openldap/doc/guide/admin/access-control.sdf

1137 lines
44 KiB
Plaintext
Raw Normal View History

# $OpenLDAP$
# Copyright 1999-2008 The OpenLDAP Foundation, All Rights Reserved.
# COPYING RESTRICTIONS APPLY, see COPYRIGHT.
H1: Access Control
Access to your directory can be configured via two methods, the first using
{{SECT:The slapd Configuration File}} and the second using the {{slapd-config}}(5)
format ({{SECT:Configuring slapd}}).
H2: Access Control via Static Configuration
Access to entries and attributes is controlled by the
access configuration file directive. The general form of an
access line is:
> <access directive> ::= access to <what>
> [by <who> [<access>] [<control>] ]+
> <what> ::= * |
> [dn[.<basic-style>]=<regex> | dn.<scope-style>=<DN>]
> [filter=<ldapfilter>] [attrs=<attrlist>]
> <basic-style> ::= regex | exact
> <scope-style> ::= base | one | subtree | children
> <attrlist> ::= <attr> [val[.<basic-style>]=<regex>] | <attr> , <attrlist>
> <attr> ::= <attrname> | entry | children
> <who> ::= * | [anonymous | users | self
> | dn[.<basic-style>]=<regex> | dn.<scope-style>=<DN>]
> [dnattr=<attrname>]
> [group[/<objectclass>[/<attrname>][.<basic-style>]]=<regex>]
> [peername[.<basic-style>]=<regex>]
> [sockname[.<basic-style>]=<regex>]
> [domain[.<basic-style>]=<regex>]
> [sockurl[.<basic-style>]=<regex>]
> [set=<setspec>]
> [aci=<attrname>]
> <access> ::= [self]{<level>|<priv>}
> <level> ::= none | disclose | auth | compare | search | read | write | manage
> <priv> ::= {=|+|-}{m|w|r|s|c|x|d|0}+
> <control> ::= [stop | continue | break]
where the <what> part selects the entries and/or attributes to which
the access applies, the {{EX:<who>}} part specifies which entities
are granted access, and the {{EX:<access>}} part specifies the
access granted. Multiple {{EX:<who> <access> <control>}} triplets
are supported, allowing many entities to be granted different access
to the same set of entries and attributes. Not all of these access
control options are described here; for more details see the
{{slapd.access}}(5) man page.
H3: What to control access to
The <what> part of an access specification determines the entries
and attributes to which the access control applies. Entries are
commonly selected in two ways: by DN and by filter. The following
qualifiers select entries by DN:
> to *
> to dn[.<basic-style>]=<regex>
> to dn.<scope-style>=<DN>
The first form is used to select all entries. The second form may
be used to select entries by matching a regular expression against
the target entry's {{normalized DN}}. (The second form is not
discussed further in this document.) The third form is used to
select entries which are within the requested scope of DN. The
<DN> is a string representation of the Distinguished Name, as
described in {{REF:RFC4514}}.
The scope can be either {{EX:base}}, {{EX:one}}, {{EX:subtree}},
or {{EX:children}}. Where {{EX:base}} matches only the entry with
provided DN, {{EX:one}} matches the entries whose parent is the
provided DN, {{EX:subtree}} matches all entries in the subtree whose
root is the provided DN, and {{EX:children}} matches all entries
under the DN (but not the entry named by the DN).
For example, if the directory contained entries named:
> 0: o=suffix
> 1: cn=Manager,o=suffix
> 2: ou=people,o=suffix
> 3: uid=kdz,ou=people,o=suffix
> 4: cn=addresses,uid=kdz,ou=people,o=suffix
> 5: uid=hyc,ou=people,o=suffix
\Then:
. {{EX:dn.base="ou=people,o=suffix"}} match 2;
. {{EX:dn.one="ou=people,o=suffix"}} match 3, and 5;
. {{EX:dn.subtree="ou=people,o=suffix"}} match 2, 3, 4, and 5; and
. {{EX:dn.children="ou=people,o=suffix"}} match 3, 4, and 5.
Entries may also be selected using a filter:
> to filter=<ldap filter>
where <ldap filter> is a string representation of an LDAP
search filter, as described in {{REF:RFC4515}}. For example:
> to filter=(objectClass=person)
Note that entries may be selected by both DN and filter by
including both qualifiers in the <what> clause.
> to dn.one="ou=people,o=suffix" filter=(objectClass=person)
Attributes within an entry are selected by including a comma-separated
list of attribute names in the <what> selector:
> attrs=<attribute list>
A specific value of an attribute is selected by using a single
attribute name and also using a value selector:
> attrs=<attribute> val[.<style>]=<regex>
There are two special {{pseudo}} attributes {{EX:entry}} and
{{EX:children}}. To read (and hence return) a target entry, the
subject must have {{EX:read}} access to the target's {{entry}}
attribute. To add or delete an entry, the subject must have
{{EX:write}} access to the entry's {{EX:entry}} attribute AND must
have {{EX:write}} access to the entry's parent's {{EX:children}}
attribute. To rename an entry, the subject must have {{EX:write}}
access to entry's {{EX:entry}} attribute AND have {{EX:write}}
access to both the old parent's and new parent's {{EX:children}}
attributes. The complete examples at the end of this section should
help clear things up.
