/* schema_init.c - init builtin schema */ /* $OpenLDAP$ */ /* * Copyright 1998-2002 The OpenLDAP Foundation, All Rights Reserved. * COPYING RESTRICTIONS APPLY, see COPYRIGHT file */ #include "portable.h" #include #include #include #include #include #include #include "slap.h" #include "ldap_pvt.h" #include "lber_pvt.h" #include "ldap_utf8.h" #include "lutil_hash.h" #define HASH_BYTES LUTIL_HASH_BYTES #define HASH_CONTEXT lutil_HASH_CTX #define HASH_Init(c) lutil_HASHInit(c) #define HASH_Update(c,buf,len) lutil_HASHUpdate(c,buf,len) #define HASH_Final(d,c) lutil_HASHFinal(d,c) /* recycled validatation routines */ #define berValidate blobValidate /* unimplemented pretters */ #define integerPretty NULL /* recycled matching routines */ #define bitStringMatch octetStringMatch #define numericStringMatch caseIgnoreIA5Match #define objectIdentifierMatch caseIgnoreIA5Match #define telephoneNumberMatch caseIgnoreIA5Match #define telephoneNumberSubstringsMatch caseIgnoreIA5SubstringsMatch #define generalizedTimeMatch caseIgnoreIA5Match #define generalizedTimeOrderingMatch caseIgnoreIA5Match #define uniqueMemberMatch dnMatch /* approx matching rules */ #define directoryStringApproxMatchOID "1.3.6.1.4.1.4203.666.4.4" #define directoryStringApproxMatch approxMatch #define directoryStringApproxIndexer approxIndexer #define directoryStringApproxFilter approxFilter #define IA5StringApproxMatchOID "1.3.6.1.4.1.4203.666.4.5" #define IA5StringApproxMatch approxMatch #define IA5StringApproxIndexer approxIndexer #define IA5StringApproxFilter approxFilter /* orderring matching rules */ #define caseIgnoreOrderingMatch caseIgnoreMatch #define caseExactOrderingMatch caseExactMatch /* unimplemented matching routines */ #define caseIgnoreListMatch NULL #define caseIgnoreListSubstringsMatch NULL #define protocolInformationMatch NULL #define integerFirstComponentMatch NULL #ifdef SLAPD_ACI_ENABLED #define OpenLDAPaciMatch NULL #endif #ifdef SLAPD_AUTHPASSWD #define authPasswordMatch NULL #endif /* recycled indexing/filtering routines */ #define dnIndexer caseExactIgnoreIndexer #define dnFilter caseExactIgnoreFilter #define bitStringFilter octetStringFilter #define bitStringIndexer octetStringIndexer #define telephoneNumberIndexer caseIgnoreIA5Indexer #define telephoneNumberFilter caseIgnoreIA5Filter #define telephoneNumberSubstringsIndexer caseIgnoreIA5SubstringsIndexer #define telephoneNumberSubstringsFilter caseIgnoreIA5SubstringsFilter /* must match OIDs below */ #define caseExactMatchOID "2.5.13.5" #define caseExactSubstringsMatchOID "2.5.13.7" static char *bvcasechr( struct berval *bv, int c, ber_len_t *len ) { ber_len_t i; int lower = TOLOWER( c ); int upper = TOUPPER( c ); if( c == 0 ) return NULL; for( i=0; i < bv->bv_len; i++ ) { if( upper == bv->bv_val[i] || lower == bv->bv_val[i] ) { *len = i; return &bv->bv_val[i]; } } return NULL; } static int octetStringMatch( int *matchp, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *value, void *assertedValue ) { int match = value->bv_len - ((struct berval *) assertedValue)->bv_len; if( match == 0 ) { match = memcmp( value->bv_val, ((struct berval *) assertedValue)->bv_val, value->bv_len ); } *matchp = match; return LDAP_SUCCESS; } /* Index generation function */ static int octetStringIndexer( slap_mask_t use, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *prefix, BerVarray values, BerVarray *keysp ) { int i; size_t slen, mlen; BerVarray keys; HASH_CONTEXT HASHcontext; unsigned char HASHdigest[HASH_BYTES]; struct berval digest; digest.bv_val = HASHdigest; digest.bv_len = sizeof(HASHdigest); for( i=0; values[i].bv_val != NULL; i++ ) { /* just count them */ } /* we should have at least one value at this point */ assert( i > 0 ); keys = ch_malloc( sizeof( struct berval ) * (i+1) ); slen = syntax->ssyn_oidlen; mlen = mr->smr_oidlen; for( i=0; values[i].bv_val != NULL; i++ ) { HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, values[i].bv_val, values[i].bv_len ); HASH_Final( HASHdigest, &HASHcontext ); ber_dupbv( &keys[i], &digest ); } keys[i].bv_val = NULL; *keysp = keys; return LDAP_SUCCESS; } /* Index generation function */ static int octetStringFilter( slap_mask_t use, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *prefix, void * assertValue, BerVarray *keysp ) { size_t slen, mlen; BerVarray keys; HASH_CONTEXT HASHcontext; unsigned char HASHdigest[HASH_BYTES]; struct berval *value = (struct berval *) assertValue; struct berval digest; digest.bv_val = HASHdigest; digest.bv_len = sizeof(HASHdigest); slen = syntax->ssyn_oidlen; mlen = mr->smr_oidlen; keys = ch_malloc( sizeof( struct berval ) * 2 ); HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, value->bv_val, value->bv_len ); HASH_Final( HASHdigest, &HASHcontext ); ber_dupbv( keys, &digest ); keys[1].bv_val = NULL; *keysp = keys; return LDAP_SUCCESS; } static int nameUIDValidate( Syntax *syntax, struct berval *in ) { int rc; struct berval dn; if( in->bv_len == 0 ) return LDAP_SUCCESS; ber_dupbv( &dn, in ); if( !dn.bv_val ) return LDAP_OTHER; if( dn.bv_val[dn.bv_len-1] == 'B' && dn.bv_val[dn.bv_len-2] == '\'' ) { /* assume presence of optional UID */ ber_len_t i; for(i=dn.bv_len-3; i>1; i--) { if( dn.bv_val[i] != '0' && dn.bv_val[i] != '1' ) { break; } } if( dn.bv_val[i] != '\'' || dn.bv_val[i-1] != '#' ) { ber_memfree( dn.bv_val ); return LDAP_INVALID_SYNTAX; } /* trim the UID to allow use of dnValidate */ dn.bv_val[i-1] = '\0'; dn.bv_len = i-1; } rc = dnValidate( NULL, &dn ); ber_memfree( &dn ); return rc; } static int nameUIDNormalize( Syntax *syntax, struct berval *val, struct berval *normalized ) { struct berval out; int rc; ber_dupbv( &out, val ); if( out.bv_len != 0 ) { ber_len_t dnlen; char *uid = NULL; ber_len_t uidlen = 0; if( out.bv_val[out.bv_len-1] == '\'' ) { /* assume presence of optional UID */ uid = strrchr( out.bv_val, '#' ); if( uid == NULL ) { free( out.bv_val ); return LDAP_INVALID_SYNTAX; } uidlen = out.bv_len - (uid - out.bv_val); /* temporarily trim the UID */ *uid = '\0'; out.bv_len -= uidlen; } #ifdef USE_DN_NORMALIZE rc = dnNormalize2( NULL, &out, normalized ); #else rc = dnPretty2( NULL, &out, normalized ); #endif if( rc != LDAP_SUCCESS ) { free( out.bv_val ); return LDAP_INVALID_SYNTAX; } dnlen = normalized->bv_len; if( uidlen ) { struct berval b2; b2.bv_val = ch_malloc(dnlen + uidlen + 1); AC_MEMCPY( b2.bv_val, normalized->bv_val, dnlen ); /* restore the separator */ *uid = '#'; /* shift the UID */ AC_MEMCPY( normalized->bv_val+dnlen, uid, uidlen ); b2.bv_len = dnlen + uidlen; normalized->bv_val[dnlen+uidlen] = '\0'; free(normalized->bv_val); *normalized = b2; } free( out.bv_val ); } return LDAP_SUCCESS; } static int inValidate( Syntax *syntax, struct berval *in ) { /* any value allowed */ return LDAP_OTHER; } static int blobValidate( Syntax *syntax, struct berval *in ) { /* any value allowed */ return LDAP_SUCCESS; } static int bitStringValidate( Syntax *syntax, struct berval *in ) { ber_len_t i; /* very unforgiving validation, requires no normalization * before simplistic matching */ if( in->bv_len < 3 ) { return LDAP_INVALID_SYNTAX; } /* * rfc 2252 section 6.3 Bit String * bitstring = "'" *binary-digit "'" * binary-digit = "0" / "1" * example: '0101111101'B */ if( in->bv_val[0] != '\'' || in->bv_val[in->bv_len-2] != '\'' || in->bv_val[in->bv_len-1] != 'B' ) { return LDAP_INVALID_SYNTAX; } for( i=in->bv_len-3; i>0; i-- ) { if( in->bv_val[i] != '0' && in->bv_val[i] != '1' ) { return LDAP_INVALID_SYNTAX; } } return LDAP_SUCCESS; } static int bitStringNormalize( Syntax *syntax, struct berval *val, struct berval *normalized ) { /* * A normalized bitString is has no extaneous (leading) zero bits. * That is, '00010'B is normalized to '10'B * However, as a special case, '0'B requires no normalization. */ char *p; /* start at the first bit */ p = &val->bv_val[1]; /* Find the first non-zero bit */ while ( *p == '0' ) p++; if( *p == '\'' ) { /* no non-zero bits */ ber_str2bv( "\'0\'B", sizeof("\'0\'B") - 1, 1, normalized ); goto done; } normalized->bv_val = ch_malloc( val->bv_len + 1 ); normalized->bv_val[0] = '\''; normalized->bv_len = 1; for( ; *p != '\0'; p++ ) { normalized->bv_val[normalized->bv_len++] = *p; } normalized->bv_val[normalized->bv_len] = '\0'; done: return LDAP_SUCCESS; } /* * Handling boolean syntax and matching is quite rigid. * A more flexible approach would be to allow a variety * of strings to be normalized and prettied into TRUE * and FALSE. */ static int booleanValidate( Syntax *syntax, struct berval *in ) { /* very unforgiving validation, requires no normalization * before simplistic matching */ if( in->bv_len == 4 ) { if( !memcmp( in->bv_val, "TRUE", 4 ) ) { return LDAP_SUCCESS; } } else if( in->bv_len == 5 ) { if( !memcmp( in->bv_val, "FALSE", 5 ) ) { return LDAP_SUCCESS; } } return LDAP_INVALID_SYNTAX; } static int booleanMatch( int *matchp, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *value, void *assertedValue ) { /* simplistic matching allowed by rigid validation */ struct berval *asserted = (struct berval *) assertedValue; *matchp = value->bv_len != asserted->bv_len; return LDAP_SUCCESS; } static int UTF8StringValidate( Syntax *syntax, struct berval *in ) { ber_len_t count; int len; unsigned char *u = in->bv_val; if( !in->bv_len ) return LDAP_INVALID_SYNTAX; for( count = in->bv_len; count > 0; count-=len, u+=len ) { /* get the length indicated by the first byte */ len = LDAP_UTF8_CHARLEN2( u, len ); /* very basic checks */ switch( len ) { case 6: if( (u[5] & 0xC0) != 0x80 ) { return LDAP_INVALID_SYNTAX; } case 5: if( (u[4] & 0xC0) != 0x80 ) { return LDAP_INVALID_SYNTAX; } case 4: if( (u[3] & 0xC0) != 0x80 ) { return LDAP_INVALID_SYNTAX; } case 3: if( (u[2] & 0xC0 )!= 0x80 ) { return LDAP_INVALID_SYNTAX; } case 2: if( (u[1] & 0xC0) != 0x80 ) { return LDAP_INVALID_SYNTAX; } case 1: /* CHARLEN already validated it */ break; default: return LDAP_INVALID_SYNTAX; } /* make sure len corresponds with the offset to the next character */ if( LDAP_UTF8_OFFSET( u ) != len ) return LDAP_INVALID_SYNTAX; } if( count != 0 ) return LDAP_INVALID_SYNTAX; return LDAP_SUCCESS; } static int UTF8StringNormalize( Syntax *syntax, struct berval *val, struct berval *normalized ) { char *p, *q, *s, *e; int len = 0; p = val->bv_val; /* Ignore initial whitespace */ /* All space is ASCII. All ASCII is 1 byte */ for ( ; p < val->bv_val + val->bv_len && ASCII_SPACE( p[ 0 ] ); p++ ); ber_mem2bv( p, val->bv_len - (p - val->bv_val), 1, normalized ); e = normalized->bv_val + val->bv_len - (p - val->bv_val); assert( normalized->bv_len ); assert( normalized->bv_val ); p = q = normalized->bv_val; s = NULL; while ( p < e ) { q += len; if ( ASCII_SPACE( *p ) ) { s = q - len; len = 1; *q = *p++; /* Ignore the extra whitespace */ while ( ASCII_SPACE( *p ) ) { p++; } } else { len = LDAP_UTF8_COPY(q,p); s=NULL; p+=len; } } assert( normalized->bv_val < p ); assert( q+len <= p ); /* cannot start with a space */ assert( !ASCII_SPACE(normalized->bv_val[0]) ); /* * If the string ended in space, backup the pointer one * position. One is enough because the above loop collapsed * all whitespace to a single space. */ if ( s != NULL ) { len = q - s; q = s; } /* cannot end with a space */ assert( !ASCII_SPACE( *q ) ); q += len; /* null terminate */ *q = '\0'; normalized->bv_len = q - normalized->bv_val; return LDAP_SUCCESS; } /* Returns Unicode canonically normalized copy of a substring assertion * Skipping attribute description */ static SubstringsAssertion * UTF8SubstringsassertionNormalize( SubstringsAssertion *sa, unsigned casefold ) { SubstringsAssertion *nsa; int i; nsa = (SubstringsAssertion *)ch_calloc( 1, sizeof(SubstringsAssertion) ); if( nsa == NULL ) { return NULL; } if( sa->sa_initial.bv_val != NULL ) { UTF8bvnormalize( &sa->sa_initial, &nsa->sa_initial, casefold ); if( nsa->sa_initial.bv_val == NULL ) { goto err; } } if( sa->sa_any != NULL ) { for( i=0; sa->sa_any[i].bv_val != NULL; i++ ) { /* empty */ } nsa->sa_any = (struct berval *)ch_malloc( (i + 1) * sizeof(struct berval) ); for( i=0; sa->sa_any[i].bv_val != NULL; i++ ) { UTF8bvnormalize( &sa->sa_any[i], &nsa->sa_any[i], casefold ); if( nsa->sa_any[i].bv_val == NULL ) { goto err; } } nsa->sa_any[i].bv_val = NULL; } if( sa->sa_final.bv_val != NULL ) { UTF8bvnormalize( &sa->sa_final, &nsa->sa_final, casefold ); if( nsa->sa_final.bv_val == NULL ) { goto err; } } return nsa; err: if ( nsa->sa_final.bv_val ) free( nsa->sa_final.bv_val ); if ( nsa->sa_any )ber_bvarray_free( nsa->sa_any ); if ( nsa->sa_initial.bv_val ) free( nsa->sa_initial.bv_val ); ch_free( nsa ); return NULL; } #ifndef SLAPD_APPROX_OLDSINGLESTRING #if defined(SLAPD_APPROX_INITIALS) #define SLAPD_APPROX_DELIMITER "._ " #define SLAPD_APPROX_WORDLEN 2 #else #define SLAPD_APPROX_DELIMITER " " #define SLAPD_APPROX_WORDLEN 1 #endif static int approxMatch( int *matchp, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *value, void *assertedValue ) { struct berval *nval, *assertv; char *val, **values, **words, *c; int i, count, len, nextchunk=0, nextavail=0; /* Yes, this is necessary */ nval = UTF8bvnormalize( value, NULL, LDAP_UTF8_APPROX ); if( nval == NULL ) { *matchp = 1; return LDAP_SUCCESS; } /* Yes, this is necessary */ assertv = UTF8bvnormalize( ((struct berval *)assertedValue), NULL, LDAP_UTF8_APPROX ); if( assertv == NULL ) { ber_bvfree( nval ); *matchp = 1; return LDAP_SUCCESS; } /* Isolate how many words there are */ for ( c = nval->bv_val, count = 1; *c; c++ ) { c = strpbrk( c, SLAPD_APPROX_DELIMITER ); if ( c == NULL ) break; *c = '\0'; count++; } /* Get a phonetic copy of each word */ words = (char **)ch_malloc( count * sizeof(char *) ); values = (char **)ch_malloc( count * sizeof(char *) ); for ( c = nval->bv_val, i = 0; i < count; i++, c += strlen(c) + 1 ) { words[i] = c; values[i] = phonetic(c); } /* Work through the asserted value's words, to see if at least some of the words are there, in the same order. */ len = 0; while ( (ber_len_t) nextchunk < assertv->bv_len ) { len = strcspn( assertv->bv_val + nextchunk, SLAPD_APPROX_DELIMITER); if( len == 0 ) { nextchunk++; continue; } #if defined(SLAPD_APPROX_INITIALS) else if( len == 1 ) { /* Single letter words need to at least match one word's initial */ for( i=nextavail; ibv_val + nextchunk, words[i], 1 )) { nextavail=i+1; break; } } #endif else { /* Isolate the next word in the asserted value and phonetic it */ assertv->bv_val[nextchunk+len] = '\0'; val = phonetic( assertv->bv_val + nextchunk ); /* See if this phonetic chunk is in the remaining words of *value */ for( i=nextavail; i= count ) { nextavail=-1; break; } /* Go on to the next word in the asserted value */ nextchunk += len+1; } /* If some of the words were seen, call it a match */ if( nextavail > 0 ) { *matchp = 0; } else { *matchp = 1; } /* Cleanup allocs */ ber_bvfree( assertv ); for( i=0; i= SLAPD_APPROX_WORDLEN ) wordcount++; c+= len; if (*c == '\0') break; *c = '\0'; } /* Allocate/increase storage to account for new keys */ newkeys = (struct berval *)ch_malloc( (keycount + wordcount + 1) * sizeof(struct berval) ); AC_MEMCPY( newkeys, keys, keycount * sizeof(struct berval) ); if( keys ) ch_free( keys ); keys = newkeys; /* Get a phonetic copy of each word */ for( c = val.bv_val, i = 0; i < wordcount; c += len + 1 ) { len = strlen( c ); if( len < SLAPD_APPROX_WORDLEN ) continue; ber_str2bv( phonetic( c ), 0, 0, &keys[keycount] ); keycount++; i++; } ber_memfree( val.bv_val ); } keys[keycount].bv_val = NULL; *keysp = keys; return LDAP_SUCCESS; } static int approxFilter( slap_mask_t use, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *prefix, void * assertValue, BerVarray *keysp ) { char *c; int i, count, len; struct berval *val; BerVarray keys; /* Yes, this is necessary */ val = UTF8bvnormalize( ((struct berval *)assertValue), NULL, LDAP_UTF8_APPROX ); if( val == NULL || val->bv_val == NULL ) { keys = (struct berval *)ch_malloc( sizeof(struct berval) ); keys[0].bv_val = NULL; *keysp = keys; ber_bvfree( val ); return LDAP_SUCCESS; } /* Isolate how many words there are. There will be a key for each */ for( count = 0,c = val->bv_val; *c; c++) { len = strcspn(c, SLAPD_APPROX_DELIMITER); if( len >= SLAPD_APPROX_WORDLEN ) count++; c+= len; if (*c == '\0') break; *c = '\0'; } /* Allocate storage for new keys */ keys = (struct berval *)ch_malloc( (count + 1) * sizeof(struct berval) ); /* Get a phonetic copy of each word */ for( c = val->bv_val, i = 0; i < count; c += len + 1 ) { len = strlen(c); if( len < SLAPD_APPROX_WORDLEN ) continue; ber_str2bv( phonetic( c ), 0, 0, &keys[i] ); i++; } ber_bvfree( val ); keys[count].bv_val = NULL; *keysp = keys; return LDAP_SUCCESS; } #else /* No other form of Approximate Matching is defined */ static int approxMatch( int *matchp, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *value, void *assertedValue ) { char *vapprox, *avapprox; char *s, *t; /* Yes, this is necessary */ s = UTF8normalize( value, UTF8_NOCASEFOLD ); if( s == NULL ) { *matchp = 1; return LDAP_SUCCESS; } /* Yes, this is necessary */ t = UTF8normalize( ((struct berval *)assertedValue), UTF8_NOCASEFOLD ); if( t == NULL ) { free( s ); *matchp = -1; return LDAP_SUCCESS; } vapprox = phonetic( strip8bitChars( s ) ); avapprox = phonetic( strip8bitChars( t ) ); free( s ); free( t ); *matchp = strcmp( vapprox, avapprox ); ch_free( vapprox ); ch_free( avapprox ); return LDAP_SUCCESS; } static int approxIndexer( slap_mask_t use, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *prefix, BerVarray values, BerVarray *keysp ) { int i; BerVarray *keys; char *s; for( i=0; values[i].bv_val != NULL; i++ ) { /* empty - just count them */ } /* we should have at least one value at this point */ assert( i > 0 ); keys = (struct berval *)ch_malloc( sizeof( struct berval ) * (i+1) ); /* Copy each value and run it through phonetic() */ for( i=0; values[i].bv_val != NULL; i++ ) { /* Yes, this is necessary */ s = UTF8normalize( &values[i], UTF8_NOCASEFOLD ); /* strip 8-bit chars and run through phonetic() */ ber_str2bv( phonetic( strip8bitChars( s ) ), 0, 0, &keys[i] ); free( s ); } keys[i].bv_val = NULL; *keysp = keys; return LDAP_SUCCESS; } static int approxFilter( slap_mask_t use, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *prefix, void * assertValue, BerVarray *keysp ) { BerVarray keys; char *s; keys = (struct berval *)ch_malloc( sizeof( struct berval * ) * 2 ); /* Yes, this is necessary */ s = UTF8normalize( ((struct berval *)assertValue), UTF8_NOCASEFOLD ); if( s == NULL ) { keys[0] = NULL; } else { /* strip 8-bit chars and run through phonetic() */ keys[0] = ber_bvstr( phonetic( strip8bitChars( s ) ) ); free( s ); keys[1] = NULL; } *keysp = keys; return LDAP_SUCCESS; } #endif static int caseExactMatch( int *matchp, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *value, void *assertedValue ) { *matchp = UTF8bvnormcmp( value, (struct berval *) assertedValue, LDAP_UTF8_NOCASEFOLD ); return LDAP_SUCCESS; } static int caseExactIgnoreSubstringsMatch( int *matchp, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *value, void *assertedValue ) { int match = 0; SubstringsAssertion *sub = NULL; struct berval left = { 0, NULL }; int i; ber_len_t inlen=0; char *nav = NULL; unsigned casefold; casefold = strcmp( mr->smr_oid, caseExactSubstringsMatchOID ) ? LDAP_UTF8_CASEFOLD : LDAP_UTF8_NOCASEFOLD; if ( UTF8bvnormalize( value, &left, casefold ) == NULL ) { match = 1; goto done; } nav = left.bv_val; sub = UTF8SubstringsassertionNormalize( assertedValue, casefold ); if( sub == NULL ) { match = -1; goto done; } /* Add up asserted input length */ if( sub->sa_initial.bv_val ) { inlen += sub->sa_initial.bv_len; } if( sub->sa_any ) { for(i=0; sub->sa_any[i].bv_val != NULL; i++) { inlen += sub->sa_any[i].bv_len; } } if( sub->sa_final.bv_val ) { inlen += sub->sa_final.bv_len; } if( sub->sa_initial.bv_val ) { if( inlen > left.bv_len ) { match = 1; goto done; } match = memcmp( sub->sa_initial.bv_val, left.bv_val, sub->sa_initial.bv_len ); if( match != 0 ) { goto done; } left.bv_val += sub->sa_initial.bv_len; left.bv_len -= sub->sa_initial.bv_len; inlen -= sub->sa_initial.bv_len; } if( sub->sa_final.bv_val ) { if( inlen > left.bv_len ) { match = 1; goto done; } match = memcmp( sub->sa_final.bv_val, &left.bv_val[left.bv_len - sub->sa_final.bv_len], sub->sa_final.bv_len ); if( match != 0 ) { goto done; } left.bv_len -= sub->sa_final.bv_len; inlen -= sub->sa_final.bv_len; } if( sub->sa_any ) { for(i=0; sub->sa_any[i].bv_val; i++) { ber_len_t idx; char *p; retry: if( inlen > left.bv_len ) { /* not enough length */ match = 1; goto done; } if( sub->sa_any[i].bv_len == 0 ) { continue; } p = ber_bvchr( &left, *sub->sa_any[i].bv_val ); if ( p == NULL ) { match = 1; goto done; } idx = p - left.bv_val; if( idx >= left.bv_len ) { /* this shouldn't happen */ free( nav ); if ( sub->sa_final.bv_val ) ch_free( sub->sa_final.bv_val ); if ( sub->sa_any ) ber_bvarray_free( sub->sa_any ); if ( sub->sa_initial.bv_val ) ch_free( sub->sa_initial.bv_val ); ch_free( sub ); return LDAP_OTHER; } left.bv_val = p; left.bv_len -= idx; if( sub->sa_any[i].bv_len > left.bv_len ) { /* not enough left */ match = 1; goto done; } match = memcmp( left.bv_val, sub->sa_any[i].bv_val, sub->sa_any[i].bv_len ); if( match != 0 ) { left.bv_val++; left.bv_len--; goto retry; } left.bv_val += sub->sa_any[i].bv_len; left.bv_len -= sub->sa_any[i].bv_len; inlen -= sub->sa_any[i].bv_len; } } done: free( nav ); if( sub != NULL ) { if ( sub->sa_final.bv_val ) free( sub->sa_final.bv_val ); if ( sub->sa_any ) ber_bvarray_free( sub->sa_any ); if ( sub->sa_initial.bv_val ) free( sub->sa_initial.bv_val ); ch_free( sub ); } *matchp = match; return LDAP_SUCCESS; } /* Index generation function */ static int caseExactIgnoreIndexer( slap_mask_t use, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *prefix, BerVarray values, BerVarray *keysp ) { int i; unsigned casefold; size_t slen, mlen; BerVarray keys; HASH_CONTEXT HASHcontext; unsigned char HASHdigest[HASH_BYTES]; struct berval digest; digest.bv_val = HASHdigest; digest.bv_len = sizeof(HASHdigest); for( i=0; values[i].bv_val != NULL; i++ ) { /* empty - just count them */ } /* we should have at least one value at this point */ assert( i > 0 ); keys = ch_malloc( sizeof( struct berval ) * (i+1) ); slen = syntax->ssyn_oidlen; mlen = mr->smr_oidlen; casefold = strcmp( mr->smr_oid, caseExactMatchOID ) ? LDAP_UTF8_CASEFOLD : LDAP_UTF8_NOCASEFOLD; for( i=0; values[i].bv_val != NULL; i++ ) { struct berval value; UTF8bvnormalize( &values[i], &value, casefold ); HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, value.bv_val, value.bv_len ); HASH_Final( HASHdigest, &HASHcontext ); free( value.bv_val ); ber_dupbv( &keys[i], &digest ); } keys[i].bv_val = NULL; *keysp = keys; return LDAP_SUCCESS; } /* Index generation function */ static int caseExactIgnoreFilter( slap_mask_t use, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *prefix, void * assertValue, BerVarray *keysp ) { unsigned casefold; size_t slen, mlen; BerVarray keys; HASH_CONTEXT HASHcontext; unsigned char HASHdigest[HASH_BYTES]; struct berval value = { 0, NULL }; struct berval digest; digest.bv_val = HASHdigest; digest.bv_len = sizeof(HASHdigest); slen = syntax->ssyn_oidlen; mlen = mr->smr_oidlen; casefold = strcmp( mr->smr_oid, caseExactMatchOID ) ? LDAP_UTF8_CASEFOLD : LDAP_UTF8_NOCASEFOLD; UTF8bvnormalize( (struct berval *) assertValue, &value, casefold ); /* This usually happens if filter contains bad UTF8 */ if( value.bv_val == NULL ) { keys = ch_malloc( sizeof( struct berval ) ); keys[0].bv_val = NULL; return LDAP_SUCCESS; } keys = ch_malloc( sizeof( struct berval ) * 2 ); HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, value.bv_val, value.bv_len ); HASH_Final( HASHdigest, &HASHcontext ); ber_dupbv( keys, &digest ); keys[1].bv_val = NULL; free( value.bv_val ); *keysp = keys; return LDAP_SUCCESS; } /* Substrings Index generation function */ static int caseExactIgnoreSubstringsIndexer( slap_mask_t use, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *prefix, BerVarray values, BerVarray *keysp ) { unsigned casefold; ber_len_t i, nkeys; size_t slen, mlen; BerVarray keys; BerVarray nvalues; HASH_CONTEXT HASHcontext; unsigned char HASHdigest[HASH_BYTES]; struct berval digest; digest.bv_val = HASHdigest; digest.bv_len = sizeof(HASHdigest); nkeys=0; for( i=0; values[i].bv_val != NULL; i++ ) { /* empty - just count them */ } /* we should have at least one value at this point */ assert( i > 0 ); casefold = strcmp( mr->smr_oid, caseExactSubstringsMatchOID ) ? LDAP_UTF8_CASEFOLD : LDAP_UTF8_NOCASEFOLD; nvalues = ch_malloc( sizeof( struct berval ) * (i+1) ); for( i=0; values[i].bv_val != NULL; i++ ) { UTF8bvnormalize( &values[i], &nvalues[i], casefold ); } nvalues[i].bv_val = NULL; values = nvalues; for( i=0; values[i].bv_val != NULL; i++ ) { /* count number of indices to generate */ if( values[i].bv_len < SLAP_INDEX_SUBSTR_MINLEN ) { continue; } if( flags & SLAP_INDEX_SUBSTR_INITIAL ) { if( values[i].bv_len >= SLAP_INDEX_SUBSTR_MAXLEN ) { nkeys += SLAP_INDEX_SUBSTR_MAXLEN - ( SLAP_INDEX_SUBSTR_MINLEN - 1); } else { nkeys += values[i].bv_len - ( SLAP_INDEX_SUBSTR_MINLEN - 1 ); } } if( flags & SLAP_INDEX_SUBSTR_ANY ) { if( values[i].bv_len >= SLAP_INDEX_SUBSTR_MAXLEN ) { nkeys += values[i].bv_len - ( SLAP_INDEX_SUBSTR_MAXLEN - 1 ); } } if( flags & SLAP_INDEX_SUBSTR_FINAL ) { if( values[i].bv_len >= SLAP_INDEX_SUBSTR_MAXLEN ) { nkeys += SLAP_INDEX_SUBSTR_MAXLEN - ( SLAP_INDEX_SUBSTR_MINLEN - 1); } else { nkeys += values[i].bv_len - ( SLAP_INDEX_SUBSTR_MINLEN - 1 ); } } } if( nkeys == 0 ) { /* no keys to generate */ *keysp = NULL; ber_bvarray_free( nvalues ); return LDAP_SUCCESS; } keys = ch_malloc( sizeof( struct berval ) * (nkeys+1) ); slen = syntax->ssyn_oidlen; mlen = mr->smr_oidlen; nkeys=0; for( i=0; values[i].bv_val != NULL; i++ ) { ber_len_t j,max; if( values[i].bv_len < SLAP_INDEX_SUBSTR_MINLEN ) continue; if( ( flags & SLAP_INDEX_SUBSTR_ANY ) && ( values[i].bv_len >= SLAP_INDEX_SUBSTR_MAXLEN ) ) { char pre = SLAP_INDEX_SUBSTR_PREFIX; max = values[i].bv_len - ( SLAP_INDEX_SUBSTR_MAXLEN - 1); for( j=0; jbv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, &pre, sizeof( pre ) ); HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, &values[i].bv_val[j], SLAP_INDEX_SUBSTR_MAXLEN ); HASH_Final( HASHdigest, &HASHcontext ); ber_dupbv( &keys[nkeys++], &digest ); } } max = SLAP_INDEX_SUBSTR_MAXLEN < values[i].bv_len ? SLAP_INDEX_SUBSTR_MAXLEN : values[i].bv_len; for( j=SLAP_INDEX_SUBSTR_MINLEN; j<=max; j++ ) { char pre; if( flags & SLAP_INDEX_SUBSTR_INITIAL ) { pre = SLAP_INDEX_SUBSTR_INITIAL_PREFIX; HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, &pre, sizeof( pre ) ); HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, values[i].bv_val, j ); HASH_Final( HASHdigest, &HASHcontext ); ber_dupbv( &keys[nkeys++], &digest ); } if( flags & SLAP_INDEX_SUBSTR_FINAL ) { pre = SLAP_INDEX_SUBSTR_FINAL_PREFIX; HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, &pre, sizeof( pre ) ); HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, &values[i].bv_val[values[i].bv_len-j], j ); HASH_Final( HASHdigest, &HASHcontext ); ber_dupbv( &keys[nkeys++], &digest ); } } } if( nkeys > 0 ) { keys[nkeys].bv_val = NULL; *keysp = keys; } else { ch_free( keys ); *keysp = NULL; } ber_bvarray_free( nvalues ); return LDAP_SUCCESS; } static int caseExactIgnoreSubstringsFilter( slap_mask_t use, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *prefix, void * assertValue, BerVarray *keysp ) { SubstringsAssertion *sa; char pre; unsigned casefold; ber_len_t nkeys = 0; size_t slen, mlen, klen; BerVarray keys; HASH_CONTEXT HASHcontext; unsigned char HASHdigest[HASH_BYTES]; struct berval *value; struct berval digest; casefold = strcmp( mr->smr_oid, caseExactSubstringsMatchOID ) ? LDAP_UTF8_CASEFOLD : LDAP_UTF8_NOCASEFOLD; sa = UTF8SubstringsassertionNormalize( assertValue, casefold ); if( sa == NULL ) { *keysp = NULL; return LDAP_SUCCESS; } if( flags & SLAP_INDEX_SUBSTR_INITIAL && sa->sa_initial.bv_val != NULL && sa->sa_initial.bv_len >= SLAP_INDEX_SUBSTR_MINLEN ) { nkeys++; } if( flags & SLAP_INDEX_SUBSTR_ANY && sa->sa_any != NULL ) { ber_len_t i; for( i=0; sa->sa_any[i].bv_val != NULL; i++ ) { if( sa->sa_any[i].bv_len >= SLAP_INDEX_SUBSTR_MAXLEN ) { /* don't bother accounting for stepping */ nkeys += sa->sa_any[i].bv_len - ( SLAP_INDEX_SUBSTR_MAXLEN - 1 ); } } } if( flags & SLAP_INDEX_SUBSTR_FINAL && sa->sa_final.bv_val != NULL && sa->sa_final.bv_len >= SLAP_INDEX_SUBSTR_MINLEN ) { nkeys++; } if( nkeys == 0 ) { if ( sa->sa_final.bv_val ) free( sa->sa_final.bv_val ); if ( sa->sa_any ) ber_bvarray_free( sa->sa_any ); if ( sa->sa_initial.bv_val ) free( sa->sa_initial.bv_val ); ch_free( sa ); *keysp = NULL; return LDAP_SUCCESS; } digest.bv_val = HASHdigest; digest.bv_len = sizeof(HASHdigest); slen = syntax->ssyn_oidlen; mlen = mr->smr_oidlen; keys = ch_malloc( sizeof( struct berval ) * (nkeys+1) ); nkeys = 0; if( flags & SLAP_INDEX_SUBSTR_INITIAL && sa->sa_initial.bv_val != NULL && sa->sa_initial.bv_len >= SLAP_INDEX_SUBSTR_MINLEN ) { pre = SLAP_INDEX_SUBSTR_INITIAL_PREFIX; value = &sa->sa_initial; klen = SLAP_INDEX_SUBSTR_MAXLEN < value->bv_len ? SLAP_INDEX_SUBSTR_MAXLEN : value->bv_len; HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, &pre, sizeof( pre ) ); HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, value->bv_val, klen ); HASH_Final( HASHdigest, &HASHcontext ); ber_dupbv( &keys[nkeys++], &digest ); } if( flags & SLAP_INDEX_SUBSTR_ANY && sa->sa_any != NULL ) { ber_len_t i, j; pre = SLAP_INDEX_SUBSTR_PREFIX; klen = SLAP_INDEX_SUBSTR_MAXLEN; for( i=0; sa->sa_any[i].bv_val != NULL; i++ ) { if( sa->sa_any[i].bv_len < SLAP_INDEX_SUBSTR_MAXLEN ) { continue; } value = &sa->sa_any[i]; for(j=0; j <= value->bv_len - SLAP_INDEX_SUBSTR_MAXLEN; j += SLAP_INDEX_SUBSTR_STEP ) { HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, &pre, sizeof( pre ) ); HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, &value->bv_val[j], klen ); HASH_Final( HASHdigest, &HASHcontext ); ber_dupbv( &keys[nkeys++], &digest ); } } } if( flags & SLAP_INDEX_SUBSTR_FINAL && sa->sa_final.bv_val != NULL && sa->sa_final.bv_len >= SLAP_INDEX_SUBSTR_MINLEN ) { pre = SLAP_INDEX_SUBSTR_FINAL_PREFIX; value = &sa->sa_final; klen = SLAP_INDEX_SUBSTR_MAXLEN < value->bv_len ? SLAP_INDEX_SUBSTR_MAXLEN : value->bv_len; HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, &pre, sizeof( pre ) ); HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, &value->bv_val[value->bv_len-klen], klen ); HASH_Final( HASHdigest, &HASHcontext ); ber_dupbv( &keys[nkeys++], &digest ); } if( nkeys > 0 ) { keys[nkeys].bv_val = NULL; *keysp = keys; } else { ch_free( keys ); *keysp = NULL; } if ( sa->sa_final.bv_val ) free( sa->sa_final.bv_val ); if ( sa->sa_any ) ber_bvarray_free( sa->sa_any ); if ( sa->sa_initial.bv_val ) free( sa->sa_initial.bv_val ); ch_free( sa ); return LDAP_SUCCESS; } static int caseIgnoreMatch( int *matchp, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *value, void *assertedValue ) { *matchp = UTF8bvnormcmp( value, (struct berval *) assertedValue, LDAP_UTF8_CASEFOLD ); return LDAP_SUCCESS; } static int oidValidate( Syntax *syntax, struct berval *val ) { ber_len_t i; if( val->bv_len == 0 ) { /* disallow empty strings */ return LDAP_INVALID_SYNTAX; } if( OID_LEADCHAR(val->bv_val[0]) ) { int dot = 0; for(i=1; i < val->bv_len; i++) { if( OID_SEPARATOR( val->bv_val[i] ) ) { if( dot++ ) return 1; } else if ( OID_CHAR( val->bv_val[i] ) ) { dot = 0; } else { return LDAP_INVALID_SYNTAX; } } return !dot ? LDAP_SUCCESS : LDAP_INVALID_SYNTAX; } else if( DESC_LEADCHAR(val->bv_val[0]) ) { for(i=1; i < val->bv_len; i++) { if( !DESC_CHAR(val->bv_val[i] ) ) { return LDAP_INVALID_SYNTAX; } } return LDAP_SUCCESS; } return LDAP_INVALID_SYNTAX; } static int integerMatch( int *matchp, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *value, void *assertedValue ) { char *v, *av; int vsign=0, avsign=0; struct berval *asserted; ber_len_t vlen, avlen; /* Start off pessimistic */ *matchp = 1; /* Skip past leading spaces/zeros, and get the sign of the *value number */ v = value->bv_val; vlen = value->bv_len; while( vlen ) { if( ASCII_SPACE(*v) || ( *v == '0' )) { /* empty -- skip spaces */ } else if ( *v == '+' ) { vsign = 1; } else if ( *v == '-' ) { vsign = -1; } else if ( ASCII_DIGIT(*v) ) { if ( vsign == 0 ) vsign = 1; vsign *= 2; break; } v++; vlen--; } /* Skip past leading spaces/zeros, and get the sign of the *assertedValue number */ asserted = (struct berval *) assertedValue; av = asserted->bv_val; avlen = asserted->bv_len; while( avlen ) { if( ASCII_SPACE(*av) || ( *av == '0' )) { /* empty -- skip spaces */ } else if ( *av == '+' ) { avsign = 1; } else if ( *av == '-' ) { avsign = -1; } else if ( ASCII_DIGIT(*av) ) { if ( avsign == 0 ) avsign = 1; avsign *= 2; break; } av++; avlen--; } /* The two ?sign vars are now one of : -2 negative non-zero number -1 -0 \ 0 0 collapse these three to 0 +1 +0 / +2 positive non-zero number */ if ( abs( vsign ) == 1 ) vsign = 0; if ( abs( avsign ) == 1 ) avsign = 0; if( vsign != avsign ) return LDAP_SUCCESS; /* Check the significant digits */ while( vlen && avlen ) { if( *v != *av ) break; v++; vlen--; av++; avlen--; } /* If all digits compared equal, the numbers are equal */ if(( vlen == 0 ) && ( avlen == 0 )) { *matchp = 0; } return LDAP_SUCCESS; } static int integerValidate( Syntax *syntax, struct berval *val ) { ber_len_t i; if( !val->bv_len ) return LDAP_INVALID_SYNTAX; if(( val->bv_val[0] == '+' ) || ( val->bv_val[0] == '-' )) { if( val->bv_len < 2 ) return LDAP_INVALID_SYNTAX; } else if( !ASCII_DIGIT(val->bv_val[0]) ) { return LDAP_INVALID_SYNTAX; } for( i=1; i < val->bv_len; i++ ) { if( !ASCII_DIGIT(val->bv_val[i]) ) return LDAP_INVALID_SYNTAX; } return LDAP_SUCCESS; } static int integerNormalize( Syntax *syntax, struct berval *val, struct berval *normalized ) { char *p; int negative=0; ber_len_t len; p = val->bv_val; len = val->bv_len; /* Ignore leading spaces */ while ( len && ( *p == ' ' )) { p++; len--; } /* save sign */ if( len ) { negative = ( *p == '-' ); if(( *p == '-' ) || ( *p == '+' )) { p++; len--; } } /* Ignore leading zeros */ while ( len && ( *p == '0' )) { p++; len--; } /* If there are no non-zero digits left, the number is zero, otherwise allocate space for the number and copy it into the buffer */ if( len == 0 ) { normalized->bv_val = ch_strdup("0"); normalized->bv_len = 1; } else { normalized->bv_len = len+negative; normalized->bv_val = ch_malloc( normalized->bv_len ); if( negative ) { normalized->bv_val[0] = '-'; } AC_MEMCPY( normalized->bv_val + negative, p, len ); } return LDAP_SUCCESS; } /* Index generation function */ static int integerIndexer( slap_mask_t use, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *prefix, BerVarray values, BerVarray *keysp ) { int i; BerVarray keys; /* we should