/* cache.c - routines to maintain an in-core cache of entries */ /* $OpenLDAP$ */ /* This work is part of OpenLDAP Software . * * Copyright 2000-2007 The OpenLDAP Foundation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted only as authorized by the OpenLDAP * Public License. * * A copy of this license is available in the file LICENSE in the * top-level directory of the distribution or, alternatively, at * . */ #include "portable.h" #include #include #include #include #include "slap.h" #include "back-bdb.h" #include "ldap_rq.h" #ifdef BDB_HIER #define bdb_cache_lru_purge hdb_cache_lru_purge #endif static void bdb_cache_lru_purge( struct bdb_info *bdb ); static int bdb_cache_delete_internal(Cache *cache, EntryInfo *e, int decr); #ifdef LDAP_DEBUG #define SLAPD_UNUSED #ifdef SLAPD_UNUSED static void bdb_lru_print(Cache *cache); #endif #endif /* For concurrency experiments only! */ #if 0 #define ldap_pvt_thread_rdwr_wlock(a) 0 #define ldap_pvt_thread_rdwr_wunlock(a) 0 #define ldap_pvt_thread_rdwr_rlock(a) 0 #define ldap_pvt_thread_rdwr_runlock(a) 0 #endif #if 0 #define ldap_pvt_thread_mutex_trylock(a) 0 #endif static EntryInfo * bdb_cache_entryinfo_new( Cache *cache ) { EntryInfo *ei = NULL; if ( cache->c_eifree ) { ldap_pvt_thread_mutex_lock( &cache->c_eifree_mutex ); if ( cache->c_eifree ) { ei = cache->c_eifree; cache->c_eifree = ei->bei_lrunext; } ldap_pvt_thread_mutex_unlock( &cache->c_eifree_mutex ); ei->bei_finders = 0; } if ( !ei ) { ei = ch_calloc(1, sizeof(EntryInfo)); ldap_pvt_thread_mutex_init( &ei->bei_kids_mutex ); } ei->bei_state = CACHE_ENTRY_REFERENCED; return ei; } static void bdb_cache_entryinfo_free( Cache *cache, EntryInfo *ei ) { free( ei->bei_nrdn.bv_val ); ei->bei_nrdn.bv_val = NULL; #ifdef BDB_HIER free( ei->bei_rdn.bv_val ); ei->bei_rdn.bv_val = NULL; ei->bei_modrdns = 0; ei->bei_ckids = 0; ei->bei_dkids = 0; #endif ei->bei_parent = NULL; ei->bei_kids = NULL; ei->bei_lruprev = NULL; ldap_pvt_thread_mutex_lock( &cache->c_eifree_mutex ); ei->bei_lrunext = cache->c_eifree; cache->c_eifree = ei; ldap_pvt_thread_mutex_unlock( &cache->c_eifree_mutex ); } #define LRU_DEL( c, e ) do { \ if ( e == (c)->c_lruhead ) (c)->c_lruhead = e->bei_lruprev; \ if ( e == (c)->c_lrutail ) (c)->c_lrutail = e->bei_lruprev; \ e->bei_lrunext->bei_lruprev = e->bei_lruprev; \ e->bei_lruprev->bei_lrunext = e->bei_lrunext; \ e->bei_lruprev = NULL; \ } while ( 0 ) /* Note - we now use a Second-Chance / Clock algorithm instead of * Least-Recently-Used. This tremendously improves concurrency * because we no longer need to manipulate the lists every time an * entry is touched. We only need to lock the lists when adding * or deleting an entry. It's now a circular doubly-linked list. * We always append to the tail, but the head traverses the circle * during a purge operation. */ static void bdb_cache_lru_link( struct bdb_info *bdb, EntryInfo *ei ) { /* Insert into circular LRU list */ ldap_pvt_thread_mutex_lock( &bdb->bi_cache.c_lru_mutex ); /* Still linked, remove */ if ( ei->bei_lruprev ) { LRU_DEL( &bdb->bi_cache, ei ); } ei->bei_lruprev = bdb->bi_cache.c_lrutail; if ( bdb->bi_cache.c_lrutail ) { ei->bei_lrunext = bdb->bi_cache.c_lrutail->bei_lrunext; bdb->bi_cache.c_lrutail->bei_lrunext = ei; if ( ei->bei_lrunext ) ei->bei_lrunext->bei_lruprev = ei; } else { ei->bei_lrunext = ei->bei_lruprev = ei; bdb->bi_cache.c_lruhead = ei; } bdb->bi_cache.c_lrutail = ei; ldap_pvt_thread_mutex_unlock( &bdb->bi_cache.c_lru_mutex ); } #ifdef NO_THREADS #define NO_DB_LOCK #endif /* #define NO_DB_LOCK 1 */ /* Note: The BerkeleyDB locks are much slower than regular * mutexes or rdwr locks. But the BDB implementation has the * advantage of using a fixed size lock table, instead of * allocating a lock object per entry in the DB. That's a * key benefit for scaling. It also frees us from worrying * about undetectable deadlocks between BDB activity and our * own cache activity. It's still worth exploring faster * alternatives though. */ /* Atomically release and reacquire a lock */ int