Lastly, there is a special entry selector {{EX:"*"}} that is used to
select any entry. It is used when no other {{EX:<what>}}
selector has been provided. It's equivalent to "{{EX:dn=.*}}"
H3: Who to grant access to
The <who> part identifies the entity or entities being granted
access. Note that access is granted to "entities" not "entries."
The following table summarizes entity specifiers:
!block table; align=Center; coltags="EX,N"; \
title="Table 6.3: Access Entity Specifiers"
Specifier|Entities
*|All, including anonymous and authenticated users
anonymous|Anonymous (non-authenticated) users
users|Authenticated users
self|User associated with target entry
dn[.<basic-style>]=<regex>|Users matching a regular expression
dn.<scope-style>=<DN>|Users within scope of a DN
!endblock
The DN specifier behaves much like <what> clause DN specifiers.
Other control factors are also supported. For example, a {{EX:<who>}}
can be restricted by an entry listed in a DN-valued attribute in
the entry to which the access applies:
> dnattr=<dn-valued attribute name>
The dnattr specification is used to give access to an entry
whose DN is listed in an attribute of the entry (e.g., give
access to a group entry to whoever is listed as the owner of
the group entry).
Some factors may not be appropriate in all environments (or any).
For example, the domain factor relies on IP to domain name lookups.
As these can easily be spoofed, the domain factor should be avoided.
H3: The access to grant
The kind of <access> granted can be one of the following:
!block table; colaligns="LRL"; coltags="EX,EX,N"; align=Center; \
title="Table 6.4: Access Levels"
Level Privileges Description
none =0 no access
disclose =d needed for information disclosure on error
auth =dx needed to authenticate (bind)
compare =cdx needed to compare
search =scdx needed to apply search filters
read =rscdx needed to read search results
write =wrscdx needed to modify/rename
manage =mwrscdx needed to manage
!endblock
Each level implies all lower levels of access. So, for example,
granting someone {{EX:write}} access to an entry also grants them
{{EX:read}}, {{EX:search}}, {{EX:compare}}, {{EX:auth}} and
{{EX:disclose}} access. However, one may use the privileges specifier
to grant specific permissions.
H3: Access Control Evaluation
When evaluating whether some requester should be given access to
an entry and/or attribute, slapd compares the entry and/or attribute
to the {{EX:<what>}} selectors given in the configuration file.
For each entry, access controls provided in the database which holds
the entry (or the first database if not held in any database) apply
first, followed by the global access directives. Within this
priority, access directives are examined in the order in which they
appear in the config file. Slapd stops with the first {{EX:<what>}}
selector that matches the entry and/or attribute. The corresponding
access directive is the one slapd will use to evaluate access.
Next, slapd compares the entity requesting access to the {{EX:<who>}}
selectors within the access directive selected above in the order
in which they appear. It stops with the first {{EX:<who>}} selector
that matches the requester. This determines the access the entity
requesting access has to the entry and/or attribute.
Finally, slapd compares the access granted in the selected
{{EX:<access>}} clause to the access requested by the client. If
it allows greater or equal access, access is granted. Otherwise,
access is denied.
The order of evaluation of access directives makes their placement
in the configuration file important. If one access directive is
more specific than another in terms of the entries it selects, it
should appear first in the config file. Similarly, if one {{EX:<who>}}
selector is more specific than another it should come first in the
access directive. The access control examples given below should
help make this clear.
H3: Access Control Examples
The access control facility described above is quite powerful. This
section shows some examples of its use for descriptive purposes.
A simple example:
> access to * by * read
This access directive grants read access to everyone.
> access to *
> by self write
> by anonymous auth
> by * read
This directive allows the user to modify their entry, allows anonymous
to authentication against these entries, and allows all others to
read these entries. Note that only the first {{EX:by <who>}} clause
which matches applies. Hence, the anonymous users are granted
{{EX:auth}}, not {{EX:read}}. The last clause could just as well
have been "{{EX:by users read}}".
It is often desirable to restrict operations based upon the level
of protection in place. The following shows how security strength
factors (SSF) can be used.
> access to *
> by ssf=128 self write
> by ssf=64 anonymous auth
> by ssf=64 users read
This directive allows users to modify their own entries if security
protections have of strength 128 or better have been established,
allows authentication access to anonymous users, and read access
when 64 or better security protections have been established. If
client has not establish sufficient security protections, the
implicit {{EX:by * none}} clause would be applied.
The following example shows the use of a style specifiers to select
the entries by DN in two access directives where ordering is
significant.
> access to dn.children="dc=example,dc=com"
> by * search
> access to dn.children="dc=com"
> by * read
Read access is granted to entries under the {{EX:dc=com}} subtree,
except for those entries under the {{EX:dc=example,dc=com}} subtree,
to which search access is granted. No access is granted to
{{EX:dc=com}} as neither access directive matches this DN. If the
order of these access directives was reversed, the trailing directive
would never be reached, since all entries under {{EX:dc=example,dc=com}}
are also under {{EX:dc=com}} entries.
Also note that if no {{EX:access to}} directive matches or no {{EX:by
<who>}} clause, {{B:access is denied}}. That is, every {{EX:access
to}} directive ends with an implicit {{EX:by * none}} clause and
every access list ends with an implicit {{EX:access to * by * none}}
directive.