have at least one value at this point */ assert( values != NULL && values[0].bv_val != NULL ); for( i=0; values[i].bv_val != NULL; i++ ) { /* empty -- just count them */ } keys = ch_malloc( sizeof( struct berval ) * (i+1) ); for( i=0; values[i].bv_val != NULL; i++ ) { integerNormalize( syntax, &values[i], &keys[i] ); } keys[i].bv_val = NULL; *keysp = keys; return LDAP_SUCCESS; } /* Index generation function */ static int integerFilter( slap_mask_t use, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *prefix, void * assertValue, BerVarray *keysp ) { BerVarray keys; keys = ch_malloc( sizeof( struct berval ) * 2 ); integerNormalize( syntax, assertValue, &keys[0] ); keys[1].bv_val = NULL; *keysp = keys; return LDAP_SUCCESS; } static int countryStringValidate( Syntax *syntax, struct berval *val ) { if( val->bv_len != 2 ) return LDAP_INVALID_SYNTAX; if( !SLAP_PRINTABLE(val->bv_val[0]) ) { return LDAP_INVALID_SYNTAX; } if( !SLAP_PRINTABLE(val->bv_val[1]) ) { return LDAP_INVALID_SYNTAX; } return LDAP_SUCCESS; } static int printableStringValidate( Syntax *syntax, struct berval *val ) { ber_len_t i; for(i=0; i < val->bv_len; i++) { if( !SLAP_PRINTABLE(val->bv_val[i]) ) { return LDAP_INVALID_SYNTAX; } } return LDAP_SUCCESS; } static int printablesStringValidate( Syntax *syntax, struct berval *val ) { ber_len_t i; for(i=0; i < val->bv_len; i++) { if( !SLAP_PRINTABLES(val->bv_val[i]) ) { return LDAP_INVALID_SYNTAX; } } return LDAP_SUCCESS; } static int IA5StringValidate( Syntax *syntax, struct berval *val ) { ber_len_t i; for(i=0; i < val->bv_len; i++) { if( !LDAP_ASCII(val->bv_val[i]) ) { return LDAP_INVALID_SYNTAX; } } return LDAP_SUCCESS; } static int IA5StringNormalize( Syntax *syntax, struct berval *val, struct berval *normalized ) { char *p, *q; p = val->bv_val; /* Ignore initial whitespace */ while ( ASCII_SPACE( *p ) ) { p++; } normalized->bv_val = ch_strdup( p ); p = q = normalized->bv_val; while ( *p ) { if ( ASCII_SPACE( *p ) ) { *q++ = *p++; /* Ignore the extra whitespace */ while ( ASCII_SPACE( *p ) ) { p++; } } else { *q++ = *p++; } } assert( normalized->bv_val <= p ); assert( q <= p ); /* * If the string ended in space, backup the pointer one * position. One is enough because the above loop collapsed * all whitespace to a single space. */ if ( ASCII_SPACE( q[-1] ) ) { --q; } /* null terminate */ *q = '\0'; normalized->bv_len = q - normalized->bv_val; return LDAP_SUCCESS; } static int caseExactIA5Match( int *matchp, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *value, void *assertedValue ) { int match = value->bv_len - ((struct berval *) assertedValue)->bv_len; if( match == 0 ) { match = strncmp( value->bv_val, ((struct berval *) assertedValue)->bv_val, value->bv_len ); } *matchp = match; return LDAP_SUCCESS; } static int caseExactIA5SubstringsMatch( int *matchp, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *value, void *assertedValue ) { int match = 0; SubstringsAssertion *sub = assertedValue; struct berval left = *value; int i; ber_len_t inlen=0; /* Add up asserted input length */ if( sub->sa_initial.bv_val ) { inlen += sub->sa_initial.bv_len; } if( sub->sa_any ) { for(i=0; sub->sa_any[i].bv_val != NULL; i++) { inlen += sub->sa_any[i].bv_len; } } if( sub->sa_final.bv_val ) { inlen += sub->sa_final.bv_len; } if( sub->sa_initial.bv_val ) { if( inlen > left.bv_len ) { match = 1; goto done; } match = strncmp( sub->sa_initial.bv_val, left.bv_val, sub->sa_initial.bv_len ); if( match != 0 ) { goto done; } left.bv_val += sub->sa_initial.bv_len; left.bv_len -= sub->sa_initial.bv_len; inlen -= sub->sa_initial.bv_len; } if( sub->sa_final.bv_val ) { if( inlen > left.bv_len ) { match = 1; goto done; } match = strncmp( sub->sa_final.bv_val, &left.bv_val[left.bv_len - sub->sa_final.bv_len], sub->sa_final.bv_len ); if( match != 0 ) { goto done; } left.bv_len -= sub->sa_final.bv_len; inlen -= sub->sa_final.bv_len; } if( sub->sa_any ) { for(i=0; sub->sa_any[i].bv_val; i++) { ber_len_t idx; char *p; retry: if( inlen > left.bv_len ) { /* not enough length */ match = 1; goto done; } if( sub->sa_any[i].bv_len == 0 ) { continue; } p = strchr( left.bv_val, *sub->sa_any[i].bv_val ); if( p == NULL ) { match = 1; goto done; } idx = p - left.bv_val; if( idx >= left.bv_len ) { /* this shouldn't happen */ return LDAP_OTHER; } left.bv_val = p; left.bv_len -= idx; if( sub->sa_any[i].bv_len > left.bv_len ) { /* not enough left */ match = 1; goto done; } match = strncmp( left.bv_val, sub->sa_any[i].bv_val, sub->sa_any[i].bv_len ); if( match != 0 ) { left.bv_val++; left.bv_len--; goto retry; } left.bv_val += sub->sa_any[i].bv_len; left.bv_len -= sub->sa_any[i].bv_len; inlen -= sub->sa_any[i].bv_len; } } done: *matchp = match; return LDAP_SUCCESS; } /* Index generation function */ static int caseExactIA5Indexer( slap_mask_t use, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *prefix, BerVarray values, BerVarray *keysp ) { int i; size_t slen, mlen; BerVarray keys; HASH_CONTEXT HASHcontext; unsigned char HASHdigest[HASH_BYTES]; struct berval digest; digest.bv_val = HASHdigest; digest.bv_len = sizeof(HASHdigest); for( i=0; values[i].bv_val != NULL; i++ ) { /* empty - just count them */ } /* we should have at least one value at this point */ assert( i > 0 ); keys = ch_malloc( sizeof( struct berval ) * (i+1) ); slen = syntax->ssyn_oidlen; mlen = mr->smr_oidlen; for( i=0; values[i].bv_val != NULL; i++ ) { struct berval *value = &values[i]; HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, value->bv_val, value->bv_len ); HASH_Final( HASHdigest, &HASHcontext ); ber_dupbv( &keys[i], &digest ); } keys[i].bv_val = NULL; *keysp = keys; return LDAP_SUCCESS; } /* Index generation function */ static int caseExactIA5Filter( slap_mask_t use, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *prefix, void * assertValue, BerVarray *keysp ) { size_t slen, mlen; BerVarray keys; HASH_CONTEXT HASHcontext; unsigned char HASHdigest[HASH_BYTES]; struct berval *value; struct berval digest; digest.bv_val = HASHdigest; digest.bv_len = sizeof(HASHdigest); slen = syntax->ssyn_oidlen; mlen = mr->smr_oidlen; value = (struct berval *) assertValue; keys = ch_malloc( sizeof( struct berval ) * 2 ); HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, value->bv_val, value->bv_len ); HASH_Final( HASHdigest, &HASHcontext ); ber_dupbv( &keys[0], &digest ); keys[1].bv_val = NULL; *keysp = keys; return LDAP_SUCCESS; } /* Substrings Index generation function */ static int caseExactIA5SubstringsIndexer( slap_mask_t use, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *prefix, BerVarray values, BerVarray *keysp ) { ber_len_t i, nkeys; size_t slen, mlen; BerVarray keys; HASH_CONTEXT HASHcontext; unsigned char HASHdigest[HASH_BYTES]; struct berval digest; digest.bv_val = HASHdigest; digest.bv_len = sizeof(HASHdigest); /* we should have at least one value at this point */ assert( values != NULL && values[0].bv_val != NULL ); nkeys=0; for( i=0; values[i].bv_val != NULL; i++ ) { /* count number of indices to generate */ if( values[i].bv_len < SLAP_INDEX_SUBSTR_MINLEN ) { continue; } if( flags & SLAP_INDEX_SUBSTR_INITIAL ) { if( values[i].bv_len >= SLAP_INDEX_SUBSTR_MAXLEN ) { nkeys += SLAP_INDEX_SUBSTR_MAXLEN - ( SLAP_INDEX_SUBSTR_MINLEN - 1); } else { nkeys += values[i].bv_len - ( SLAP_INDEX_SUBSTR_MINLEN - 1 ); } } if( flags & SLAP_INDEX_SUBSTR_ANY ) { if( values[i].bv_len >= SLAP_INDEX_SUBSTR_MAXLEN ) { nkeys += values[i].bv_len - ( SLAP_INDEX_SUBSTR_MAXLEN - 1 ); } } if( flags & SLAP_INDEX_SUBSTR_FINAL ) { if( values[i].bv_len >= SLAP_INDEX_SUBSTR_MAXLEN ) { nkeys += SLAP_INDEX_SUBSTR_MAXLEN - ( SLAP_INDEX_SUBSTR_MINLEN - 1); } else { nkeys += values[i].bv_len - ( SLAP_INDEX_SUBSTR_MINLEN - 1 ); } } } if( nkeys == 0 ) { /* no keys to generate */ *keysp = NULL; return LDAP_SUCCESS; } keys = ch_malloc( sizeof( struct berval ) * (nkeys+1) ); slen = syntax->ssyn_oidlen; mlen = mr->smr_oidlen; nkeys=0; for( i=0; values[i].bv_val != NULL; i++ ) { ber_len_t j,max; struct berval *value; value = &values[i]; if( value->bv_len < SLAP_INDEX_SUBSTR_MINLEN ) continue; if( ( flags & SLAP_INDEX_SUBSTR_ANY ) && ( value->bv_len >= SLAP_INDEX_SUBSTR_MAXLEN ) ) { char pre = SLAP_INDEX_SUBSTR_PREFIX; max = value->bv_len - ( SLAP_INDEX_SUBSTR_MAXLEN - 1); for( j=0; jbv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, &pre, sizeof( pre ) ); HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, &value->bv_val[j], SLAP_INDEX_SUBSTR_MAXLEN ); HASH_Final( HASHdigest, &HASHcontext ); ber_dupbv( &keys[nkeys++], &digest ); } } max = SLAP_INDEX_SUBSTR_MAXLEN < value->bv_len ? SLAP_INDEX_SUBSTR_MAXLEN : value->bv_len; for( j=SLAP_INDEX_SUBSTR_MINLEN; j<=max; j++ ) { char pre; if( flags & SLAP_INDEX_SUBSTR_INITIAL ) { pre = SLAP_INDEX_SUBSTR_INITIAL_PREFIX; HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, &pre, sizeof( pre ) ); HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, value->bv_val, j ); HASH_Final( HASHdigest, &HASHcontext ); ber_dupbv( &keys[nkeys++], &digest ); } if( flags & SLAP_INDEX_SUBSTR_FINAL ) { pre = SLAP_INDEX_SUBSTR_FINAL_PREFIX; HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, &pre, sizeof( pre ) ); HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, &value->bv_val[value->bv_len-j], j ); HASH_Final( HASHdigest, &HASHcontext ); ber_dupbv( &keys[nkeys++], &digest ); } } } if( nkeys > 0 ) { keys[nkeys].bv_val = NULL; *keysp = keys; } else { ch_free( keys ); *keysp = NULL; } return LDAP_SUCCESS; } static int caseExactIA5SubstringsFilter( slap_mask_t use, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *prefix, void * assertValue, BerVarray *keysp ) { SubstringsAssertion *sa = assertValue; char pre; ber_len_t nkeys = 0; size_t slen, mlen, klen; BerVarray keys; HASH_CONTEXT HASHcontext; unsigned char HASHdigest[HASH_BYTES]; struct berval *value; struct berval digest; if( flags & SLAP_INDEX_SUBSTR_INITIAL && sa->sa_initial.bv_val != NULL && sa->sa_initial.bv_len >= SLAP_INDEX_SUBSTR_MINLEN ) { nkeys++; } if( flags & SLAP_INDEX_SUBSTR_ANY && sa->sa_any != NULL ) { ber_len_t i; for( i=0; sa->sa_any[i].bv_val != NULL; i++ ) { if( sa->sa_any[i].bv_len >= SLAP_INDEX_SUBSTR_MAXLEN ) { /* don't bother accounting for stepping */ nkeys += sa->sa_any[i].bv_len - ( SLAP_INDEX_SUBSTR_MAXLEN - 1 ); } } } if( flags & SLAP_INDEX_SUBSTR_FINAL && sa->sa_final.bv_val != NULL && sa->sa_final.bv_len >= SLAP_INDEX_SUBSTR_MINLEN ) { nkeys++; } if( nkeys == 0 ) { *keysp = NULL; return LDAP_SUCCESS; } digest.bv_val = HASHdigest; digest.bv_len = sizeof(HASHdigest); slen = syntax->ssyn_oidlen; mlen = mr->smr_oidlen; keys = ch_malloc( sizeof( struct berval ) * (nkeys+1) ); nkeys = 0; if( flags & SLAP_INDEX_SUBSTR_INITIAL && sa->sa_initial.bv_val != NULL && sa->sa_initial.bv_len >= SLAP_INDEX_SUBSTR_MINLEN ) { pre = SLAP_INDEX_SUBSTR_INITIAL_PREFIX; value = &sa->sa_initial; klen = SLAP_INDEX_SUBSTR_MAXLEN < value->bv_len ? SLAP_INDEX_SUBSTR_MAXLEN : value->bv_len; HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, &pre, sizeof( pre ) ); HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, value->bv_val, klen ); HASH_Final( HASHdigest, &HASHcontext ); ber_dupbv( &keys[nkeys++], &digest ); } if( flags & SLAP_INDEX_SUBSTR_ANY && sa->sa_any != NULL ) { ber_len_t i, j; pre = SLAP_INDEX_SUBSTR_PREFIX; klen = SLAP_INDEX_SUBSTR_MAXLEN; for( i=0; sa->sa_any[i].bv_val != NULL; i++ ) { if( sa->sa_any[i].bv_len < SLAP_INDEX_SUBSTR_MAXLEN ) { continue; } value = &sa->sa_any[i]; for(j=0; j <= value->bv_len - SLAP_INDEX_SUBSTR_MAXLEN; j += SLAP_INDEX_SUBSTR_STEP ) { HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, &pre, sizeof( pre ) ); HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, &value->bv_val[j], klen ); HASH_Final( HASHdigest, &HASHcontext ); ber_dupbv( &keys[nkeys++], &digest ); } } } if( flags & SLAP_INDEX_SUBSTR_FINAL && sa->sa_final.bv_val != NULL && sa->sa_final.bv_len >= SLAP_INDEX_SUBSTR_MINLEN ) { pre = SLAP_INDEX_SUBSTR_FINAL_PREFIX; value = &sa->sa_final; klen = SLAP_INDEX_SUBSTR_MAXLEN < value->bv_len ? SLAP_INDEX_SUBSTR_MAXLEN : value->bv_len; HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, &pre, sizeof( pre ) ); HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, &value->bv_val[value->bv_len-klen], klen ); HASH_Final( HASHdigest, &HASHcontext ); ber_dupbv( &keys[nkeys++], &digest ); } if( nkeys > 0 ) { keys[nkeys].bv_val = NULL; *keysp = keys; } else { ch_free( keys ); *keysp = NULL; } return LDAP_SUCCESS; } static int caseIgnoreIA5Match( int *matchp, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *value, void *assertedValue ) { int match = value->bv_len - ((struct berval *) assertedValue)->bv_len; if( match == 0 && value->bv_len ) { match = strncasecmp( value->bv_val, ((struct berval *) assertedValue)->bv_val, value->bv_len ); } *matchp = match; return LDAP_SUCCESS; } static int caseIgnoreIA5SubstringsMatch( int *matchp, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *value, void *assertedValue ) { int match = 0; SubstringsAssertion *sub = assertedValue; struct berval left = *value; int i; ber_len_t inlen=0; /* Add up asserted input length */ if( sub->sa_initial.bv_val ) { inlen += sub->sa_initial.bv_len; } if( sub->sa_any ) { for(i=0; sub->sa_any[i].bv_val != NULL; i++) { inlen += sub->sa_any[i].bv_len; } } if( sub->sa_final.bv_val ) { inlen += sub->sa_final.bv_len; } if( sub->sa_initial.bv_val ) { if( inlen > left.bv_len ) { match = 1; goto done; } match = strncasecmp( sub->sa_initial.bv_val, left.bv_val, sub->sa_initial.bv_len ); if( match != 0 ) { goto done; } left.bv_val += sub->sa_initial.bv_len; left.bv_len -= sub->sa_initial.bv_len; inlen -= sub->sa_initial.bv_len; } if( sub->sa_final.bv_val ) { if( inlen > left.bv_len ) { match = 1; goto done; } match = strncasecmp( sub->sa_final.bv_val, &left.bv_val[left.bv_len - sub->sa_final.bv_len], sub->sa_final.bv_len ); if( match != 0 ) { goto done; } left.bv_len -= sub->sa_final.bv_len; inlen -= sub->sa_final.bv_len; } if( sub->sa_any ) { for(i=0; sub->sa_any[i].bv_val; i++) { ber_len_t idx; char *p; retry: if( inlen > left.bv_len ) { /* not enough length */ match = 1; goto done; } if( sub->sa_any[i].bv_len == 0 ) { continue; } p = bvcasechr( &left, *sub->sa_any[i].bv_val, &idx ); if( p == NULL ) { match = 1; goto done; } assert( idx < left.bv_len ); if( idx >= left.bv_len ) { /* this shouldn't happen */ return LDAP_OTHER; } left.bv_val = p; left.bv_len -= idx; if( sub->sa_any[i].bv_len > left.bv_len ) { /* not enough left */ match = 1; goto done; } match = strncasecmp( left.bv_val, sub->sa_any[i].bv_val, sub->sa_any[i].bv_len ); if( match != 0 ) { left.bv_val++; left.bv_len--; goto retry; } left.bv_val += sub->sa_any[i].bv_len; left.bv_len -= sub->sa_any[i].bv_len; inlen -= sub->sa_any[i].bv_len; } } done: *matchp = match; return LDAP_SUCCESS; } /* Index generation function */ static int caseIgnoreIA5Indexer( slap_mask_t use, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *prefix, BerVarray values, BerVarray *keysp ) { int i; size_t slen, mlen; BerVarray keys; HASH_CONTEXT HASHcontext; unsigned char HASHdigest[HASH_BYTES]; struct berval digest; digest.bv_val = HASHdigest; digest.bv_len = sizeof(HASHdigest); /* we should have at least one value at this point */ assert( values != NULL && values[0].bv_val != NULL ); for( i=0; values[i].bv_val != NULL; i++ ) { /* just count them */ } keys = ch_malloc( sizeof( struct berval ) * (i+1) ); slen = syntax->ssyn_oidlen; mlen = mr->smr_oidlen; for( i=0; values[i].bv_val != NULL; i++ ) { struct berval value; ber_dupbv( &value, &values[i] ); ldap_pvt_str2upper( value.bv_val ); HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, value.bv_val, value.bv_len ); HASH_Final( HASHdigest, &HASHcontext ); free( value.bv_val ); ber_dupbv( &keys[i], &digest ); } keys[i].bv_val = NULL; *keysp = keys; return LDAP_SUCCESS; } /* Index generation function */ static int caseIgnoreIA5Filter( slap_mask_t use, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *prefix, void * assertValue, BerVarray *keysp ) { size_t slen, mlen; BerVarray keys; HASH_CONTEXT HASHcontext; unsigned char HASHdigest[HASH_BYTES]; struct berval value; struct berval digest; digest.bv_val = HASHdigest; digest.bv_len = sizeof(HASHdigest); slen = syntax->ssyn_oidlen; mlen = mr->smr_oidlen; ber_dupbv( &value, (struct berval *) assertValue ); ldap_pvt_str2upper( value.bv_val ); keys = ch_malloc( sizeof( struct berval ) * 2 ); HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, value.bv_val, value.bv_len ); HASH_Final( HASHdigest, &HASHcontext ); ber_dupbv( &keys[0], &digest ); keys[1].bv_val = NULL; free( value.bv_val ); *keysp = keys; return LDAP_SUCCESS; } /* Substrings Index generation function */ static int caseIgnoreIA5SubstringsIndexer( slap_mask_t use, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *prefix, BerVarray values, BerVarray *keysp ) { ber_len_t i, nkeys; size_t slen, mlen; BerVarray keys; HASH_CONTEXT HASHcontext; unsigned char HASHdigest[HASH_BYTES]; struct berval digest; digest.bv_val = HASHdigest; digest.bv_len = sizeof(HASHdigest); /* we should have at least one value at this point */ assert( values != NULL && values[0].bv_val != NULL ); nkeys=0; for( i=0; values[i].bv_val != NULL; i++ ) { /* count number of indices to generate */ if( values[i].bv_len < SLAP_INDEX_SUBSTR_MINLEN ) { continue; } if( flags & SLAP_INDEX_SUBSTR_INITIAL ) { if( values[i].bv_len >= SLAP_INDEX_SUBSTR_MAXLEN ) { nkeys += SLAP_INDEX_SUBSTR_MAXLEN - ( SLAP_INDEX_SUBSTR_MINLEN - 1); } else { nkeys += values[i].bv_len - ( SLAP_INDEX_SUBSTR_MINLEN - 1 ); } } if( flags & SLAP_INDEX_SUBSTR_ANY ) { if( values[i].bv_len >= SLAP_INDEX_SUBSTR_MAXLEN ) { nkeys += values[i].bv_len - ( SLAP_INDEX_SUBSTR_MAXLEN - 1 ); } } if( flags & SLAP_INDEX_SUBSTR_FINAL ) { if( values[i].bv_len >= SLAP_INDEX_SUBSTR_MAXLEN ) { nkeys += SLAP_INDEX_SUBSTR_MAXLEN - ( SLAP_INDEX_SUBSTR_MINLEN - 1); } else { nkeys += values[i].bv_len - ( SLAP_INDEX_SUBSTR_MINLEN - 1 ); } } } if( nkeys == 0 ) { /* no keys to generate */ *keysp = NULL; return LDAP_SUCCESS; } keys = ch_malloc( sizeof( struct berval ) * (nkeys+1) ); slen = syntax->ssyn_oidlen; mlen = mr->smr_oidlen; nkeys=0; for( i=0; values[i].bv_val != NULL; i++ ) { int j,max; struct berval value; if( values[i].bv_len < SLAP_INDEX_SUBSTR_MINLEN ) continue; ber_dupbv( &value, &values[i] ); ldap_pvt_str2upper( value.bv_val ); if( ( flags & SLAP_INDEX_SUBSTR_ANY ) && ( value.bv_len >= SLAP_INDEX_SUBSTR_MAXLEN ) ) { char pre = SLAP_INDEX_SUBSTR_PREFIX; max = value.bv_len - ( SLAP_INDEX_SUBSTR_MAXLEN - 1); for( j=0; jbv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, &pre, sizeof( pre ) ); HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, &value.bv_val[j], SLAP_INDEX_SUBSTR_MAXLEN ); HASH_Final( HASHdigest, &HASHcontext ); ber_dupbv( &keys[nkeys++], &digest ); } } max = SLAP_INDEX_SUBSTR_MAXLEN < value.bv_len ? SLAP_INDEX_SUBSTR_MAXLEN : value.bv_len; for( j=SLAP_INDEX_SUBSTR_MINLEN; j<=max; j++ ) { char pre; if( flags & SLAP_INDEX_SUBSTR_INITIAL ) { pre = SLAP_INDEX_SUBSTR_INITIAL_PREFIX; HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, &pre, sizeof( pre ) ); HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, value.bv_val, j ); HASH_Final( HASHdigest, &HASHcontext ); ber_dupbv( &keys[nkeys++], &digest ); } if( flags & SLAP_INDEX_SUBSTR_FINAL ) { pre = SLAP_INDEX_SUBSTR_FINAL_PREFIX; HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, &pre, sizeof( pre ) ); HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, &value.bv_val[value.bv_len-j], j ); HASH_Final( HASHdigest, &HASHcontext ); ber_dupbv( &keys[nkeys++], &digest ); } } free( value.bv_val ); } if( nkeys > 0 ) { keys[nkeys].bv_val = NULL; *keysp = keys; } else { ch_free( keys ); *keysp = NULL; } return LDAP_SUCCESS; } static int caseIgnoreIA5SubstringsFilter( slap_mask_t use, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *prefix, void * assertValue, BerVarray *keysp ) { SubstringsAssertion *sa = assertValue; char pre; ber_len_t nkeys = 0; size_t slen, mlen, klen; BerVarray keys; HASH_CONTEXT HASHcontext; unsigned char HASHdigest[HASH_BYTES]; struct berval value; struct berval digest; if((flags & SLAP_INDEX_SUBSTR_INITIAL) && sa->sa_initial.bv_val != NULL && sa->sa_initial.bv_len >= SLAP_INDEX_SUBSTR_MINLEN ) { nkeys++; } if((flags & SLAP_INDEX_SUBSTR_ANY) && sa->sa_any != NULL ) { ber_len_t i; for( i=0; sa->sa_any[i].bv_val != NULL; i++ ) { if( sa->sa_any[i].bv_len >= SLAP_INDEX_SUBSTR_MAXLEN ) { /* don't bother accounting for stepping */ nkeys += sa->sa_any[i].bv_len - ( SLAP_INDEX_SUBSTR_MAXLEN - 1 ); } } } if((flags & SLAP_INDEX_SUBSTR_FINAL) && sa->sa_final.bv_val != NULL && sa->sa_final.bv_len >= SLAP_INDEX_SUBSTR_MINLEN ) { nkeys++; } if( nkeys == 0 ) { *keysp = NULL; return LDAP_SUCCESS; } digest.bv_val = HASHdigest; digest.bv_len = sizeof(HASHdigest); slen = syntax->ssyn_oidlen; mlen = mr->smr_oidlen; keys = ch_malloc( sizeof( struct berval ) * (nkeys+1) ); nkeys = 0; if((flags & SLAP_INDEX_SUBSTR_INITIAL) && sa->sa_initial.bv_val != NULL && sa->sa_initial.bv_len >= SLAP_INDEX_SUBSTR_MINLEN ) { pre = SLAP_INDEX_SUBSTR_INITIAL_PREFIX; ber_dupbv( &value, &sa->sa_initial ); ldap_pvt_str2upper( value.bv_val ); klen = SLAP_INDEX_SUBSTR_MAXLEN < value.bv_len ? SLAP_INDEX_SUBSTR_MAXLEN : value.bv_len; HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, &pre, sizeof( pre ) ); HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, value.bv_val, klen ); HASH_Final( HASHdigest, &HASHcontext ); free( value.bv_val ); ber_dupbv( &keys[nkeys++], &digest ); } if((flags & SLAP_INDEX_SUBSTR_ANY) && sa->sa_any != NULL ) { ber_len_t i, j; pre = SLAP_INDEX_SUBSTR_PREFIX; klen = SLAP_INDEX_SUBSTR_MAXLEN; for( i=0; sa->sa_any[i].bv_val != NULL; i++ ) { if( sa->sa_any[i].bv_len < SLAP_INDEX_SUBSTR_MAXLEN ) { continue; } ber_dupbv( &value, &sa->sa_any[i] ); ldap_pvt_str2upper( value.bv_val ); for(j=0; j <= value.bv_len - SLAP_INDEX_SUBSTR_MAXLEN; j += SLAP_INDEX_SUBSTR_STEP ) { HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, &pre, sizeof( pre ) ); HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, &value.bv_val[j], klen ); HASH_Final( HASHdigest, &HASHcontext ); ber_dupbv( &keys[nkeys++], &digest ); } free( value.bv_val ); } } if((flags & SLAP_INDEX_SUBSTR_FINAL) && sa->sa_final.bv_val != NULL && sa->sa_final.bv_len >= SLAP_INDEX_SUBSTR_MINLEN ) { pre = SLAP_INDEX_SUBSTR_FINAL_PREFIX; ber_dupbv( &value, &sa->sa_final ); ldap_pvt_str2upper( value.bv_val ); klen = SLAP_INDEX_SUBSTR_MAXLEN < value.bv_len ? SLAP_INDEX_SUBSTR_MAXLEN : value.bv_len; HASH_Init( &HASHcontext ); if( prefix != NULL && prefix->bv_len > 0 ) { HASH_Update( &HASHcontext, prefix->bv_val, prefix->bv_len ); } HASH_Update( &HASHcontext, &pre, sizeof( pre ) ); HASH_Update( &HASHcontext, syntax->ssyn_oid, slen ); HASH_Update( &HASHcontext, mr->smr_oid, mlen ); HASH_Update( &HASHcontext, &value.bv_val[value.bv_len-klen], klen ); HASH_Final( HASHdigest, &HASHcontext ); free( value.bv_val ); ber_dupbv( &keys[nkeys++], &digest ); } if( nkeys > 0 ) { keys[nkeys].bv_val = NULL; *keysp = keys; } else { ch_free( keys ); *keysp = NULL; } return LDAP_SUCCESS; } static int numericStringValidate( Syntax *syntax, struct berval *in ) { ber_len_t i; for(i=0; i < in->bv_len; i++) { if( !SLAP_NUMERIC(in->bv_val[i]) ) { return