bdb_cache_entry_db_relock( struct bdb_info *bdb, u_int32_t locker, EntryInfo *ei, int rw, int tryOnly, DB_LOCK *lock ) { #ifdef NO_DB_LOCK return 0; #else int rc; DBT lockobj; DB_LOCKREQ list[2]; if ( !lock ) return 0; lockobj.data = &ei->bei_id; lockobj.size = sizeof(ei->bei_id) + 1; list[0].op = DB_LOCK_PUT; list[0].lock = *lock; list[1].op = DB_LOCK_GET; list[1].lock = *lock; list[1].mode = rw ? DB_LOCK_WRITE : DB_LOCK_READ; list[1].obj = &lockobj; rc = bdb->bi_dbenv->lock_vec(bdb->bi_dbenv, locker, tryOnly ? DB_LOCK_NOWAIT : 0, list, 2, NULL ); if (rc && !tryOnly) { Debug( LDAP_DEBUG_TRACE, "bdb_cache_entry_db_relock: entry %ld, rw %d, rc %d\n", ei->bei_id, rw, rc ); } else { *lock = list[1].lock; } return rc; #endif } static int bdb_cache_entry_db_lock( struct bdb_info *bdb, u_int32_t locker, EntryInfo *ei, int rw, int tryOnly, DB_LOCK *lock ) { #ifdef NO_DB_LOCK return 0; #else int rc; DBT lockobj; int db_rw; if ( !lock ) return 0; if (rw) db_rw = DB_LOCK_WRITE; else db_rw = DB_LOCK_READ; lockobj.data = &ei->bei_id; lockobj.size = sizeof(ei->bei_id) + 1; rc = LOCK_GET(bdb->bi_dbenv, locker, tryOnly ? DB_LOCK_NOWAIT : 0, &lockobj, db_rw, lock); if (rc && !tryOnly) { Debug( LDAP_DEBUG_TRACE, "bdb_cache_entry_db_lock: entry %ld, rw %d, rc %d\n", ei->bei_id, rw, rc ); } return rc; #endif /* NO_DB_LOCK */ } int bdb_cache_entry_db_unlock ( struct bdb_info *bdb, DB_LOCK *lock ) { #ifdef NO_DB_LOCK return 0; #else int rc; if ( !lock || lock->mode == DB_LOCK_NG ) return 0; rc = LOCK_PUT ( bdb->bi_dbenv, lock ); return rc; #endif } static int bdb_cache_entryinfo_destroy( EntryInfo *e ) { ldap_pvt_thread_mutex_destroy( &e->bei_kids_mutex ); free( e->bei_nrdn.bv_val ); #ifdef BDB_HIER free( e->bei_rdn.bv_val ); #endif free( e ); return 0; } /* Do a length-ordered sort on normalized RDNs */ static int bdb_rdn_cmp( const void *v_e1, const void *v_e2 ) { const EntryInfo *e1 = v_e1, *e2 = v_e2; int rc = e1->bei_nrdn.bv_len - e2->bei_nrdn.bv_len; if (rc == 0) { rc = strncmp( e1->bei_nrdn.bv_val, e2->bei_nrdn.bv_val, e1->bei_nrdn.bv_len ); } return rc; } static int bdb_id_cmp( const void *v_e1, const void *v_e2 ) { const EntryInfo *e1 = v_e1, *e2 = v_e2; return e1->bei_id - e2->bei_id; } static int bdb_id_dup_err( void *v1, void *v2 ) { EntryInfo *e2 = v2; e2->bei_lrunext = v1; return -1; } /* Create an entryinfo in the cache. Caller must release the locks later. */ static int bdb_entryinfo_add_internal( struct bdb_info *bdb, EntryInfo *ei, EntryInfo **res ) { EntryInfo *ei2 = NULL; *res = NULL; ei2 = bdb_cache_entryinfo_new( &bdb->bi_cache ); ldap_pvt_thread_rdwr_wlock( &bdb->bi_cache.c_rwlock ); bdb_cache_entryinfo_lock( ei->bei_parent ); ei2->bei_id = ei->bei_id; ei2->bei_parent = ei->bei_parent; #ifdef BDB_HIER ei2->bei_rdn = ei->bei_rdn; #endif #ifdef SLAP_ZONE_ALLOC ei2->bei_bdb = bdb; #endif /* Add to cache ID tree */ if (avl_insert( &bdb->bi_cache.c_idtree, ei2, bdb_id_cmp, bdb_id_dup_err )) { EntryInfo *eix = ei2->bei_lrunext; bdb_cache_entryinfo_free( &bdb->bi_cache, ei2 ); ei2 = eix; #ifdef BDB_HIER /* It got freed above because its value was * assigned to ei2. */ ei->bei_rdn.bv_val = NULL; #endif } else { bdb->bi_cache.c_eiused++; ber_dupbv( &ei2->bei_nrdn, &ei->bei_nrdn ); /* This is a new leaf node. But if parent had no kids, then it was * a leaf and we would be decrementing that. So, only increment if * the parent already has kids. */ if ( ei->bei_parent->bei_kids || !ei->bei_parent->bei_id ) bdb->bi_cache.c_leaves++; avl_insert( &ei->bei_parent->bei_kids, ei2, bdb_rdn_cmp, avl_dup_error ); #ifdef BDB_HIER ei->bei_parent->bei_ckids++; #endif } *res = ei2; return 0; } /* Find the EntryInfo for the requested DN. If the DN cannot be found, return * the info for its closest ancestor. *res should be NULL to process a * complete DN starting from the tree root. Otherwise *res must be the * immediate parent of the requested DN, and only the RDN will be searched. * The EntryInfo is locked upon return and must be unlocked by the caller. */ int bdb_cache_find_ndn( Operation *op, DB_TXN *txn, struct berval *ndn, EntryInfo **res ) { struct bdb_info *bdb = (struct bdb_info *) op->o_bd->be_private; EntryInfo ei, *eip, *ei2; int rc = 0; char *ptr; /* this function is always called with normalized DN */ if ( *res ) { /* we're doing a onelevel search for an RDN */ ei.bei_nrdn.bv_val = ndn->bv_val; ei.bei_nrdn.bv_len = dn_rdnlen( op->o_bd, ndn ); eip = *res; } else { /* we're searching a full DN from the root */ ptr = ndn->bv_val + ndn->bv_len - op->o_bd->be_nsuffix[0].bv_len; ei.bei_nrdn.bv_val = ptr; ei.bei_nrdn.bv_len = op->o_bd->be_nsuffix[0].bv_len; /* Skip to next rdn if suffix is empty */ if ( ei.bei_nrdn.bv_len == 0 ) { for (ptr = ei.bei_nrdn.bv_val - 2; ptr > ndn->bv_val && !DN_SEPARATOR(*ptr); ptr--) /* empty */; if ( ptr >= ndn->bv_val ) { if (DN_SEPARATOR(*ptr)) ptr++; ei.bei_nrdn.bv_len = ei.bei_nrdn.bv_val - ptr; ei.bei_nrdn.bv_val = ptr; } } eip = &bdb->bi_cache.c_dntree; } for ( bdb_cache_entryinfo_lock( eip ); eip; ) { eip->bei_state |= CACHE_ENTRY_REFERENCED; ei.bei_parent = eip; ei2 = (EntryInfo *)avl_find( eip->bei_kids, &ei, bdb_rdn_cmp ); if ( !ei2 ) { int len = ei.bei_nrdn.bv_len; if ( BER_BVISEMPTY( ndn )) { *res = eip; return LDAP_SUCCESS; } ei.bei_nrdn.bv_len = ndn->bv_len - (ei.bei_nrdn.bv_val - ndn->bv_val); bdb_cache_entryinfo_unlock( eip ); rc = bdb_dn2id( op, txn, &ei.bei_nrdn, &ei ); if (rc) { bdb_cache_entryinfo_lock( eip ); *res = eip; return rc; } /* DN exists but needs to be added to cache */ ei.bei_nrdn.bv_len = len; rc = bdb_entryinfo_add_internal( bdb, &ei, &ei2 ); /* add_internal left eip and c_rwlock locked */ ldap_pvt_thread_rdwr_wunlock( &bdb->bi_cache.c_rwlock ); if ( rc ) { *res = eip; return rc; } } else if ( ei2->bei_state & CACHE_ENTRY_DELETED ) { /* In the midst of deleting? Give it a chance to * complete. */ bdb_cache_entryinfo_unlock( eip ); ldap_pvt_thread_yield(); bdb_cache_entryinfo_lock( eip ); *res = eip; return DB_NOTFOUND; } bdb_cache_entryinfo_unlock( eip ); bdb_cache_entryinfo_lock( ei2 ); eip = ei2; /* Advance to next lower RDN */ for (ptr = ei.bei_nrdn.bv_val - 2; ptr > ndn->bv_val && !DN_SEPARATOR(*ptr); ptr--) /* empty */; if ( ptr >= ndn->bv_val ) { if (DN_SEPARATOR(*ptr)) ptr++; ei.bei_nrdn.bv_len = ei.bei_nrdn.bv_val - ptr - 1; ei.bei_nrdn.bv_val = ptr; } if ( ptr < ndn->bv_val ) { *res = eip; break; } } return rc; } #ifdef BDB_HIER /* Walk up the tree from a child node, looking for an ID that's already * been linked into the cache. */ int hdb_cache_find_parent( Operation *op, DB_TXN *txn, u_int32_t locker, ID id, EntryInfo **res ) { struct bdb_info *bdb = (struct bdb_info *) op->o_bd->be_private; EntryInfo ei, eip, *ei2 = NULL, *ein = NULL, *eir = NULL; int rc; ei.bei_id = id; ei.bei_kids = NULL; ei.bei_ckids = 0; for (;;) { rc = hdb_dn2id_parent( op, txn, locker, &ei, &eip.bei_id ); if ( rc ) break; /* Save the previous node, if any */ ei2 = ein; /* Create a new node for the current ID */ ein = bdb_cache_entryinfo_new( &bdb->bi_cache ); ein->bei_id = ei.bei_id; ein->bei_kids = ei.bei_kids; ein->bei_nrdn = ei.bei_nrdn; ein->bei_rdn = ei.bei_rdn; ein->bei_ckids = ei.bei_ckids; #ifdef SLAP_ZONE_ALLOC ein->bei_bdb = bdb; #endif ei.bei_ckids = 0; /* This node is not fully connected yet */ ein->bei_state |= CACHE_ENTRY_NOT_LINKED; /* Insert this node into the ID tree */ ldap_pvt_thread_rdwr_wlock( &bdb->bi_cache.c_rwlock ); if ( avl_insert( &bdb->bi_cache.c_idtree, (caddr_t)ein, bdb_id_cmp, bdb_id_dup_err ) ) { EntryInfo *eix = ein->bei_lrunext; /* Someone else created this node just before us. * Free our new copy and use the existing one. */ bdb_cache_entryinfo_free( &bdb->bi_cache, ein ); ein = eix; /* Link in any kids we've already processed */ if ( ei2 ) { bdb_cache_entryinfo_lock( ein ); avl_insert( &ein->bei_kids, (caddr_t)ei2, bdb_rdn_cmp, avl_dup_error ); ein->bei_ckids++; bdb_cache_entryinfo_unlock( ein ); } } /* If this is the first time, save this node * to be returned later. */ if ( eir == NULL ) eir = ein; /* If there was a previous node, link it to this one */ if ( ei2 ) ei2->bei_parent = ein; /* Look for this node's parent */ if ( eip.bei_id ) { ei2 = (EntryInfo *) avl_find( bdb->bi_cache.c_idtree, (caddr_t) &eip, bdb_id_cmp ); } else { ei2 = &bdb->bi_cache.c_dntree; } bdb->bi_cache.c_eiused++; if ( ei2 && ( ei2->bei_kids || !ei2->bei_id )) bdb->bi_cache.c_leaves++; ldap_pvt_thread_rdwr_wunlock( &bdb->bi_cache.c_rwlock ); /* Got the parent, link in and we're done. */ if ( ei2 ) { bdb_cache_entryinfo_lock( ei2 ); ein->bei_parent = ei2; avl_insert( &ei2->bei_kids, (caddr_t)ein, bdb_rdn_cmp, avl_dup_error); ei2->bei_ckids++; /* Reset all the state info */ for (ein = eir; ein != ei2; ein=ein->bei_parent) ein->bei_state &= ~CACHE_ENTRY_NOT_LINKED; bdb_cache_entryinfo_unlock( ei2 ); bdb_cache_entryinfo_lock( eir ); *res = eir; break; } ei.bei_kids = NULL; ei.bei_id = eip.bei_id; ei.bei_ckids = 1; avl_insert( &ei.bei_kids, (caddr_t)ein, bdb_rdn_cmp, avl_dup_error ); } return rc; } /* Used by hdb_dn2idl when loading the EntryInfo for all the children * of a given node */ int hdb_cache_load( struct bdb_info *bdb, EntryInfo *ei, EntryInfo **res ) { EntryInfo *ei2; int rc; /* See if we already have this one */ bdb_cache_entryinfo_lock( ei->bei_parent ); ei2 = (EntryInfo *)avl_find( ei->bei_parent->bei_kids, ei, bdb_rdn_cmp ); bdb_cache_entryinfo_unlock( ei->bei_parent ); if ( !ei2 ) { /* Not found, add it */ struct berval bv; /* bei_rdn was not malloc'd before, do it now */ ber_dupbv( &bv, &ei->bei_rdn ); ei->bei_rdn = bv; rc = bdb_entryinfo_add_internal( bdb, ei, res ); bdb_cache_entryinfo_unlock( ei->bei_parent ); ldap_pvt_thread_rdwr_wunlock( &bdb->bi_cache.c_rwlock ); } else { /* Found, return it */ *res = ei2; return 0; } return rc; } #endif /* This is best-effort only. If all entries in the cache are * busy, they will all be kept. This is unlikely to happen * unless the cache is very much smaller than the working set. */ static void bdb_cache_lru_purge( struct bdb_info *bdb ) { DB_LOCK lock, *lockp; EntryInfo *elru, *elnext = NULL; int count, islocked, eimax; /* Wait for the mutex; we're the only one trying to purge. */ ldap_pvt_thread_mutex_lock( &bdb->bi_cache.c_lru_mutex ); if ( bdb->bi_cache.c_cursize <= bdb->bi_cache.c_maxsize ) { ldap_pvt_thread_mutex_unlock( &bdb->bi_cache.c_lru_mutex ); bdb->bi_cache.c_purging = 0; return; } if ( bdb->bi_cache.c_locker ) { lockp = &lock; } else { lockp = NULL; } count = 0; /* maximum number of EntryInfo leaves to cache. In slapcat * we always free all leaf nodes. */ if ( slapMode & SLAP_TOOL_READONLY ) eimax = 0; else eimax = bdb->bi_cache.c_maxsize * 4; /* Look for an unused entry to remove */ for ( elru = bdb->bi_cache.c_lruhead; elru; elru = elnext ) { elnext = elru->bei_lrunext; if ( bdb_cache_entryinfo_trylock( elru )) goto bottom; /* This flag implements the clock replacement behavior */ if ( elru->bei_state & ( CACHE_ENTRY_REFERENCED )) { elru->bei_state &= ~CACHE_ENTRY_REFERENCED; bdb_cache_entryinfo_unlock( elru ); goto bottom; } /* If this node is in the process of linking into the cache, * or this node is being deleted, skip it. */ if (( elru->bei_state & ( CACHE_ENTRY_NOT_LINKED | CACHE_ENTRY_DELETED | CACHE_ENTRY_LOADING )) || elru->bei_finders > 0 ) { bdb_cache_entryinfo_unlock( elru ); goto bottom; } /* entryinfo is locked */ islocked = 1; /* If we can successfully writelock it, then * the object is idle. */ if ( bdb_cache_entry_db_lock( bdb, bdb->bi_cache.c_locker, elru, 1, 1, lockp ) == 0 ) { /* Free entry for this node if it's present */ if ( elru->bei_e ) { elru->bei_e->e_private = NULL; #ifdef SLAP_ZONE_ALLOC bdb_entry_return( bdb, elru->bei_e, elru->bei_zseq ); #else bdb_entry_return( elru->bei_e ); #endif elru->bei_e = NULL; count++; } bdb_cache_entry_db_unlock( bdb, lockp ); /* * If it is a leaf node, and we're over the limit, free it. */ if ( elru->bei_kids ) { /* Drop from list, we ignore it... */ LRU_DEL( &bdb->bi_cache, elru ); } else if ( bdb->bi_cache.c_leaves > eimax ) { /* Too many leaf nodes, free this one */ bdb_cache_delete_internal( &bdb->bi_cache, elru, 0 ); bdb_cache_delete_cleanup( &bdb->bi_cache, elru ); islocked = 0; } /* Leave on list until we need to free it */ } if ( islocked ) bdb_cache_entryinfo_unlock( elru ); if ( count >= bdb->bi_cache.c_minfree ) { ldap_pvt_thread_mutex_lock( &bdb->bi_cache.c_count_mutex ); bdb->bi_cache.c_cursize -= count; ldap_pvt_thread_mutex_unlock( &bdb->bi_cache.c_count_mutex ); break; } bottom: if ( elnext == bdb->bi_cache.c_lruhead ) break; } bdb->bi_cache.c_lruhead = elnext; ldap_pvt_thread_mutex_unlock( &bdb->bi_cache.c_lru_mutex ); bdb->bi_cache.c_purging = 0; } EntryInfo * bdb_cache_find_info( struct bdb_info *bdb, ID id ) { EntryInfo ei = { 0 }, *ei2; ei.bei_id = id; ldap_pvt_thread_rdwr_rlock( &bdb->bi_cache.c_rwlock ); ei2 = (EntryInfo *) avl_find( bdb->bi_cache.c_idtree, (caddr_t) &ei, bdb_id_cmp ); ldap_pvt_thread_rdwr_runlock( &bdb->bi_cache.c_rwlock ); return ei2; } /* * cache_find_id - find an entry in the cache, given id. * The entry is locked for Read upon return. Call with islocked TRUE if * the supplied *eip was already locked. */ int bdb_cache_find_id( Operation *op, DB_TXN *tid, ID id, EntryInfo **eip, int islocked, u_int32_t locker, DB_LOCK *lock ) { struct bdb_info *bdb = (struct bdb_info *) op->o_bd->be_private; Entry *ep = NULL; int rc = 0, load = 0; EntryInfo ei = { 0 }; ei.bei_id = id; #ifdef SLAP_ZONE_ALLOC slap_zh_rlock(bdb->bi_cache.c_zctx); #endif /* If we weren't given any info, see if we have it already cached */ if ( !*eip ) { again: ldap_pvt_thread_rdwr_rlock( &bdb->bi_cache.c_rwlock ); *eip = (EntryInfo *) avl_find( bdb->bi_cache.c_idtree, (caddr_t) &ei, bdb_id_cmp ); if ( *eip ) { /* If the lock attempt fails, the info is in use */ if ( bdb_cache_entryinfo_trylock( *eip )) { ldap_pvt_thread_rdwr_runlock( &bdb->bi_cache.c_rwlock ); /* If this node is being deleted, treat * as if the delete has already finished */ if ( (*eip)->bei_state & CACHE_ENTRY_DELETED ) { return DB_NOTFOUND; } /* otherwise, wait for the info to free up */ ldap_pvt_thread_yield(); goto again; } /* If this info isn't hooked up to its parent yet, * unlock and wait for it to be fully initialized */ if ( (*eip)->bei_state & CACHE_ENTRY_NOT_LINKED ) { bdb_cache_entryinfo_unlock( *eip ); ldap_pvt_thread_rdwr_runlock( &bdb->bi_cache.c_rwlock ); ldap_pvt_thread_yield(); goto again; } islocked = 1; } ldap_pvt_thread_rdwr_runlock( &bdb->bi_cache.c_rwlock ); } /* See if the ID exists in the database; add it to the cache if so */ if ( !*eip ) { #ifndef BDB_HIER rc = bdb_id2entry( op->o_bd, tid, locker, id, &ep ); if ( rc == 0 ) { rc = bdb_cache_find_ndn( op, tid, &ep->e_nname, eip ); if ( *eip ) islocked = 1; if ( rc ) { ep->e_private = NULL; #ifdef SLAP_ZONE_ALLOC bdb_entry_return( bdb, ep, (*eip)->bei_zseq ); #else bdb_entry_return( ep ); #endif ep = NULL; } } #else rc = hdb_cache_find_parent(op, tid, locker, id, eip ); if ( rc == 0 ) islocked = 1; #endif } /* Ok, we found the info, do we have the entry? */ if ( rc == 0 ) { if ( (*eip)->bei_state & CACHE_ENTRY_DELETED ) { rc = DB_NOTFOUND; } else { (*eip)->bei_finders++; (*eip)->bei_state |= CACHE_ENTRY_REFERENCED; /* Make sure only one thread tries to load the entry */ load1: #ifdef SLAP_ZONE_ALLOC if ((*eip)->bei_e && !slap_zn_validate( bdb->bi_cache.c_zctx, (*eip)->bei_e, (*eip)->bei_zseq)) { (*eip)->bei_e = NULL; (*eip)->bei_zseq = 0; } #endif if ( !(*eip)->bei_e && !((*eip)->bei_state & CACHE_ENTRY_LOADING)) { load = 1; (*eip)->bei_state |= CACHE_ENTRY_LOADING; } if ( islocked ) { bdb_cache_entryinfo_unlock( *eip ); islocked = 0; } rc = bdb_cache_entry_db_lock( bdb, locker, *eip, load, 0, lock ); if ( (*eip)->bei_state & CACHE_ENTRY_DELETED ) { rc = DB_NOTFOUND; bdb_cache_entry_db_unlock( bdb, lock ); } else if ( rc == 0 ) { if ( load ) { if ( !ep) { rc = bdb_id2entry( op->o_bd, tid, locker, id, &ep ); } if ( rc == 0 ) { ep->e_private = *eip; #ifdef BDB_HIER bdb_fix_dn( ep, 0 ); #endif (*eip)->bei_e = ep; #ifdef SLAP_ZONE_ALLOC (*eip)->bei_zseq = *((ber_len_t *)ep - 2); #endif ep = NULL; bdb_cache_lru_link( bdb, *eip ); } if ( rc == 0 ) { /* If we succeeded, downgrade back to a readlock. */ rc = bdb_cache_entry_db_relock( bdb, locker, *eip, 0, 0, lock ); } else { /* Otherwise, release the lock. */ bdb_cache_entry_db_unlock( bdb, lock ); } } else if ( !