The next example again shows the importance of ordering, both of
the access directives and the {{EX:by <who>}} clauses. It also
shows the use of an attribute selector to grant access to a specific
attribute and various {{EX:<who>}} selectors.
> access to dn.subtree="dc=example,dc=com" attrs=homePhone
> by self write
> by dn.children="dc=example,dc=com" search
> by peername.regex=IP:10\..+ read
> access to dn.subtree="dc=example,dc=com"
> by self write
> by dn.children="dc=example,dc=com" search
> by anonymous auth
This example applies to entries in the "{{EX:dc=example,dc=com}}"
subtree. To all attributes except {{EX:homePhone}}, an entry can
write to itself, entries under {{EX:example.com}} entries can search
by them, anybody else has no access (implicit {{EX:by * none}})
excepting for authentication/authorization (which is always done
anonymously). The {{EX:homePhone}} attribute is writable by the
entry, searchable by entries under {{EX:example.com}}, readable by
clients connecting from network 10, and otherwise not readable
(implicit {{EX:by * none}}). All other access is denied by the
implicit {{EX:access to * by * none}}.
Sometimes it is useful to permit a particular DN to add or
remove itself from an attribute. For example, if you would like to
create a group and allow people to add and remove only
their own DN from the member attribute, you could accomplish
it with an access directive like this:
> access to attrs=member,entry
> by dnattr=member selfwrite
The dnattr {{EX:<who>}} selector says that the access applies to
entries listed in the {{EX:member}} attribute. The {{EX:selfwrite}} access
selector says that such members can only add or delete their
own DN from the attribute, not other values. The addition of
the entry attribute is required because access to the entry is
required to access any of the entry's attributes.
!if 0
For more details on how to use the {{EX:access}} directive,
consult the {{Advanced Access Control}} chapter.
!endif
H3: Configuration File Example
The following is an example configuration file, interspersed
with explanatory text. It defines two databases to handle
different parts of the {{TERM:X.500}} tree; both are {{TERM:BDB}}
database instances. The line numbers shown are provided for
reference only and are not included in the actual file. First, the
global configuration section:
E: 1. # example config file - global configuration section
E: 2. include /usr/local/etc/schema/core.schema
E: 3. referral ldap://root.openldap.org
E: 4. access to * by * read
Line 1 is a comment. Line 2 includes another config file
which contains {{core}} schema definitions.
The {{EX:referral}} directive on line 3
means that queries not local to one of the databases defined
below will be referred to the LDAP server running on the
standard port (389) at the host {{EX:root.openldap.org}}.
Line 4 is a global access control. It applies to all
entries (after any applicable database-specific access
controls).
The next section of the configuration file defines a BDB
backend that will handle queries for things in the
"dc=example,dc=com" portion of the tree. The
database is to be replicated to two slave slapds, one on
truelies, the other on judgmentday. Indices are to be
maintained for several attributes, and the {{EX:userPassword}}
attribute is to be protected from unauthorized access.
E: 5. # BDB definition for the example.com
E: 6. database bdb
E: 7. suffix "dc=example,dc=com"
E: 8. directory /usr/local/var/openldap-data
E: 9. rootdn "cn=Manager,dc=example,dc=com"
E: 10. rootpw secret
E: 11. # indexed attribute definitions
E: 12. index uid pres,eq
E: 13. index cn,sn,uid pres,eq,approx,sub
E: 14. index objectClass eq
E: 15. # database access control definitions
E: 16. access to attrs=userPassword
E: 17. by self write
E: 18. by anonymous auth
E: 19. by dn.base="cn=Admin,dc=example,dc=com" write
E: 20. by * none
E: 21. access to *
E: 22. by self write
E: 23. by dn.base="cn=Admin,dc=example,dc=com" write
E: 24. by * read
Line 5 is a comment. The start of the database definition is marked
by the database keyword on line 6. Line 7 specifies the DN suffix
for queries to pass to this database. Line 8 specifies the directory
in which the database files will live.
Lines 9 and 10 identify the database {{super-user}} entry and associated
password. This entry is not subject to access control or size or
time limit restrictions.
Lines 12 through 14 indicate the indices to maintain for various
attributes.
Lines 16 through 24 specify access control for entries in this
database. As this is the first database, the controls also apply
to entries not held in any database (such as the Root DSE). For
all applicable entries, the {{EX:userPassword}} attribute is writable
by the entry itself and by the "admin" entry. It may be used for
authentication/authorization purposes, but is otherwise not readable.
All other attributes are writable by the entry and the "admin"
entry, but may be read by all users (authenticated or not).
The next section of the example configuration file defines another
BDB database. This one handles queries involving the
{{EX:dc=example,dc=net}} subtree but is managed by the same entity
as the first database. Note that without line 39, the read access
would be allowed due to the global access rule at line 4.
E: 33. # BDB definition for example.net
E: 34. database bdb
E: 35. suffix "dc=example,dc=net"
E: 36. directory /usr/local/var/openldap-data-net
E: 37. rootdn "cn=Manager,dc=example,dc=com"
E: 38. index objectClass eq
E: 39. access to * by users read
H2: Access Control via Dynamic Configuration
Access to slapd entries and attributes is controlled by the
olcAccess attribute, whose values are a sequence of access directives.