LDAP_INVALID_SYNTAX; } } return LDAP_SUCCESS; } static int numericStringNormalize( Syntax *syntax, struct berval *val, struct berval *normalized ) { /* removal all spaces */ char *p, *q; normalized->bv_val = ch_malloc( val->bv_len + 1 ); p = val->bv_val; q = normalized->bv_val; while ( *p ) { if ( ASCII_SPACE( *p ) ) { /* Ignore whitespace */ p++; } else { *q++ = *p++; } } /* we should have copied no more then is in val */ assert( (q - normalized->bv_val) <= (p - val->bv_val) ); /* null terminate */ *q = '\0'; normalized->bv_len = q - normalized->bv_val; return LDAP_SUCCESS; } static int objectIdentifierFirstComponentMatch( int *matchp, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *value, void *assertedValue ) { int rc = LDAP_SUCCESS; int match; struct berval *asserted = (struct berval *) assertedValue; ber_len_t i; struct berval oid; if( value->bv_len == 0 || value->bv_val[0] != '(' /*')'*/ ) { return LDAP_INVALID_SYNTAX; } /* trim leading white space */ for( i=1; ASCII_SPACE(value->bv_val[i]) && i < value->bv_len; i++ ) { /* empty */ } /* grab next word */ oid.bv_val = &value->bv_val[i]; oid.bv_len = value->bv_len - i; for( i=1; ASCII_SPACE(value->bv_val[i]) && i < oid.bv_len; i++ ) { /* empty */ } oid.bv_len = i; /* insert attributeTypes, objectclass check here */ if( OID_LEADCHAR(asserted->bv_val[0]) ) { rc = objectIdentifierMatch( &match, flags, syntax, mr, &oid, asserted ); } else { if ( !strcmp( syntax->ssyn_oid, SLAP_SYNTAX_MATCHINGRULES_OID ) ) { MatchingRule *asserted_mr = mr_bvfind( asserted ); MatchingRule *stored_mr = mr_bvfind( &oid ); if( asserted_mr == NULL ) { rc = SLAPD_COMPARE_UNDEFINED; } else { match = asserted_mr != stored_mr; } } else if ( !strcmp( syntax->ssyn_oid, SLAP_SYNTAX_ATTRIBUTETYPES_OID ) ) { AttributeType *asserted_at = at_bvfind( asserted ); AttributeType *stored_at = at_bvfind( &oid ); if( asserted_at == NULL ) { rc = SLAPD_COMPARE_UNDEFINED; } else { match = asserted_at != stored_at; } } else if ( !strcmp( syntax->ssyn_oid, SLAP_SYNTAX_OBJECTCLASSES_OID ) ) { ObjectClass *asserted_oc = oc_bvfind( asserted ); ObjectClass *stored_oc = oc_bvfind( &oid ); if( asserted_oc == NULL ) { rc = SLAPD_COMPARE_UNDEFINED; } else { match = asserted_oc != stored_oc; } } } #ifdef NEW_LOGGING LDAP_LOG(( "schema", LDAP_LEVEL_ENTRY, "objectIdentifierFirstComponentMatch: %d\n %s\n %s\n", match, value->bv_val, asserted->bv_val )); #else Debug( LDAP_DEBUG_ARGS, "objectIdentifierFirstComponentMatch " "%d\n\t\"%s\"\n\t\"%s\"\n", match, value->bv_val, asserted->bv_val ); #endif if( rc == LDAP_SUCCESS ) *matchp = match; return rc; } static int integerBitAndMatch( int *matchp, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *value, void *assertedValue ) { long lValue, lAssertedValue; /* safe to assume integers are NUL terminated? */ lValue = strtoul(value->bv_val, NULL, 10); if(( lValue == LONG_MIN || lValue == LONG_MAX) && errno == ERANGE ) return LDAP_CONSTRAINT_VIOLATION; lAssertedValue = strtol(((struct berval *)assertedValue)->bv_val, NULL, 10); if(( lAssertedValue == LONG_MIN || lAssertedValue == LONG_MAX) && errno == ERANGE ) return LDAP_CONSTRAINT_VIOLATION; *matchp = (lValue & lAssertedValue); return LDAP_SUCCESS; } static int integerBitOrMatch( int *matchp, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *value, void *assertedValue ) { long lValue, lAssertedValue; /* safe to assume integers are NUL terminated? */ lValue = strtoul(value->bv_val, NULL, 10); if(( lValue == LONG_MIN || lValue == LONG_MAX) && errno == ERANGE ) return LDAP_CONSTRAINT_VIOLATION; lAssertedValue = strtol(((struct berval *)assertedValue)->bv_val, NULL, 10); if(( lAssertedValue == LONG_MIN || lAssertedValue == LONG_MAX) && errno == ERANGE ) return LDAP_CONSTRAINT_VIOLATION; *matchp = (lValue | lAssertedValue); return LDAP_SUCCESS; } #ifdef HAVE_TLS #include #include char digit[] = "0123456789"; /* * Next function returns a string representation of a ASN1_INTEGER. * It works for unlimited lengths. */ static struct berval * asn1_integer2str(ASN1_INTEGER *a) { char buf[256]; char *p; /* We work backwards, make it fill from the end of buf */ p = buf + sizeof(buf) - 1; *p = '\0'; if ( a == NULL || a->length == 0 ) { *--p = '0'; } else { int i; int n = a->length; int base = 0; unsigned int *copy; /* We want to preserve the original */ copy = ch_malloc(n*sizeof(unsigned int)); for (i = 0; idata[i]; } /* * base indicates the index of the most significant * byte that might be nonzero. When it goes off the * end, we now there is nothing left to do. */ while (base < n) { unsigned int carry; carry = 0; for (i = base; itype == V_ASN1_NEG_INTEGER ) { *--p = '-'; } return ber_bvstrdup(p); } /* Get a DN in RFC2253 format from a X509_NAME internal struct */ static struct berval * dn_openssl2ldap(X509_NAME *name) { char issuer_dn[1024]; BIO *bio; bio = BIO_new(BIO_s_mem()); if ( !bio ) { #ifdef NEW_LOGGING LDAP_LOG(( "schema", LDAP_LEVEL_ENTRY, "dn_openssl2ldap: error creating BIO_s_mem: %s\n", ERR_error_string(ERR_get_error(),NULL))); #else Debug( LDAP_DEBUG_ARGS, "dn_openssl2ldap: " "error creating BIO: %s\n", ERR_error_string(ERR_get_error(),NULL), NULL, NULL ); #endif return NULL; } X509_NAME_print_ex(bio, name, 0, XN_FLAG_RFC2253); BIO_gets(bio, issuer_dn, 1024); BIO_free(bio); return ber_bvstrdup(issuer_dn); } /* * Given a certificate in DER format, extract the corresponding * assertion value for certificateExactMatch */ static int certificateExactConvert( struct berval * in, struct berval * out ) { X509 *xcert; unsigned char *p = in->bv_val; struct berval *serial; struct berval *issuer_dn; struct berval *bv_tmp; xcert = d2i_X509(NULL, &p, in->bv_len); if ( !xcert ) { #ifdef NEW_LOGGING LDAP_LOG(( "schema", LDAP_LEVEL_ENTRY, "certificateExactConvert: error parsing cert: %s\n", ERR_error_string(ERR_get_error(),NULL))); #else Debug( LDAP_DEBUG_ARGS, "certificateExactConvert: " "error parsing cert: %s\n", ERR_error_string(ERR_get_error(),NULL), NULL, NULL ); #endif return LDAP_INVALID_SYNTAX; } serial = asn1_integer2str(xcert->cert_info->serialNumber); if ( !serial ) { X509_free(xcert); return LDAP_INVALID_SYNTAX; } issuer_dn = dn_openssl2ldap(X509_get_issuer_name(xcert)); if ( !issuer_dn ) { X509_free(xcert); ber_bvfree(serial); return LDAP_INVALID_SYNTAX; } /* Actually, dn_openssl2ldap returns in a normalized format, but it is different from our normalized format */ bv_tmp = issuer_dn; if ( dnNormalize(NULL, bv_tmp, &issuer_dn) != LDAP_SUCCESS ) { X509_free(xcert); ber_bvfree(serial); ber_bvfree(bv_tmp); return LDAP_INVALID_SYNTAX; } ber_bvfree(bv_tmp); X509_free(xcert); out->bv_len = serial->bv_len + issuer_dn->bv_len + sizeof(" $ "); out->bv_val = ch_malloc(out->bv_len); p = out->bv_val; AC_MEMCPY(p, serial->bv_val, serial->bv_len); p += serial->bv_len; AC_MEMCPY(p, " $ ", sizeof(" $ ")-1); p += 3; AC_MEMCPY(p, issuer_dn->bv_val, issuer_dn->bv_len); p += issuer_dn->bv_len; *p++ = '\0'; #ifdef NEW_LOGGING LDAP_LOG(( "schema", LDAP_LEVEL_ENTRY, "certificateExactConvert: \n %s\n", out->bv_val)); #else Debug( LDAP_DEBUG_ARGS, "certificateExactConvert " "\n\t\"%s\"\n", out->bv_val, NULL, NULL ); #endif ber_bvfree(serial); ber_bvfree(issuer_dn); return LDAP_SUCCESS; } static int serial_and_issuer_parse( struct berval *assertion, struct berval **serial, struct berval **issuer_dn ) { char *begin; char *end; char *p; struct berval bv; begin = assertion->bv_val; end = assertion->bv_val+assertion->bv_len-1; for (p=begin; p<=end && *p != '$'; p++) ; if ( p > end ) return LDAP_INVALID_SYNTAX; /* p now points at the $ sign, now use begin and end to delimit the serial number */ while (ASCII_SPACE(*begin)) begin++; end = p-1; while (ASCII_SPACE(*end)) end--; bv.bv_len = end-begin+1; bv.bv_val = begin; *serial = ber_dupbv(NULL, &bv); /* now extract the issuer, remember p was at the dollar sign */ begin = p+1; end = assertion->bv_val+assertion->bv_len-1; while (ASCII_SPACE(*begin)) begin++; /* should we trim spaces at the end too? is it safe always? */ bv.bv_len = end-begin+1; bv.bv_val = begin; dnNormalize( NULL, &bv, issuer_dn ); return LDAP_SUCCESS; } static int certificateExactMatch( int *matchp, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *value, void *assertedValue ) { X509 *xcert; unsigned char *p = value->bv_val; struct berval *serial; struct berval *issuer_dn; struct berval *asserted_serial; struct berval *asserted_issuer_dn; int ret; xcert = d2i_X509(NULL, &p, value->bv_len); if ( !xcert ) { #ifdef NEW_LOGGING LDAP_LOG(( "schema", LDAP_LEVEL_ENTRY, "certificateExactMatch: error parsing cert: %s\n", ERR_error_string(ERR_get_error(),NULL))); #else Debug( LDAP_DEBUG_ARGS, "certificateExactMatch: " "error parsing cert: %s\n", ERR_error_string(ERR_get_error(),NULL), NULL, NULL ); #endif return LDAP_INVALID_SYNTAX; } serial = asn1_integer2str(xcert->cert_info->serialNumber); issuer_dn = dn_openssl2ldap(X509_get_issuer_name(xcert)); X509_free(xcert); serial_and_issuer_parse(assertedValue, &asserted_serial, &asserted_issuer_dn); ret = integerMatch( matchp, flags, slap_schema.si_syn_integer, slap_schema.si_mr_integerMatch, serial, asserted_serial); if ( ret == LDAP_SUCCESS ) { if ( *matchp == 0 ) { /* We need to normalize everything for dnMatch */ ret = dnMatch( matchp, flags, slap_schema.si_syn_distinguishedName, slap_schema.si_mr_distinguishedNameMatch, issuer_dn, asserted_issuer_dn); } } #ifdef NEW_LOGGING LDAP_LOG(( "schema", LDAP_LEVEL_ENTRY, "certificateExactMatch: %d\n %s $ %s\n %s $ %s\n", *matchp, serial->bv_val, issuer_dn->bv_val, asserted_serial->bv_val, asserted_issuer_dn->bv_val)); #else Debug( LDAP_DEBUG_ARGS, "certificateExactMatch " "%d\n\t\"%s $ %s\"\n", *matchp, serial->bv_val, issuer_dn->bv_val ); Debug( LDAP_DEBUG_ARGS, "\t\"%s $ %s\"\n", asserted_serial->bv_val, asserted_issuer_dn->bv_val, NULL ); #endif ber_bvfree(serial); ber_bvfree(issuer_dn); ber_bvfree(asserted_serial); ber_bvfree(asserted_issuer_dn); return ret; } /* * Index generation function * We just index the serials, in most scenarios the issuer DN is one of * a very small set of values. */ static int certificateExactIndexer( slap_mask_t use, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *prefix, BerVarray values, BerVarray *keysp ) { int i; BerVarray keys; X509 *xcert; unsigned char *p; struct berval * serial; /* we should have at least one value at this point */ assert( values != NULL && values[0].bv_val != NULL ); for( i=0; values[i].bv_val != NULL; i++ ) { /* empty -- just count them */ } keys = ch_malloc( sizeof( struct berval ) * (i+1) ); for( i=0; values[i].bv_val != NULL; i++ ) { p = values[i].bv_val; xcert = d2i_X509(NULL, &p, values[i].bv_len); if ( !xcert ) { #ifdef NEW_LOGGING LDAP_LOG(( "schema", LDAP_LEVEL_ENTRY, "certificateExactIndexer: error parsing cert: %s\n", ERR_error_string(ERR_get_error(),NULL))); #else Debug( LDAP_DEBUG_ARGS, "certificateExactIndexer: " "error parsing cert: %s\n", ERR_error_string(ERR_get_error(),NULL), NULL, NULL ); #endif /* Do we leak keys on error? */ return LDAP_INVALID_SYNTAX; } serial = asn1_integer2str(xcert->cert_info->serialNumber); X509_free(xcert); integerNormalize( slap_schema.si_syn_integer, serial, &keys[i] ); ber_bvfree(serial); #ifdef NEW_LOGGING LDAP_LOG(( "schema", LDAP_LEVEL_ENTRY, "certificateExactIndexer: returning: %s\n", keys[i].bv_val)); #else Debug( LDAP_DEBUG_ARGS, "certificateExactIndexer: " "returning: %s\n", keys[i].bv_val, NULL, NULL ); #endif } keys[i].bv_val = NULL; *keysp = keys; return LDAP_SUCCESS; } /* Index generation function */ /* We think this is always called with a value in matching rule syntax */ static int certificateExactFilter( slap_mask_t