn->rdn.bv_val); *ptr++ = ','; nptr = bdb_strcopy(nptr, n->i_rdn->nrdn.bv_val); *nptr++ = ','; } ldap_pvt_thread_rdwr_runlock(&bdb->bi_tree_rdwr); ptr--; nptr--; strcpy(ptr, be->be_suffix[0]->bv_val); strcpy(nptr, be->be_nsuffix[0]->bv_val); return 0; } int bdb_dn2id_add( BackendDB *be, DB_TXN *txn, char *pdn, Entry *e ) { struct bdb_info *bdb = (struct bdb_info *) be->be_private; int rc, rlen, nrlen; DBT key, data; DB *db = bdb->bi_id2parent->bdi_db; diskNode *d; idNode *n; nrlen = dn_rdnlen( be, e->e_ndn ); if (nrlen) { rlen = dn_rdnlen( be, e->e_dn ); } else { rlen = 0; } d = ch_malloc(sizeof(diskNode) + rlen + nrlen + 2); d->rdn.bv_len = rlen; d->nrdn.bv_len = nrlen; d->rdn.bv_val = (char *)(d+1); d->nrdn.bv_val = d->rdn.bv_val + rlen + 1; strncpy(d->rdn.bv_val, e->e_dn, rlen); d->rdn.bv_val[rlen] = '\0'; strncpy(d->nrdn.bv_val, e->e_ndn, nrlen); d->nrdn.bv_val[nrlen] = '\0'; d->rdn.bv_val -= (long)d; d->nrdn.bv_val -= (long)d; if (pdn) { bdb_dn2id(be, txn, pdn, &d->parent); } else { d->parent = 0; } DBTzero(&key); DBTzero(&data); key.data = &e->e_id; key.size = sizeof(ID); key.flags = DB_DBT_USERMEM; data.data = d; data.size = sizeof(diskNode) + rlen + nrlen + 2; data.flags = DB_DBT_USERMEM; rc = db->put( db, txn, &key, &data, DB_NOOVERWRITE ); if (rc == 0) { ldap_pvt_thread_rdwr_wlock(&bdb->bi_tree_rdwr); n = bdb_add_node( e->e_id, data.data, bdb); ldap_pvt_thread_rdwr_wunlock(&bdb->bi_tree_rdwr); if (d->parent) { ldap_pvt_thread_rdwr_rlock(&bdb->bi_tree_rdwr); bdb_insert_kid(n, bdb->bi_tree); ldap_pvt_thread_rdwr_runlock(&bdb->bi_tree_rdwr); } } else { free(d); } return rc; } int bdb_dn2id_delete( BackendDB *be, DB_TXN *txn, char *pdn, Entry *e ) { struct bdb_info *bdb = (struct bdb_info *) be->be_private; int rc; DBT key; DB *db = bdb->bi_id2parent->bdi_db; idNode *n; DBTzero(&key); key.size = sizeof(e->e_id); key.data = &e->e_id; rc = db->del( db, txn, &key, 0); ldap_pvt_thread_rdwr_wlock(&bdb->bi_tree_rdwr); n = avl_delete(&bdb->bi_tree, (void *)e->e_id, (AVL_CMP)node_find_cmp); if (n) { if (n->i_parent) { ldap_pvt_thread_rdwr_wlock(&n->i_parent->i_kids_rdwr); avl_delete(&n->i_parent->i_kids, n->i_rdn->nrdn.bv_val, (AVL_CMP)node_frdn_cmp); ldap_pvt_thread_rdwr_wunlock(&n->i_parent->i_kids_rdwr); } free(n->i_rdn); ldap_pvt_thread_rdwr_destroy(&n->i_kids_rdwr); free(n); } if (e->e_id == 1) bdb->bi_troot = NULL; ldap_pvt_thread_rdwr_wunlock(&bdb->bi_tree_rdwr); return rc; } int bdb_dn2id_matched( BackendDB *be, DB_TXN *txn, const char *in, ID *id, char **matchedDN ) { struct bdb_info *bdb = (struct bdb_info *) be->be_private; int i; char **rdns; idNode *n, *p; if (!bdb->bi_troot) return DB_NOTFOUND; p = bdb->bi_troot; if (be_issuffix(be, in)) { *id = p->i_id; return 0; } rdns = ldap_explode_dn(in, 0); for (i=0; rdns[i]; i++); i -= bdb->bi_nrdns; if (i < 0) return -1; n = p; ldap_pvt_thread_rdwr_rlock(&bdb->bi_tree_rdwr); for (--i; i>=0; i--) { ldap_pvt_thread_rdwr_rlock(&p->i_kids_rdwr); n = bdb_find_rdn_node(rdns[i], p->i_kids); ldap_pvt_thread_rdwr_runlock(&p->i_kids_rdwr); if (!n) break; p = n; } ldap_pvt_thread_rdwr_runlock(&bdb->bi_tree_rdwr); if (n) { *id = n->i_id; } else if (matchedDN) { int len = 0, j; char *ptr; ++i; for (j=i; rdns[j]; j++) len += strlen(rdns[j]) + 1; ptr = ch_malloc(len); *matchedDN = ptr; for (;rdns[i]; i++) { ptr = bdb_strcopy(ptr, rdns[i]); *ptr++ = ','; } ptr[-1] = '\0'; } return n ? 0 : DB_NOTFOUND; } int bdb_dn2id( BackendDB *be, DB_TXN *txn, const char *dn, ID *id ) { return bdb_dn2id_matched(be, txn, dn, id, NULL); } int bdb_dn2id_children( BackendDB *be, DB_TXN *txn, const char *dn ) { int rc; struct bdb_info *bdb = (struct bdb_info *) be->be_private; ID id; idNode *n; rc = bdb_dn2id(be, txn, dn, &id); if (rc != 0) return rc; ldap_pvt_thread_rdwr_rlock(&bdb->bi_tree_rdwr); n = bdb_find_id_node(id, bdb->bi_tree); ldap_pvt_thread_rdwr_runlock(&bdb->bi_tree_rdwr); if (!n->i_kids) return DB_NOTFOUND; else return 0; } /* Since we don't store IDLs for onelevel or subtree, we have to construct * them on the fly... Perhaps the i_kids tree ought to just be an IDL? */ static int insert_one( idNode *n, ID *ids ) { return bdb_idl_insert(ids, n->i_id); } static int insert_sub( idNode *n, ID *ids ) { int rc; rc = bdb_idl_insert(ids, n->i_id); if (rc == 0) { ldap_pvt_thread_rdwr_rlock(&n->i_kids_rdwr); rc = avl_apply(n->i_kids, (AVL_APPLY)insert_sub, ids, -1, AVL_INORDER); ldap_pvt_thread_rdwr_runlock(&n->i_kids_rdwr); } return rc; } int bdb_dn2idl( BackendDB *be, const char *dn, int prefix, ID *ids ) { struct bdb_info *bdb = (struct bdb_info *) be->be_private; int rc; ID id; idNode *n; if (prefix == DN_SUBTREE_PREFIX && be_issuffix(be, dn)) { BDB_IDL_ALL(bdb, ids); return 0; } rc = bdb_dn2id(be, NULL, dn, &id); if (rc) return rc; ldap_pvt_thread_rdwr_rlock(&bdb->bi_tree_rdwr); n = bdb_find_id_node(id, bdb->bi_tree); ldap_pvt_thread_rdwr_runlock(&bdb->bi_tree_rdwr); ids[0] = 0; ldap_pvt_thread_rdwr_rlock(&n->i_kids_rdwr); if (prefix == DN_ONE_PREFIX) { rc = avl_apply(n->i_kids, (AVL_APPLY)insert_one, ids, -1, AVL_INORDER); } else { rc = avl_apply(n->i_kids, (AVL_APPLY)insert_sub, ids, -1, AVL_INORDER); } ldap_pvt_thread_rdwr_runlock(&n->i_kids_rdwr); return rc; } #endif /* BDB_HIER */