The general form of the olcAccess configuration is:
> olcAccess: <access directive>
> <access directive> ::= to <what>
> [by <who> [<access>] [<control>] ]+
> <what> ::= * |
> [dn[.<basic-style>]=<regex> | dn.<scope-style>=<DN>]
> [filter=<ldapfilter>] [attrs=<attrlist>]
> <basic-style> ::= regex | exact
> <scope-style> ::= base | one | subtree | children
> <attrlist> ::= <attr> [val[.<basic-style>]=<regex>] | <attr> , <attrlist>
> <attr> ::= <attrname> | entry | children
> <who> ::= * | [anonymous | users | self
> | dn[.<basic-style>]=<regex> | dn.<scope-style>=<DN>]
> [dnattr=<attrname>]
> [group[/<objectclass>[/<attrname>][.<basic-style>]]=<regex>]
> [peername[.<basic-style>]=<regex>]
> [sockname[.<basic-style>]=<regex>]
> [domain[.<basic-style>]=<regex>]
> [sockurl[.<basic-style>]=<regex>]
> [set=<setspec>]
> [aci=<attrname>]
> <access> ::= [self]{<level>|<priv>}
> <level> ::= none | disclose | auth | compare | search | read | write | manage
> <priv> ::= {=|+|-}{m|w|r|s|c|x|d|0}+
> <control> ::= [stop | continue | break]
where the <what> part selects the entries and/or attributes to which
the access applies, the {{EX:<who>}} part specifies which entities
are granted access, and the {{EX:<access>}} part specifies the
access granted. Multiple {{EX:<who> <access> <control>}} triplets
are supported, allowing many entities to be granted different access
to the same set of entries and attributes. Not all of these access
control options are described here; for more details see the
{{slapd.access}}(5) man page.
H3: What to control access to
The <what> part of an access specification determines the entries
and attributes to which the access control applies. Entries are
commonly selected in two ways: by DN and by filter. The following
qualifiers select entries by DN:
> to *
> to dn[.<basic-style>]=<regex>
> to dn.<scope-style>=<DN>
The first form is used to select all entries. The second form may
be used to select entries by matching a regular expression against
the target entry's {{normalized DN}}. (The second form is not
discussed further in this document.) The third form is used to
select entries which are within the requested scope of DN. The
<DN> is a string representation of the Distinguished Name, as
described in {{REF:RFC4514}}.
The scope can be either {{EX:base}}, {{EX:one}}, {{EX:subtree}},
or {{EX:children}}. Where {{EX:base}} matches only the entry with
provided DN, {{EX:one}} matches the entries whose parent is the
provided DN, {{EX:subtree}} matches all entries in the subtree whose
root is the provided DN, and {{EX:children}} matches all entries
under the DN (but not the entry named by the DN).
For example, if the directory contained entries named:
> 0: o=suffix
> 1: cn=Manager,o=suffix
> 2: ou=people,o=suffix
> 3: uid=kdz,ou=people,o=suffix
> 4: cn=addresses,uid=kdz,ou=people,o=suffix
> 5: uid=hyc,ou=people,o=suffix
\Then:
. {{EX:dn.base="ou=people,o=suffix"}} match 2;
. {{EX:dn.one="ou=people,o=suffix"}} match 3, and 5;
. {{EX:dn.subtree="ou=people,o=suffix"}} match 2, 3, 4, and 5; and
. {{EX:dn.children="ou=people,o=suffix"}} match 3, 4, and 5.
Entries may also be selected using a filter:
> to filter=<ldap filter>
where <ldap filter> is a string representation of an LDAP
search filter, as described in {{REF:RFC4515}}. For example:
> to filter=(objectClass=person)
Note that entries may be selected by both DN and filter by
including both qualifiers in the <what> clause.
> to dn.one="ou=people,o=suffix" filter=(objectClass=person)
Attributes within an entry are selected by including a comma-separated
list of attribute names in the <what> selector:
> attrs=<attribute list>
A specific value of an attribute is selected by using a single
attribute name and also using a value selector:
> attrs=<attribute> val[.<style>]=<regex>
There are two special {{pseudo}} attributes {{EX:entry}} and
{{EX:children}}. To read (and hence return) a target entry, the
subject must have {{EX:read}} access to the target's {{entry}}
attribute. To add or delete an entry, the subject must have
{{EX:write}} access to the entry's {{EX:entry}} attribute AND must
have {{EX:write}} access to the entry's parent's {{EX:children}}
attribute. To rename an entry, the subject must have {{EX:write}}
access to entry's {{EX:entry}} attribute AND have {{EX:write}}
access to both the old parent's and new parent's {{EX:children}}
attributes. The complete examples at the end of this section should
help clear things up.
Lastly, there is a special entry selector {{EX:"*"}} that is used to
select any entry. It is used when no other {{EX:<what>}}
selector has been provided. It's equivalent to "{{EX:dn=.*}}"
H3: Who to grant access to
The <who> part identifies the entity or entities being granted
access. Note that access is granted to "entities" not "entries."
The following table summarizes entity specifiers:
!block table; align=Center; coltags="EX,N"; \
title="Table 5.3: Access Entity Specifiers"
Specifier|Entities
*|All, including anonymous and authenticated users
anonymous|Anonymous (non-authenticated) users
users|Authenticated users
self|User associated with target entry
dn[.<basic-style>]=<regex>|Users matching a regular expression
dn.<scope-style>=<DN>|Users within scope of a DN
!endblock
The DN specifier behaves much like <what> clause DN specifiers.