use, slap_mask_t flags, Syntax *syntax, MatchingRule *mr, struct berval *prefix, void * assertValue, BerVarray *keysp ) { BerVarray keys; struct berval *asserted_serial; struct berval *asserted_issuer_dn; serial_and_issuer_parse(assertValue, &asserted_serial, &asserted_issuer_dn); keys = ch_malloc( sizeof( struct berval ) * 2 ); integerNormalize( syntax, asserted_serial, &keys[0] ); keys[1].bv_val = NULL; *keysp = keys; ber_bvfree(asserted_serial); ber_bvfree(asserted_issuer_dn); return LDAP_SUCCESS; } #endif static int check_time_syntax (struct berval *val, int start, int *parts) { static int ceiling[9] = { 99, 99, 11, 30, 23, 59, 59, 12, 59 }; static int mdays[2][12] = { /* non-leap years */ { 30, 27, 30, 29, 30, 29, 30, 30, 29, 30, 29, 30 }, /* leap years */ { 30, 28, 30, 29, 30, 29, 30, 30, 29, 30, 29, 30 } }; char *p, *e; int part, c, tzoffset, leapyear = 0 ; if( val->bv_len == 0 ) { return LDAP_INVALID_SYNTAX; } p = (char *)val->bv_val; e = p + val->bv_len; /* Ignore initial whitespace */ while ( ( p < e ) && ASCII_SPACE( *p ) ) { p++; } if (e - p < 13 - (2 * start)) { return LDAP_INVALID_SYNTAX; } for (part = 0; part < 9; part++) { parts[part] = 0; } for (part = start; part < 7; part++) { c = *p; if ((part == 6) && (c == 'Z' || c == '+' || c == '-')) { part++; break; } p++; c -= '0'; if (p == e) { return LDAP_INVALID_SYNTAX; } if (c < 0 || c > 9) { return LDAP_INVALID_SYNTAX; } parts[part] = c; c = *p++ - '0'; if (p == e) { return LDAP_INVALID_SYNTAX; } if (c < 0 || c > 9) { return LDAP_INVALID_SYNTAX; } parts[part] *= 10; parts[part] += c; if (part == 2 || part == 3) { parts[part]--; } if (parts[part] < 0) { return LDAP_INVALID_SYNTAX; } if (parts[part] > ceiling[part]) { return LDAP_INVALID_SYNTAX; } } /* leapyear check for the Gregorian calendar (year>1581) */ if (((parts[1] % 4 == 0) && (parts[1] != 0)) || ((parts[0] % 4 == 0) && (parts[1] == 0))) { leapyear = 1; } if (parts[3] > mdays[leapyear][parts[2]]) { return LDAP_INVALID_SYNTAX; } c = *p++; if (c == 'Z') { tzoffset = 0; /* UTC */ } else if (c != '+' && c != '-') { return LDAP_INVALID_SYNTAX; } else { if (c == '-') { tzoffset = -1; } else /* c == '+' */ { tzoffset = 1; } if (p > e - 4) { return LDAP_INVALID_SYNTAX; } for (part = 7; part < 9; part++) { c = *p++ - '0'; if (c < 0 || c > 9) { return LDAP_INVALID_SYNTAX; } parts[part] = c; c = *p++ - '0'; if (c < 0 || c > 9) { return LDAP_INVALID_SYNTAX; } parts[part] *= 10; parts[part] += c; if (parts[part] < 0 || parts[part] > ceiling[part]) { return LDAP_INVALID_SYNTAX; } } } /* Ignore trailing whitespace */ while ( ( p < e ) && ASCII_SPACE( *p ) ) { p++; } if (p != e) { return LDAP_INVALID_SYNTAX; } switch ( tzoffset ) { case -1: /* negativ offset to UTC, ie west of Greenwich */ parts[4] += parts[7]; parts[5] += parts[8]; for (part = 6; --part > 0; ) { /* offset is just hhmm, no seconds */ if (part != 3) { c = ceiling[part]; } else { c = mdays[leapyear][parts[2]]; } if (parts[part] > c) { parts[part] -= c + 1; parts[part - 1]++; } } break; case 1: /* positive offset to UTC, ie east of Greenwich */ parts[4] -= parts[7]; parts[5] -= parts[8]; for (part = 6; --part > 0; ) { if (part != 3) { c = ceiling[part]; } else { /* first arg to % needs to be non negativ */ c = mdays[leapyear][(parts[2] - 1 + 12) % 12]; } if (parts[part] < 0) { parts[part] += c + 1; parts[part - 1]--; } } break; case 0: /* already UTC */ break; } return LDAP_SUCCESS; } static int utcTimeNormalize( Syntax *syntax, struct berval *val, struct berval *normalized ) { int parts[9], rc; rc = check_time_syntax(val, 1, parts); if (rc != LDAP_SUCCESS) { return rc; } normalized->bv_val = ch_malloc( 14 ); if ( normalized->bv_val == NULL ) { return LBER_ERROR_MEMORY; } sprintf( normalized->bv_val, "%02d%02d%02d%02d%02d%02dZ", parts[1], parts[2] + 1, parts[3] + 1, parts[4], parts[5], parts[6] ); normalized->bv_len = 13; return LDAP_SUCCESS; } static int utcTimeValidate( Syntax *syntax, struct berval *in ) { int parts[9]; return check_time_syntax(in, 1, parts); } static int generalizedTimeValidate( Syntax *syntax, struct berval *in ) { int parts[9]; return check_time_syntax(in, 0, parts); } static int generalizedTimeNormalize( Syntax *syntax, struct berval *val, struct berval *normalized ) { int parts[9], rc; rc = check_time_syntax(val, 0, parts); if (rc != LDAP_SUCCESS) { return rc; } normalized->bv_val = ch_malloc( 16 ); if ( normalized->bv_val == NULL ) { return LBER_ERROR_MEMORY; } sprintf( normalized->bv_val, "%02d%02d%02d%02d%02d%02d%02dZ", parts[0], parts[1], parts[2] + 1, parts[3] + 1, parts[4], parts[5], parts[6] ); normalized->bv_len = 15; return LDAP_SUCCESS; } static int nisNetgroupTripleValidate( Syntax *syntax, struct berval *val ) { char *p, *e; int commas = 0; if ( val->bv_len == 0 ) { return LDAP_INVALID_SYNTAX; } p = (char *)val->bv_val; e = p + val->bv_len; if ( *p != '(' /*')'*/ ) { return LDAP_INVALID_SYNTAX; } for ( p++; ( p < e ) && ( *p != /*'('*/ ')' ); p++ ) { if ( *p == ',' ) { commas++; if ( commas > 2 ) { return LDAP_INVALID_SYNTAX; } } else if ( !ATTR_CHAR( *p ) ) { return LDAP_INVALID_SYNTAX; } } if ( ( commas != 2 ) || ( *p != /*'('*/ ')' ) ) { return LDAP_INVALID_SYNTAX; } p++; if (p != e) { return LDAP_INVALID_SYNTAX; } return LDAP_SUCCESS; } static int bootParameterValidate( Syntax *syntax, struct berval *val ) { char *p, *e; if ( val->bv_len == 0 ) { return LDAP_INVALID_SYNTAX; } p = (char *)val->bv_val; e = p + val->bv_len; /* key */ for (; ( p < e ) && ( *p != '=' ); p++ ) { if ( !ATTR_CHAR( *p ) ) { return LDAP_INVALID_SYNTAX; } } if ( *p != '=' ) { return LDAP_INVALID_SYNTAX; } /* server */ for ( p++; ( p < e ) && ( *p != ':' ); p++ ) { if ( !ATTR_CHAR( *p ) ) { return LDAP_INVALID_SYNTAX; } } if ( *p != ':' ) { return LDAP_INVALID_SYNTAX; } /* path */ for ( p++; p < e; p++ ) { if ( !ATTR_CHAR( *p ) ) { return LDAP_INVALID_SYNTAX; } } return LDAP_SUCCESS; } static struct syntax_defs_rec { char *sd_desc; #define X_BINARY "X-BINARY-TRANSFER-REQUIRED 'TRUE' " #define X_NOT_H_R "X-NOT-HUMAN-READABLE 'TRUE' " int sd_flags; slap_syntax_validate_func *sd_validate; slap_syntax_transform_func *sd_normalize; slap_syntax_transform_func *sd_pretty; #ifdef SLAPD_BINARY_CONVERSION slap_syntax_transform_func *sd_ber2str; slap_syntax_transform_func *sd_str2ber; #endif } syntax_defs[] = { {"( 1.3.6.1.4.1.1466.115.121.1.1 DESC 'ACI Item' " X_BINARY X_NOT_H_R ")", SLAP_SYNTAX_BINARY|SLAP_SYNTAX_BER, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.2 DESC 'Access Point' " X_NOT_H_R ")", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.3 DESC 'Attribute Type Description' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.4 DESC 'Audio' " X_NOT_H_R ")", SLAP_SYNTAX_BLOB, blobValidate, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.5 DESC 'Binary' " X_NOT_H_R ")", SLAP_SYNTAX_BER, berValidate, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.6 DESC 'Bit String' )", 0, bitStringValidate, bitStringNormalize, NULL }, {"( 1.3.6.1.4.1.1466.115.121.1.7 DESC 'Boolean' )", 0, booleanValidate, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.8 DESC 'Certificate' " X_BINARY X_NOT_H_R ")", SLAP_SYNTAX_BINARY|SLAP_SYNTAX_BER, berValidate, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.9 DESC 'Certificate List' " X_BINARY X_NOT_H_R ")", SLAP_SYNTAX_BINARY|SLAP_SYNTAX_BER, berValidate, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.10 DESC 'Certificate Pair' " X_BINARY X_NOT_H_R ")", SLAP_SYNTAX_BINARY|SLAP_SYNTAX_BER, berValidate, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.11 DESC 'Country String' )", 0, countryStringValidate, IA5StringNormalize, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.12 DESC 'Distinguished Name' )", 0, dnValidate, dnNormalize2, dnPretty2}, {"( 1.3.6.1.4.1.1466.115.121.1.13 DESC 'Data Quality' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.14 DESC 'Delivery Method' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.15 DESC 'Directory String' )", 0, UTF8StringValidate, UTF8StringNormalize, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.16 DESC 'DIT Content Rule Description' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.17 DESC 'DIT Structure Rule Description' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.19 DESC 'DSA Quality' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.20 DESC 'DSE Type' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.21 DESC 'Enhanced Guide' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.22 DESC 'Facsimile Telephone Number' )", 0, printablesStringValidate, IA5StringNormalize, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.23 DESC 'Fax' " X_NOT_H_R ")", SLAP_SYNTAX_BLOB, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.24 DESC 'Generalized Time' )", 0, generalizedTimeValidate, generalizedTimeNormalize, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.25 DESC 'Guide' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.26 DESC 'IA5 String' )", 0, IA5StringValidate, IA5StringNormalize, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.27 DESC 'Integer' )", 0, integerValidate, integerNormalize, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.28 DESC 'JPEG' " X_NOT_H_R ")", SLAP_SYNTAX_BLOB, blobValidate, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.29 DESC 'Master And Shadow Access Points' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.30 DESC 'Matching Rule Description' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.31 DESC 'Matching Rule Use Description' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.32 DESC 'Mail Preference' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.33 DESC 'MHS OR Address' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.34 DESC 'Name And Optional UID' )", 0, nameUIDValidate, nameUIDNormalize, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.35 DESC 'Name Form Description' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.36 DESC 'Numeric String' )", 0, numericStringValidate, numericStringNormalize, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.37 DESC 'Object Class Description' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.38 DESC 'OID' )", 0, oidValidate, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.39 DESC 'Other Mailbox' )", 0, IA5StringValidate, IA5StringNormalize, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.40 DESC 'Octet String' )", 0, blobValidate, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.41 DESC 'Postal Address' )", 0, UTF8StringValidate, UTF8StringNormalize, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.42 DESC 'Protocol Information' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.43 DESC 'Presentation Address' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.44 DESC 'Printable String' )", 0, printableStringValidate, IA5StringNormalize, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.45 DESC 'SubtreeSpecification' " X_BINARY X_NOT_H_R ")", SLAP_SYNTAX_BINARY|SLAP_SYNTAX_BER, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.49 DESC 'Supported Algorithm' " X_BINARY X_NOT_H_R ")", SLAP_SYNTAX_BINARY|SLAP_SYNTAX_BER, berValidate, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.50 DESC 'Telephone Number' )", 0, printableStringValidate, IA5StringNormalize, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.51 DESC 'Teletex Terminal Identifier' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.52 DESC 'Telex Number' )", 0, printablesStringValidate, IA5StringNormalize, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.53 DESC 'UTC Time' )", 0, utcTimeValidate, utcTimeNormalize, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.54 