(*eip)->bei_e ) { /* Some other thread is trying to load the entry, * wait for it to finish. */ bdb_cache_entry_db_unlock( bdb, lock ); bdb_cache_entryinfo_lock( *eip ); islocked = 1; goto load1; #ifdef BDB_HIER } else { /* Check for subtree renames */ rc = bdb_fix_dn( (*eip)->bei_e, 1 ); if ( rc ) { bdb_cache_entry_db_relock( bdb, locker, *eip, 1, 0, lock ); /* check again in case other modifier did it already */ if ( bdb_fix_dn( (*eip)->bei_e, 1 ) ) rc = bdb_fix_dn( (*eip)->bei_e, 2 ); bdb_cache_entry_db_relock( bdb, locker, *eip, 0, 0, lock ); } #endif } bdb_cache_entryinfo_lock( *eip ); (*eip)->bei_finders--; if ( load ) (*eip)->bei_state ^= CACHE_ENTRY_LOADING; bdb_cache_entryinfo_unlock( *eip ); } } } if ( islocked ) { bdb_cache_entryinfo_unlock( *eip ); } if ( ep ) { ep->e_private = NULL; #ifdef SLAP_ZONE_ALLOC bdb_entry_return( bdb, ep, (*eip)->bei_zseq ); #else bdb_entry_return( ep ); #endif } if ( rc == 0 ) { int purge = 0; if ( load ) { ldap_pvt_thread_mutex_lock( &bdb->bi_cache.c_count_mutex ); bdb->bi_cache.c_cursize++; if ( bdb->bi_cache.c_cursize > bdb->bi_cache.c_maxsize && !bdb->bi_cache.c_purging ) { purge = 1; bdb->bi_cache.c_purging = 1; } ldap_pvt_thread_mutex_unlock( &bdb->bi_cache.c_count_mutex ); } if ( purge ) bdb_cache_lru_purge( bdb ); } #ifdef SLAP_ZONE_ALLOC if (rc == 0 && (*eip)->bei_e) { slap_zn_rlock(bdb->bi_cache.c_zctx, (*eip)->bei_e); } slap_zh_runlock(bdb->bi_cache.c_zctx); #endif return rc; } int bdb_cache_children( Operation *op, DB_TXN *txn, Entry *e ) { int rc; if ( BEI(e)->bei_kids ) { return 0; } if ( BEI(e)->bei_state & CACHE_ENTRY_NO_KIDS ) { return DB_NOTFOUND; } rc = bdb_dn2id_children( op, txn, e ); if ( rc == DB_NOTFOUND ) { BEI(e)->bei_state |= CACHE_ENTRY_NO_KIDS | CACHE_ENTRY_NO_GRANDKIDS; } return rc; } /* Update the cache after a successful database Add. */ int bdb_cache_add( struct bdb_info *bdb, EntryInfo *eip, Entry *e, struct berval *nrdn, u_int32_t locker, DB_LOCK *lock ) { EntryInfo *new, ei; int rc, purge = 0; #ifdef BDB_HIER struct berval rdn = e->e_name; #endif ei.bei_id = e->e_id; ei.bei_parent = eip; ei.bei_nrdn = *nrdn; ei.bei_lockpad = 0; /* Lock this entry so that bdb_add can run to completion. * It can only fail if BDB has run out of lock resources. */ rc = bdb_cache_entry_db_lock( bdb, locker, &ei, 0, 0, lock ); if ( rc ) { bdb_cache_entryinfo_unlock( eip ); return rc; } #ifdef BDB_HIER if ( nrdn->bv_len != e->e_nname.bv_len ) { char *ptr = ber_bvchr( &rdn, ',' ); assert( ptr != NULL ); rdn.bv_len = ptr - rdn.bv_val; } ber_dupbv( &ei.bei_rdn, &rdn ); if ( eip->bei_dkids ) eip->bei_dkids++; #endif rc = bdb_entryinfo_add_internal( bdb, &ei, &new ); /* bdb_csn_commit can cause this when adding the database root entry */ if ( new->bei_e ) { new->bei_e->e_private = NULL; #ifdef SLAP_ZONE_ALLOC bdb_entry_return( bdb, new->bei_e, new->bei_zseq ); #else bdb_entry_return( new->bei_e ); #endif } new->bei_e = e; e->e_private = new; new->bei_state |= CACHE_ENTRY_NO_KIDS | CACHE_ENTRY_NO_GRANDKIDS; eip->bei_state &= ~CACHE_ENTRY_NO_KIDS; if (eip->bei_parent) { eip->bei_parent->bei_state &= ~CACHE_ENTRY_NO_GRANDKIDS; } bdb_cache_entryinfo_unlock( eip ); ldap_pvt_thread_rdwr_wunlock( &bdb->bi_cache.c_rwlock ); ldap_pvt_thread_mutex_lock( &bdb->bi_cache.c_count_mutex ); ++bdb->bi_cache.c_cursize; if ( bdb->bi_cache.c_cursize > bdb->bi_cache.c_maxsize && !bdb->bi_cache.c_purging ) { purge = 1; bdb->bi_cache.c_purging = 1; } ldap_pvt_thread_mutex_unlock( &bdb->bi_cache.c_count_mutex ); bdb_cache_lru_link( bdb, new ); if ( purge ) bdb_cache_lru_purge( bdb ); return rc; } int bdb_cache_modify( struct bdb_info *bdb, Entry *e, Attribute *newAttrs, u_int32_t locker, DB_LOCK *lock ) { EntryInfo *ei = BEI(e); int rc; /* Get write lock on data */ rc = bdb_cache_entry_db_relock( bdb, locker, ei, 1, 0, lock ); /* If we've done