Other control factors are also supported. For example, a {{EX:<who>}}
can be restricted by an entry listed in a DN-valued attribute in
the entry to which the access applies:
> dnattr=<dn-valued attribute name>
The dnattr specification is used to give access to an entry
whose DN is listed in an attribute of the entry (e.g., give
access to a group entry to whoever is listed as the owner of
the group entry).
Some factors may not be appropriate in all environments (or any).
For example, the domain factor relies on IP to domain name lookups.
As these can easily be spoofed, the domain factor should be avoided.
H3: The access to grant
The kind of <access> granted can be one of the following:
!block table; colaligns="LRL"; coltags="EX,EX,N"; align=Center; \
title="Table 5.4: Access Levels"
Level Privileges Description
none =0 no access
disclose =d needed for information disclosure on error
auth =dx needed to authenticate (bind)
compare =cdx needed to compare
search =scdx needed to apply search filters
read =rscdx needed to read search results
write =wrscdx needed to modify/rename
manage =mwrscdx needed to manage
!endblock
Each level implies all lower levels of access. So, for example,
granting someone {{EX:write}} access to an entry also grants them
{{EX:read}}, {{EX:search}}, {{EX:compare}}, {{EX:auth}} and
{{EX:disclose}} access. However, one may use the privileges specifier
to grant specific permissions.
H3: Access Control Evaluation
When evaluating whether some requester should be given access to
an entry and/or attribute, slapd compares the entry and/or attribute
to the {{EX:<what>}} selectors given in the configuration. For
each entry, access controls provided in the database which holds
the entry (or the first database if not held in any database) apply
first, followed by the global access directives (which are held in
the {{EX:frontend}} database definition). Within this priority,
access directives are examined in the order in which they appear
in the configuration attribute. Slapd stops with the first
{{EX:<what>}} selector that matches the entry and/or attribute. The
corresponding access directive is the one slapd will use to evaluate
access.
Next, slapd compares the entity requesting access to the {{EX:<who>}}
selectors within the access directive selected above in the order
in which they appear. It stops with the first {{EX:<who>}} selector
that matches the requester. This determines the access the entity
requesting access has to the entry and/or attribute.
Finally, slapd compares the access granted in the selected
{{EX:<access>}} clause to the access requested by the client. If
it allows greater or equal access, access is granted. Otherwise,
access is denied.
The order of evaluation of access directives makes their placement
in the configuration file important. If one access directive is
more specific than another in terms of the entries it selects, it
should appear first in the configuration. Similarly, if one {{EX:<who>}}
selector is more specific than another it should come first in the
access directive. The access control examples given below should
help make this clear.
H3: Access Control Examples
The access control facility described above is quite powerful. This
section shows some examples of its use for descriptive purposes.
A simple example:
> olcAccess: to * by * read
This access directive grants read access to everyone.
> olcAccess: to *
> by self write
> by anonymous auth
> by * read
This directive allows the user to modify their entry, allows anonymous
to authenticate against these entries, and allows all others to
read these entries. Note that only the first {{EX:by <who>}} clause
which matches applies. Hence, the anonymous users are granted
{{EX:auth}}, not {{EX:read}}. The last clause could just as well
have been "{{EX:by users read}}".
It is often desirable to restrict operations based upon the level
of protection in place. The following shows how security strength
factors (SSF) can be used.
> olcAccess: to *
> by ssf=128 self write
> by ssf=64 anonymous auth
> by ssf=64 users read
This directive allows users to modify their own entries if security
protections of strength 128 or better have been established,
allows authentication access to anonymous users, and read access
when strength 64 or better security protections have been established. If
the client has not establish sufficient security protections, the
implicit {{EX:by * none}} clause would be applied.
The following example shows the use of style specifiers to select
the entries by DN in two access directives where ordering is
significant.
> olcAccess: to dn.children="dc=example,dc=com"
> by * search
> olcAccess: to dn.children="dc=com"
> by * read
Read access is granted to entries under the {{EX:dc=com}} subtree,
except for those entries under the {{EX:dc=example,dc=com}} subtree,
to which search access is granted. No access is granted to
{{EX:dc=com}} as neither access directive matches this DN. If the
order of these access directives was reversed, the trailing directive
would never be reached, since all entries under {{EX:dc=example,dc=com}}
are also under {{EX:dc=com}} entries.
Also note that if no {{EX:olcAccess: to}} directive matches or no {{EX:by
<who>}} clause, {{B:access is denied}}. That is, every {{EX:olcAccess:
to}} directive ends with an implicit {{EX:by * none}} clause and
every access list ends with an implicit {{EX:olcAccess: to * by * none}}
directive.
The next example again shows the importance of ordering, both of
the access directives and the {{EX:by <who>}} clauses. It also
shows the use of an attribute selector to grant access to a specific
attribute and various {{EX:<who>}} selectors.