DESC 'LDAP Syntax Description' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.55 DESC 'Modify Rights' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.56 DESC 'LDAP Schema Definition' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.57 DESC 'LDAP Schema Description' )", 0, NULL, NULL, NULL}, {"( 1.3.6.1.4.1.1466.115.121.1.58 DESC 'Substring Assertion' )", 0, NULL, NULL, NULL}, /* RFC 2307 NIS Syntaxes */ {"( 1.3.6.1.1.1.0.0 DESC 'RFC2307 NIS Netgroup Triple' )", 0, nisNetgroupTripleValidate, NULL, NULL}, {"( 1.3.6.1.1.1.0.1 DESC 'RFC2307 Boot Parameter' )", 0, bootParameterValidate, NULL, NULL}, #ifdef HAVE_TLS /* From PKIX */ /* These OIDs are not published yet, but will be in the next * I-D for PKIX LDAPv3 schema as have been advanced by David * Chadwick in private mail. */ {"( 1.2.826.0.1.3344810.7.1 DESC 'Serial Number and Issuer' )", 0, NULL, NULL, NULL}, #endif /* OpenLDAP Experimental Syntaxes */ #ifdef SLAPD_ACI_ENABLED {"( 1.3.6.1.4.1.4203.666.2.1 DESC 'OpenLDAP Experimental ACI' )", SLAP_SYNTAX_HIDE, UTF8StringValidate /* THIS WILL CHANGE FOR NEW ACI SYNTAX */, NULL, NULL}, #endif #ifdef SLAPD_AUTHPASSWD /* needs updating */ {"( 1.3.6.1.4.1.4203.666.2.2 DESC 'OpenLDAP authPassword' )", SLAP_SYNTAX_HIDE, NULL, NULL, NULL}, #endif /* OpenLDAP Void Syntax */ {"( 1.3.6.1.4.1.4203.1.1.1 DESC 'OpenLDAP void' )" , SLAP_SYNTAX_HIDE, inValidate, NULL, NULL}, {NULL, 0, NULL, NULL, NULL} }; /* * Other matching rules in X.520 that we do not use (yet): * * 2.5.13.9 numericStringOrderingMatch * 2.5.13.15 integerOrderingMatch * 2.5.13.18 octetStringOrderingMatch * 2.5.13.19 octetStringSubstringsMatch * 2.5.13.25 uTCTimeMatch * 2.5.13.26 uTCTimeOrderingMatch * 2.5.13.31 directoryStringFirstComponentMatch * 2.5.13.32 wordMatch * 2.5.13.33 keywordMatch * 2.5.13.35 certificateMatch * 2.5.13.36 certificatePairExactMatch * 2.5.13.37 certificatePairMatch * 2.5.13.38 certificateListExactMatch * 2.5.13.39 certificateListMatch * 2.5.13.40 algorithmIdentifierMatch * 2.5.13.41 storedPrefixMatch * 2.5.13.42 attributeCertificateMatch * 2.5.13.43 readerAndKeyIDMatch * 2.5.13.44 attributeIntegrityMatch */ static struct mrule_defs_rec { char * mrd_desc; slap_mask_t mrd_usage; slap_mr_convert_func * mrd_convert; slap_mr_normalize_func * mrd_normalize; slap_mr_match_func * mrd_match; slap_mr_indexer_func * mrd_indexer; slap_mr_filter_func * mrd_filter; char * mrd_associated; } mrule_defs[] = { /* * EQUALITY matching rules must be listed after associated APPROX * matching rules. So, we list all APPROX matching rules first. */ {"( " directoryStringApproxMatchOID " NAME 'directoryStringApproxMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 )", SLAP_MR_HIDE | SLAP_MR_EQUALITY_APPROX | SLAP_MR_EXT, NULL, NULL, directoryStringApproxMatch, directoryStringApproxIndexer, directoryStringApproxFilter, NULL}, {"( " IA5StringApproxMatchOID " NAME 'IA5StringApproxMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 )", SLAP_MR_HIDE | SLAP_MR_EQUALITY_APPROX | SLAP_MR_EXT, NULL, NULL, IA5StringApproxMatch, IA5StringApproxIndexer, IA5StringApproxFilter, NULL}, /* * Other matching rules */ {"( 2.5.13.0 NAME 'objectIdentifierMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.38 )", SLAP_MR_EQUALITY | SLAP_MR_EXT, NULL, NULL, objectIdentifierMatch, caseIgnoreIA5Indexer, caseIgnoreIA5Filter, NULL}, {"( 2.5.13.1 NAME 'distinguishedNameMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 )", SLAP_MR_EQUALITY | SLAP_MR_EXT, NULL, NULL, dnMatch, dnIndexer, dnFilter, NULL}, {"( 2.5.13.2 NAME 'caseIgnoreMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 )", SLAP_MR_EQUALITY | SLAP_MR_EXT | SLAP_MR_DN_FOLD, NULL, NULL, caseIgnoreMatch, caseExactIgnoreIndexer, caseExactIgnoreFilter, directoryStringApproxMatchOID }, {"( 2.5.13.3 NAME 'caseIgnoreOrderingMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 )", SLAP_MR_ORDERING, NULL, NULL, caseIgnoreOrderingMatch, NULL, NULL, NULL}, {"( 2.5.13.4 NAME 'caseIgnoreSubstringsMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.58 )", SLAP_MR_SUBSTR | SLAP_MR_EXT, NULL, NULL, caseExactIgnoreSubstringsMatch, caseExactIgnoreSubstringsIndexer, caseExactIgnoreSubstringsFilter, NULL}, {"( 2.5.13.5 NAME 'caseExactMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 )", SLAP_MR_EQUALITY | SLAP_MR_EXT, NULL, NULL, caseExactMatch, caseExactIgnoreIndexer, caseExactIgnoreFilter, directoryStringApproxMatchOID }, {"( 2.5.13.6 NAME 'caseExactOrderingMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 )", SLAP_MR_ORDERING, NULL, NULL, caseExactOrderingMatch, NULL, NULL, NULL}, {"( 2.5.13.7 NAME 'caseExactSubstringsMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.58 )", SLAP_MR_SUBSTR | SLAP_MR_EXT, NULL, NULL, caseExactIgnoreSubstringsMatch, caseExactIgnoreSubstringsIndexer, caseExactIgnoreSubstringsFilter, NULL}, {"( 2.5.13.8 NAME 'numericStringMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.36 )", SLAP_MR_EQUALITY | SLAP_MR_EXT | SLAP_MR_DN_FOLD, NULL, NULL, caseIgnoreIA5Match, caseIgnoreIA5Indexer, caseIgnoreIA5Filter, NULL}, {"( 2.5.13.10 NAME 'numericStringSubstringsMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.58 )", SLAP_MR_SUBSTR | SLAP_MR_EXT, NULL, NULL, caseIgnoreIA5SubstringsMatch, caseIgnoreIA5SubstringsIndexer, caseIgnoreIA5SubstringsFilter, NULL}, {"( 2.5.13.11 NAME 'caseIgnoreListMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.41 )", SLAP_MR_EQUALITY | SLAP_MR_EXT | SLAP_MR_DN_FOLD, NULL, NULL, caseIgnoreListMatch, NULL, NULL, NULL}, {"( 2.5.13.12 NAME 'caseIgnoreListSubstringsMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.58 )", SLAP_MR_SUBSTR | SLAP_MR_EXT, NULL, NULL, caseIgnoreListSubstringsMatch, NULL, NULL, NULL}, {"( 2.5.13.13 NAME 'booleanMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 )", SLAP_MR_EQUALITY | SLAP_MR_EXT, NULL, NULL, booleanMatch, NULL, NULL, NULL}, {"( 2.5.13.14 NAME 'integerMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 )", SLAP_MR_EQUALITY | SLAP_MR_EXT, NULL, NULL, integerMatch, integerIndexer, integerFilter, NULL}, {"( 2.5.13.16 NAME 'bitStringMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.6 )", SLAP_MR_EQUALITY | SLAP_MR_EXT, NULL, NULL, bitStringMatch, bitStringIndexer, bitStringFilter, NULL}, {"( 2.5.13.17 NAME 'octetStringMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.40 )", SLAP_MR_EQUALITY | SLAP_MR_EXT, NULL, NULL, octetStringMatch, octetStringIndexer, octetStringFilter, NULL}, {"( 2.5.13.20 NAME 'telephoneNumberMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.50 )", SLAP_MR_EQUALITY | SLAP_MR_EXT | SLAP_MR_DN_FOLD, NULL, NULL, telephoneNumberMatch, telephoneNumberIndexer, telephoneNumberFilter, NULL}, {"( 2.5.13.21 NAME 'telephoneNumberSubstringsMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.58 )", SLAP_MR_SUBSTR | SLAP_MR_EXT, NULL, NULL, telephoneNumberSubstringsMatch, telephoneNumberSubstringsIndexer, telephoneNumberSubstringsFilter, NULL}, {"( 2.5.13.22 NAME 'presentationAddressMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.43 )", SLAP_MR_EQUALITY | SLAP_MR_EXT, NULL, NULL, NULL, NULL, NULL, NULL}, {"( 2.5.13.23 NAME 'uniqueMemberMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.34 )", SLAP_MR_EQUALITY | SLAP_MR_EXT, NULL, NULL, uniqueMemberMatch, NULL, NULL, NULL}, {"( 2.5.13.24 NAME 'protocolInformationMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.42 )", SLAP_MR_EQUALITY | SLAP_MR_EXT, NULL, NULL, protocolInformationMatch, NULL, NULL, NULL}, {"( 2.5.13.27 NAME 'generalizedTimeMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.24 )", SLAP_MR_EQUALITY | SLAP_MR_EXT, NULL, NULL, generalizedTimeMatch, NULL, NULL, NULL}, {"( 2.5.13.28 NAME 'generalizedTimeOrderingMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.24 )", SLAP_MR_ORDERING, NULL, NULL, generalizedTimeOrderingMatch, NULL, NULL, NULL}, {"( 2.5.13.29 NAME 'integerFirstComponentMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 )", SLAP_MR_EQUALITY | SLAP_MR_EXT, NULL, NULL, integerFirstComponentMatch, NULL, NULL, NULL}, {"( 2.5.13.30 NAME 'objectIdentifierFirstComponentMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.38 )", SLAP_MR_EQUALITY | SLAP_MR_EXT, NULL, NULL, objectIdentifierFirstComponentMatch, NULL, NULL, NULL}, #ifdef HAVE_TLS {"( 2.5.13.34 NAME 'certificateExactMatch' " "SYNTAX 1.2.826.0.1.3344810.7.1 )", SLAP_MR_EQUALITY | SLAP_MR_EXT, certificateExactConvert, NULL, certificateExactMatch, certificateExactIndexer, certificateExactFilter, NULL}, #endif {"( 1.3.6.1.4.1.1466.109.114.1 NAME 'caseExactIA5Match' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 )", SLAP_MR_EQUALITY | SLAP_MR_EXT, NULL, NULL, caseExactIA5Match, caseExactIA5Indexer, caseExactIA5Filter, IA5StringApproxMatchOID }, {"( 1.3.6.1.4.1.1466.109.114.2 NAME 'caseIgnoreIA5Match' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 )", SLAP_MR_EQUALITY | SLAP_MR_EXT | SLAP_MR_DN_FOLD, NULL, NULL, caseIgnoreIA5Match, caseIgnoreIA5Indexer, caseIgnoreIA5Filter, IA5StringApproxMatchOID }, {"( 1.3.6.1.4.1.1466.109.114.3 NAME 'caseIgnoreIA5SubstringsMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 )", SLAP_MR_SUBSTR, NULL, NULL, caseIgnoreIA5SubstringsMatch, caseIgnoreIA5SubstringsIndexer, caseIgnoreIA5SubstringsFilter, NULL}, {"( 1.3.6.1.4.1.4203.1.2.1 NAME 'caseExactIA5SubstringsMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 )", SLAP_MR_SUBSTR, NULL, NULL, caseExactIA5SubstringsMatch, caseExactIA5SubstringsIndexer, caseExactIA5SubstringsFilter, NULL}, #ifdef SLAPD_AUTHPASSWD /* needs updating */ {"( 1.3.6.1.4.1.4203.666.4.1 NAME 'authPasswordMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.40 )", SLAP_MR_EQUALITY, NULL, NULL, authPasswordMatch, NULL, NULL, NULL}, #endif #ifdef SLAPD_ACI_ENABLED {"( 1.3.6.1.4.1.4203.666.4.2 NAME 'OpenLDAPaciMatch' " "SYNTAX 1.3.6.1.4.1.4203.666.2.1 )", SLAP_MR_EQUALITY, NULL, NULL, OpenLDAPaciMatch, NULL, NULL, NULL}, #endif {"( 1.2.840.113556.1.4.803 NAME 'integerBitAndMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 )", SLAP_MR_EXT, NULL, NULL, integerBitAndMatch, NULL, NULL, NULL}, {"( 1.2.840.113556.1.4.804 NAME 'integerBitOrMatch' " "SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 )", SLAP_MR_EXT, NULL, NULL, integerBitOrMatch, NULL, NULL, NULL}, {NULL, SLAP_MR_NONE, NULL, NULL, NULL, NULL} }; int slap_schema_init( void ) { int res; int i; /* we should only be called once (from main) */ assert( schema_init_done == 0 ); for ( i=0; syntax_defs[i].sd_desc != NULL; i++ ) { res = register_syntax( syntax_defs[i].sd_desc, syntax_defs[i].sd_flags, syntax_defs[i].sd_validate, syntax_defs[i].sd_normalize, syntax_defs[i].sd_pretty #ifdef SLAPD_BINARY_CONVERSION , syntax_defs[i].sd_ber2str, syntax_defs[i].sd_str2ber #endif ); if ( res ) { fprintf( stderr, "slap_schema_init: Error registering syntax %s\n", syntax_defs[i].sd_desc ); return LDAP_OTHER; } } for ( i=0; mrule_defs[i].mrd_desc != NULL; i++ ) { if( mrule_defs[i].mrd_usage == SLAP_MR_NONE ) { fprintf( stderr, "slap_schema_init: Ingoring unusable matching rule %s\n", mrule_defs[i].mrd_desc ); continue; } res = register_matching_rule( mrule_defs[i].mrd_desc, mrule_defs[i].mrd_usage, mrule_defs[i].mrd_convert, mrule_defs[i].mrd_normalize, mrule_defs[i].mrd_match, mrule_defs[i].mrd_indexer, mrule_defs[i].mrd_filter, mrule_defs[i].mrd_associated ); if ( res ) { fprintf( stderr, "slap_schema_init: Error registering matching rule %s\n", mrule_defs[i].mrd_desc ); return LDAP_OTHER; } } res = slap_schema_load(); schema_init_done = 1; return res; } void schema_destroy( void ) { oidm_destroy(); oc_destroy(); at_destroy(); mr_destroy(); syn_destroy(); }