repeated mods on a cached entry, then e_attrs * is no longer contiguous with the entry, and must be freed. */ if ( ! rc ) { if ( (void *)e->e_attrs != (void *)(e+1) ) { attrs_free( e->e_attrs ); } e->e_attrs = newAttrs; } return rc; } /* * Change the rdn in the entryinfo. Also move to a new parent if needed. */ int bdb_cache_modrdn( struct bdb_info *bdb, Entry *e, struct berval *nrdn, Entry *new, EntryInfo *ein, u_int32_t locker, DB_LOCK *lock ) { EntryInfo *ei = BEI(e), *pei; int rc; #ifdef BDB_HIER struct berval rdn; #endif /* Get write lock on data */ rc = bdb_cache_entry_db_relock( bdb, locker, ei, 1, 0, lock ); if ( rc ) return rc; /* If we've done repeated mods on a cached entry, then e_attrs * is no longer contiguous with the entry, and must be freed. */ if ( (void *)e->e_attrs != (void *)(e+1) ) { attrs_free( e->e_attrs ); } e->e_attrs = new->e_attrs; if( e->e_nname.bv_val < e->e_bv.bv_val || e->e_nname.bv_val > e->e_bv.bv_val + e->e_bv.bv_len ) { ch_free(e->e_name.bv_val); ch_free(e->e_nname.bv_val); } e->e_name = new->e_name; e->e_nname = new->e_nname; /* Lock the parent's kids AVL tree */ pei = ei->bei_parent; bdb_cache_entryinfo_lock( pei ); avl_delete( &pei->bei_kids, (caddr_t) ei, bdb_rdn_cmp ); free( ei->bei_nrdn.bv_val ); ber_dupbv( &ei->bei_nrdn, nrdn ); if ( !pei->bei_kids ) pei->bei_state |= CACHE_ENTRY_NO_KIDS | CACHE_ENTRY_NO_GRANDKIDS; #ifdef BDB_HIER free( ei->bei_rdn.bv_val ); rdn = e->e_name; if ( nrdn->bv_len != e->e_nname.bv_len ) { char *ptr = ber_bvchr(&rdn, ','); assert( ptr != NULL ); rdn.bv_len = ptr - rdn.bv_val; } ber_dupbv( &ei->bei_rdn, &rdn ); pei->bei_ckids--; if ( pei->bei_dkids ) pei->bei_dkids--; #endif if (!ein) { ein = ei->bei_parent; } else { ei->bei_parent = ein; bdb_cache_entryinfo_unlock( pei ); bdb_cache_entryinfo_lock( ein ); } /* parent now has kids */ if ( ein->bei_state & CACHE_ENTRY_NO_KIDS ) ein->bei_state ^= CACHE_ENTRY_NO_KIDS; #ifdef BDB_HIER /* parent might now have grandkids */ if ( ein->bei_state & CACHE_ENTRY_NO_GRANDKIDS && !(ei->bei_state & (CACHE_ENTRY_NO_KIDS))) ein->bei_state ^= CACHE_ENTRY_NO_GRANDKIDS; { /* Record the generation number of this change */ ldap_pvt_thread_mutex_lock( &bdb->bi_modrdns_mutex ); bdb->bi_modrdns++; ei->bei_modrdns = bdb->bi_modrdns; ldap_pvt_thread_mutex_unlock( &bdb->bi_modrdns_mutex ); } ein->bei_ckids++; if ( ein->bei_dkids ) ein->bei_dkids++; #endif avl_insert( &ein->bei_kids, ei, bdb_rdn_cmp, avl_dup_error ); bdb_cache_entryinfo_unlock( ein ); return rc; } /* * cache_delete - delete the entry e from the cache. * * returns: 0 e was deleted ok * 1 e was not in the cache * -1 something bad happened */ int bdb_cache_delete( struct bdb_info *bdb, Entry *e, u_int32_t locker, DB_LOCK *lock ) { EntryInfo *ei = BEI(e); int rc; assert( e->e_private != NULL ); /* Set this early, warn off any queriers */ ei->bei_state |= CACHE_ENTRY_DELETED; /* Lock the entry's info */ bdb_cache_entryinfo_lock( ei ); /* Get write lock on the data */ rc = bdb_cache_entry_db_relock( bdb, locker, ei, 1, 0, lock ); if ( rc ) { /* couldn't lock, undo and give up */ ei->bei_state ^= CACHE_ENTRY_DELETED; bdb_cache_entryinfo_unlock( ei ); return rc; } Debug( LDAP_DEBUG_TRACE, "====> bdb_cache_delete( %ld )\n", e->e_id, 0, 0 ); /* set lru mutex */ ldap_pvt_thread_mutex_lock( &bdb->bi_cache.c_lru_mutex ); rc = bdb_cache_delete_internal( &bdb->bi_cache, e->e_private, 1 ); /* free lru mutex */ ldap_pvt_thread_mutex_unlock( &bdb->bi_cache.c_lru_mutex ); /* Leave entry info locked */ return( rc ); } void bdb_cache_delete_cleanup( Cache *cache, EntryInfo *ei ) { if ( ei->bei_e ) { ei->bei_e->e_private = NULL; #ifdef SLAP_ZONE_ALLOC bdb_entry_return( ei->bei_bdb, ei->bei_e, ei->bei_zseq ); #else bdb_entry_return( ei->bei_e ); #endif ei->bei_e = NULL; } bdb_cache_entryinfo_free( cache, ei ); bdb_cache_entryinfo_unlock( ei ); } static int bdb_cache_delete_internal( Cache *cache, EntryInfo *e, int decr ) { int rc = 0; /* return code */ int decr_leaf = 0; /* Lock the parent's kids tree */ bdb_cache_entryinfo_lock( e->bei_parent ); #ifdef BDB_HIER e->bei_parent->bei_ckids--; if ( decr && e->bei_parent->bei_dkids ) e->bei_parent->bei_dkids--; #endif /* dn tree */ if ( avl_delete( &e->bei_parent->bei_kids, (caddr_t) e, bdb_rdn_cmp ) == NULL ) { rc = -1; } if ( e->bei_parent->bei_kids ) decr_leaf = 1; bdb_cache_entryinfo_unlock( e->bei_parent ); ldap_pvt_thread_rdwr_wlock( &cache->c_rwlock ); /* id tree */ if ( avl_delete( &cache->c_idtree, (caddr_t) e, bdb_id_cmp )) { cache->c_eiused--; if ( decr_leaf ) cache->c_leaves--; } else { rc = -1; } ldap_pvt_thread_rdwr_wunlock( &cache->c_rwlock ); if ( rc == 0 ){ /* lru */ LRU_DEL( cache, e ); if ( e->bei_e ) { ldap_pvt_thread_mutex_lock( &cache->c_count_mutex ); cache->c_cursize--; ldap_pvt_thread_mutex_unlock( &cache->c_count_mutex ); } } return( rc ); } static void bdb_entryinfo_release( void *data ) { EntryInfo *ei = (EntryInfo *)data; if ( ei->bei_kids ) { avl_free( ei->bei_kids, NULL ); } if ( ei->bei_e ) { ei->bei_e->e_private = NULL; #ifdef SLAP_ZONE_ALLOC bdb_entry_return( ei->bei_bdb, ei->bei_e, ei->bei_zseq ); #else bdb_entry_return( ei->bei_e ); #endif } bdb_cache_entryinfo_destroy( ei ); } void bdb_cache_release_all( Cache *cache ) { /* set cache write lock */ ldap_pvt_thread_rdwr_wlock( &cache->c_rwlock ); /* set lru mutex */ ldap_pvt_thread_mutex_lock( &cache->c_lru_mutex ); Debug( LDAP_DEBUG_TRACE, "====> bdb_cache_release_all\n", 0, 0, 0 ); avl_free( cache->c_dntree.bei_kids, NULL ); avl_free( cache->c_idtree, bdb_entryinfo_release ); for (;cache->c_eifree;cache->c_eifree = cache->c_lruhead) { cache->c_lruhead = cache->c_eifree->bei_lrunext; bdb_cache_entryinfo_destroy(cache->c_eifree); } cache->c_cursize = 0; cache->c_eiused = 0; cache->c_leaves = 0; cache->c_idtree = NULL; cache->c_lruhead = NULL; cache->c_lrutail = NULL; cache->c_dntree.bei_kids = NULL; /* free lru mutex */ ldap_pvt_thread_mutex_unlock( &cache->c_lru_mutex ); /* free cache write lock */ ldap_pvt_thread_rdwr_wunlock( &cache->c_rwlock ); } #ifdef LDAP_DEBUG #ifdef SLAPD_UNUSED static void bdb_lru_print( Cache *cache ) { EntryInfo *e; fprintf( stderr, "LRU circle head: %p\n", cache->c_lruhead ); fprintf( stderr, "LRU circle (tail forward):\n" ); for ( e = cache->c_lrutail; ; ) { fprintf( stderr, "\t%p, %p id %ld rdn \"%s\"\n", e, e->bei_e, e->bei_id, e->bei_nrdn.bv_val ); e = e->bei_lrunext; if ( e == cache->c_lrutail ) break; } fprintf( stderr, "LRU circle (tail backward):\n" ); for ( e = cache->c_lrutail; ; ) { fprintf( stderr, "\t%p, %p id %ld rdn \"%s\"\n", e, e->bei_e, e->bei_id, e->bei_nrdn.bv_val ); e = e->bei_lruprev; if ( e == cache->c_lrutail ) break; } } #endif #endif #ifdef BDB_REUSE_LOCKERS static void bdb_locker_id_free( void *key, void *data ) { DB_ENV *env = key; u_int32_t lockid = (long)data; int rc; rc = XLOCK_ID_FREE( env, lockid ); if ( rc == EINVAL ) { DB_LOCKREQ lr; Debug( LDAP_DEBUG_ANY, "bdb_locker_id_free: %lu err %s(%d)\n", (unsigned long) lockid, db_strerror(rc), rc ); /* release all locks held by this locker. */ lr.op = DB_LOCK_PUT_ALL; lr.obj = NULL; env->lock_vec( env, lockid, 0, &lr, 1, NULL ); XLOCK_ID_FREE( env, lockid ); } } int bdb_locker_id( Operation *op, DB_ENV *env, u_int32_t *locker ) { int i, rc; u_int32_t lockid; void *data; void *ctx; if ( !env || !locker ) return -1; /* If no op was provided, try to find the ctx anyway... */ if ( op ) { ctx = op->o_threadctx; } else { ctx = ldap_pvt_thread_pool_context(); } /* Shouldn't happen unless we're single-threaded */ if ( !ctx ) { *locker = 0; return 0; } if ( ldap_pvt_thread_pool_getkey( ctx, env, &data, NULL ) ) { for ( i=0, rc=1; rc != 0 && i<4; i++ ) { rc = XLOCK_ID( env, &lockid ); if (rc) ldap_pvt_thread_yield(); } if ( rc != 0) { return rc; } data = (void *)((long)lockid); if ( ( rc = ldap_pvt_thread_pool_setkey( ctx, env, data, bdb_locker_id_free ) ) ) { XLOCK_ID_FREE( env, lockid ); Debug( LDAP_DEBUG_ANY, "bdb_locker_id: err %s(%d)\n", db_strerror(rc), rc, 0 ); return rc; } } else { lockid = (long)data; } *locker = lockid; return 0; } #endif /* BDB_REUSE_LOCKERS */