> olcAccess: to dn.subtree="dc=example,dc=com" attrs=homePhone
> by self write
> by dn.children=dc=example,dc=com" search
> by peername.regex=IP:10\..+ read
> olcAccess: to dn.subtree="dc=example,dc=com"
> by self write
> by dn.children="dc=example,dc=com" search
> by anonymous auth
This example applies to entries in the "{{EX:dc=example,dc=com}}"
subtree. To all attributes except {{EX:homePhone}}, an entry can
write to itself, entries under {{EX:example.com}} entries can search
by them, anybody else has no access (implicit {{EX:by * none}})
excepting for authentication/authorization (which is always done
anonymously). The {{EX:homePhone}} attribute is writable by the
entry, searchable by entries under {{EX:example.com}}, readable by
clients connecting from network 10, and otherwise not readable
(implicit {{EX:by * none}}). All other access is denied by the
implicit {{EX:access to * by * none}}.
Sometimes it is useful to permit a particular DN to add or
remove itself from an attribute. For example, if you would like to
create a group and allow people to add and remove only
their own DN from the member attribute, you could accomplish
it with an access directive like this:
> olcAccess: to attrs=member,entry
> by dnattr=member selfwrite
The dnattr {{EX:<who>}} selector says that the access applies to
entries listed in the {{EX:member}} attribute. The {{EX:selfwrite}} access
selector says that such members can only add or delete their
own DN from the attribute, not other values. The addition of
the entry attribute is required because access to the entry is
required to access any of the entry's attributes.
H3: Access Control Ordering
Since the ordering of {{EX:olcAccess}} directives is essential to their
proper evaluation, but LDAP attributes normally do not preserve the
ordering of their values, OpenLDAP uses a custom schema extension to
maintain a fixed ordering of these values. This ordering is maintained
by prepending a {{EX:"{X}"}} numeric index to each value, similarly to
the approach used for ordering the configuration entries. These index
tags are maintained automatically by slapd and do not need to be specified
when originally defining the values. For example, when you create the
settings
> olcAccess: to attrs=member,entry
> by dnattr=member selfwrite
> olcAccess: to dn.children="dc=example,dc=com"
> by * search
> olcAccess: to dn.children="dc=com"
> by * read
when you read them back using slapcat or ldapsearch they will contain
> olcAccess: {0}to attrs=member,entry
> by dnattr=member selfwrite
> olcAccess: {1}to dn.children="dc=example,dc=com"
> by * search
> olcAccess: {2}to dn.children="dc=com"
> by * read
The numeric index may be used to specify a particular value to change
when using ldapmodify to edit the access rules. This index can be used
instead of (or in addition to) the actual access value. Using this
numeric index is very helpful when multiple access rules are being managed.
For example, if we needed to change the second rule above to grant
write access instead of search, we could try this LDIF:
> changetype: modify
> delete: olcAccess
> olcAccess: to dn.children="dc=example,dc=com" by * search
> -
> add: olcAccess
> olcAccess: to dn.children="dc=example,dc=com" by * write
> -
But this example {{B:will not}} guarantee that the existing values remain in
their original order, so it will most likely yield a broken security
configuration. Instead, the numeric index should be used:
> changetype: modify
> delete: olcAccess
> olcAccess: {1}
> -
> add: olcAccess
> olcAccess: {1}to dn.children="dc=example,dc=com" by * write
> -
This example deletes whatever rule is in value #1 of the {{EX:olcAccess}}
attribute (regardless of its value) and adds a new value that is
explicitly inserted as value #1. The result will be
> olcAccess: {0}to attrs=member,entry
> by dnattr=member selfwrite
> olcAccess: {1}to dn.children="dc=example,dc=com"
> by * write
> olcAccess: {2}to dn.children="dc=com"
> by * read
which is exactly what was intended.
!if 0
For more details on how to use the {{EX:access}} directive,
consult the {{Advanced Access Control}} chapter.
!endif
H3: Configuration Example
The following is an example configuration, interspersed
with explanatory text. It defines two databases to handle
different parts of the {{TERM:X.500}} tree; both are {{TERM:BDB}}
database instances. The line numbers shown are provided for
reference only and are not included in the actual file. First, the
global configuration section:
E: 1. # example config file - global configuration entry
E: 2. dn: cn=config
E: 3. objectClass: olcGlobal
E: 4. cn: config
E: 5. olcReferral: ldap://root.openldap.org
E: 6.
Line 1 is a comment. Lines 2-4 identify this as the global
configuration entry.
The {{EX:olcReferral:}} directive on line 5
means that queries not local to one of the databases defined
below will be referred to the LDAP server running on the
standard port (389) at the host {{EX:root.openldap.org}}.
Line 6 is a blank line, indicating the end of this entry.
E: 7. # internal schema
E: 8. dn: cn=schema,cn=config
E: 9. objectClass: olcSchemaConfig
E: 10. cn: schema
E: 11.
Line 7 is a comment. Lines 8-10 identify this as the root of
the schema subtree. The actual schema definitions in this entry
are hardcoded into slapd so no additional attributes are specified here.
Line 11 is a blank line, indicating the end of this entry.
E: 12. # include the core schema
E: 13. include: file:///usr/local/etc/openldap/schema/core.ldif
E: 14.
Line 12 is a comment. Line 13 is an LDIF include directive which
accesses the {{core}} schema definitions in LDIF format. Line 14
is a blank line.
Next comes the database definitions. The first database is the
special {{EX:frontend}} database whose settings are applied globally
to all the other databases.
E: 15. # global database parameters
E: 16. dn: olcDatabase=frontend,cn=config
E: 17. objectClass: olcDatabaseConfig
E: 18. olcDatabase: frontend
E: 19. olcAccess: to * by * read
E: 20.
Line 15 is a comment. Lines 16-18 identify this entry as the global
database entry. Line 19 is a global access control. It applies to all
entries (after any applicable database-specific access controls).
The next entry defines a BDB backend that will handle queries for things
in the "dc=example,dc=com" portion of the tree. Indices are to be maintained
for several attributes, and the {{EX:userPassword}} attribute is to be
protected from unauthorized access.
E: 21. # BDB definition for example.com
E: 22. dn: olcDatabase=bdb,cn=config
E: 23. objectClass: olcDatabaseConfig
E: 24. objectClass: olcBdbConfig
E: 25. olcDatabase: bdb
E: 26. olcSuffix: "dc=example,dc=com"
E: 27. olcDbDirectory: /usr/local/var/openldap-data
E: 28. olcRootDN: "cn=Manager,dc=example,dc=com"
E: 29. olcRootPW: secret
E: 30. olcDbIndex: uid pres,eq
E: 31. olcDbIndex: cn,sn,uid pres,eq,approx,sub
E: 32. olcDbIndex: objectClass eq
E: 33. olcAccess: to attrs=userPassword
E: 34. by self write
E: 35. by anonymous auth
E: 36. by dn.base="cn=Admin,dc=example,dc=com" write
E: 37. by * none
E: 38. olcAccess: to *
E: 39. by self write
E: 40. by dn.base="cn=Admin,dc=example,dc=com" write
E: 41. by * read
E: 42.
Line 21 is a comment. Lines 22-25 identify this entry as a BDB database
configuration entry. Line 26 specifies the DN suffix
for queries to pass to this database. Line 27 specifies the directory
in which the database files will live.
Lines 28 and 29 identify the database {{super-user}} entry and associated
password. This entry is not subject to access control or size or
time limit restrictions.
Lines 30 through 32 indicate the indices to maintain for various
attributes.
Lines 33 through 41 specify access control for entries in this
database. As this is the first database, the controls also apply
to entries not held in any database (such as the Root DSE). For
all applicable entries, the {{EX:userPassword}} attribute is writable
by the entry itself and by the "admin" entry. It may be used for
authentication/authorization purposes, but is otherwise not readable.
All other attributes are writable by the entry and the "admin"
entry, but may be read by all users (authenticated or not).
Line 42 is a blank line, indicating the end of this entry.
The next section of the example configuration file defines another
BDB database. This one handles queries involving the
{{EX:dc=example,dc=net}} subtree but is managed by the same entity
as the first database. Note that without line 52, the read access
would be allowed due to the global access rule at line 19.
E: 43. # BDB definition for example.net
E: 44. dn: olcDatabase=bdb,cn=config
E: 45. objectClass: olcDatabaseConfig
E: 46. objectClass: olcBdbConfig
E: 47. olcDatabase: bdb
E: 48. olcSuffix: "dc=example,dc=net"
E: 49. olcDbDirectory: /usr/local/var/openldap-data-net
E: 50. olcRootDN: "cn=Manager,dc=example,dc=com"
E: 51. olcDbIndex: objectClass eq
E: 52. olcAccess: to * by users read
H3: Converting from slapd.conf(8) to a {{B:cn=config}} directory format
Discuss slap* -f slapd.conf -F slapd.d/ (man slapd-config)
H2: Sets - Granting rights based on relationships
Sets are best illustrated via examples. The following sections will present
a few set ACL examples in order to facilitate their understanding.
(Sets in Access Controls FAQ Entry: {{URL:http://www.openldap.org/faq/data/cache/1133.html}})
Note: Sets are considered experimental.
H3: Groups of Groups
The OpenLDAP ACL for groups doesn't expand groups within groups, which are
groups that have another group as a member. For example:
> dn: cn=sudoadm,ou=group,dc=example,dc=com
> cn: sudoadm
> objectClass: groupOfNames
> member: uid=john,ou=people,dc=example,dc=com
> member: cn=accountadm,ou=group,dc=example,dc=com
>
> dn: cn=accountadm,ou=group,dc=example,dc=com
> cn: accountadm
> objectClass: groupOfNames
> member: uid=mary,ou=people,dc=example,dc=com
If we use standard group ACLs with the above entries and allow members of the
{{F:sudoadm}} group to write somewhere, {{F:mary}} won't be included:
> access to dn.subtree="ou=sudoers,dc=example,dc=com"
> by group.exact="cn=sudoadm,ou=group,dc=example,dc=com" write
> by * read
With sets we can make the ACL be recursive and consider group within groups. So
for each member that is a group, it is further expanded:
> access to dn.subtree="ou=sudoers,dc=example,dc=com"
> by set="[cn=sudoadm,ou=group,dc=example,dc=com]/member* & user" write
> by * read
This set ACL means: take the {{F:cn=sudoadm}} DN, check its {{F:member}}
attribute(s) (where the "{{F:*}}" means recursively) and intersect the result
with the authenticated user's DN. If the result is non-empty, the ACL is
considered a match and write access is granted.
The following drawing explains how this set is built:
!import "set-recursivegroup.png"; align="center"; title="Building a recursive group"
FT[align="Center"] Figure X.Y: Populating a recursive group set
First we get the {{F:uid=john}} DN. This entry doesn't have a {{F:member}}
attribute, so the expansion stops here. Now we get to {{F:cn=accountadm}}.
This one does have a {{F:member}} attribute, which is {{F:uid=mary}}. The
{{F:uid=mary}} entry, however, doesn't have member, so we stop here again. The
end comparison is:
> {"uid=john,ou=people,dc=example,dc=com","uid=mary,ou=people,dc=example,dc=com"} & user
If the authenticated user's DN is any one of those two, write access is
granted. So this set will include {{F:mary}} in the {{F:sudoadm}} group and she
will be allowed the write access.
H3: Group ACLs without DN syntax
The traditional group ACLs, and even the previous example about recursive groups, require
that the members are specified as DNs instead of just usernames.
With sets, however, it's also possible to use simple names in group ACLs, as this example will
show.
Let's say we want to allow members of the {{F:sudoadm}} group to write to the
{{F:ou=suders}} branch of our tree. But our group definition now is using {{F:memberUid}} for
the group members:
> dn: cn=sudoadm,ou=group,dc=example,dc=com
> cn: sudoadm
> objectClass: posixGroup
> gidNumber: 1000
> memberUid: john
With this type of group, we can't use group ACLs. But with a set ACL we can
grant the desired access:
> access to dn.subtree="ou=sudoers,dc=example,dc=com"
> by set="[cn=sudoadm,ou=group,dc=example,dc=com]/memberUid & user/uid" write
> by * read
We use a simple intersection where we compare the {{F:uid}} attribute
of the connecting (and authenticated) user with the {{F:memberUid}} attributes
of the group. If they match, the intersection is non-empty and the ACL will
grant write access.
This drawing illustrates this set when the connecting user is authenticated as
{{F:uid=john,ou=people,dc=example,dc=com}}:
!import "set-memberUid.png"; align="center"; title="Sets with memberUid"
FT[align="Center"] Figure X.Y: Sets with {{F:memberUid}}
In this case, it's a match. If it were {{F:mary}} authenticating, however, she
would be denied write access to {{F:ou=sudoers}} because her {{F:uid}}
attribute is not listed in the group's {{F:memberUid}}.
H3: Following references
We will now show a quite powerful example of what can be done with sets. This
example tends to make OpenLDAP administrators smile after they have understood
it and its implications.
Let's start with an user entry:
> dn: uid=john,ou=people,dc=example,dc=com
> uid: john
> objectClass: inetOrgPerson
> givenName: John
> sn: Smith
> cn: john
> manager: uid=mary,ou=people,dc=example,dc=com
Writing an ACL to allow the manager to update some attributes is quite simple
using sets:
> access to dn.exact="uid=john,ou=people,dc=example,dc=com"
> attrs=carLicense,homePhone,mobile,pager,telephoneNumber
> by self write
> by set="this/manager & user" write
> by * read
In that set, {{F:this}} expands to the entry being accessed, so that
{{F:this/manager}} expands to {{F:uid=mary,ou=people,dc=example,dc=com}} when
john's entry is accessed. If the manager herself is accessing John's entry,
the ACL will match and write access to those attributes will be granted.
So far, this same behavior can be obtained with the {{F:dnattr}} keyword. With
sets, however, we can further enhance this ACL. Let's say we want to allow the
secretary of the manager to also update these attributes. This is how we do it:
> access to dn.exact="uid=john,ou=people,dc=example,dc=com"
> attrs=carLicense,homePhone,mobile,pager,telephoneNumber
> by self write
> by set="this/manager & user" write
> by set="this/manager/secretary & user" write
> by * read
Now we need a picture to help explain what is happening here (entries shortened
for clarity):
!import "set-following-references.png"; align="center"; title="Sets jumping through entries"
FT[align="Center"] Figure X.Y: Sets jumping through entries
In this example, Jane is the secretary of Mary, which is the manager of John.
This whole relationship is defined with the {{F:manager}} and {{F:secretary}}
attributes, which are both of the distinguishedName syntax (i.e., full DNs).
So, when the {{F:uid=john}} entry is being accessed, the
{{F:this/manager/secretary}} set becomes
{{F:{"uid=jane,ou=people,dc=example,dc=com"}}} (follow the references in the
picture):
> this = [uid=john,ou=people,dc=example,dc=com]
> this/manager = \
> [uid=john,ou=people,dc=example,dc=com]/manager = uid=mary,ou=people,dc=example,dc=com
> this/manager/secretary = \
> [uid=mary,ou=people,dc=example,dc=com]/secretary = uid=jane,ou=people,dc=example,dc=com
The end result is that when Jane accesses John's entry, she will be granted
write access to the specified attributes. Better yet, this will happen to any
entry she accesses which has Mary as the manager.
This is all cool and nice, but perhaps gives to much power to secretaries. Maybe we need to further
restrict it. For example, let's only allow executive secretaries to have this power:
> access to dn.exact="uid=john,ou=people,dc=example,dc=com"
> attrs=carLicense,homePhone,mobile,pager,telephoneNumber
> by self write
> by set="this/manager & user" write
> by set="this/manager/secretary &
> [cn=executive,ou=group,dc=example,dc=com]/member* &
> user" write
> by * read
It's almost the same ACL as before, but we now also require that the connecting user be a member
of the (possibly nested) {{F:cn=executive}} group.