Adding Interact and Lorenz examples.

This commit is contained in:
Brian E. Granger 2014-01-22 11:39:56 -08:00 committed by MinRK
parent 1d6cde4877
commit 0cf8002ebf
2 changed files with 744 additions and 0 deletions

View File

@ -0,0 +1,475 @@
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Interact Demos"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This Notebook shows basic demonstrations of IPython `interact` module. This provides a high-level interface for creating user interface controls to use in exploring code and data interactively."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%pylab inline"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from IPython.html.widgets.interact import interact, interactive\n",
"from IPython.html import widgets\n",
"from IPython.display import clear_output, display, HTML"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Basic interact"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here is a simple function that displays its arguments as an HTML table:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def show_args(**kwargs):\n",
" s = '<h3>Arguments:</h3><table>\\n'\n",
" for k,v in kwargs.items():\n",
" s += '<tr><td>{0}</td><td>{1}</td></tr>\\n'.format(k,v)\n",
" s += '</table>'\n",
" display(HTML(s))"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"show_args(a=10, b='Hi There', c=True)"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's use this function to explore how `interact` works."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"interact(show_args,\n",
" Temp=(0,10),\n",
" Current=(0.,10.,0.01),\n",
" z=(True,False),\n",
" Text=u'Type here!',\n",
" Algorithm=['This','That','Other'],\n",
" a=widgets.FloatRangeWidget(min=-10.0, max=10.0, step=0.1, value=5.0)\n",
" )"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The keyword arguments to `interact` can be any `Widget` instance that has a `value` and `description` attribute, or one of the shorthand notations shown above."
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Factoring polynomials"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here is an example that uses [SymPy](http://sympy.org/en/index.html) to factor polynomials."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from sympy import Symbol, Eq, factor, init_printing\n",
"init_printing(use_latex=True)"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"x = Symbol('x')"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def factorit(n):\n",
" display(Eq(x**n-1, factor(x**n-1)))"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Notice how the output of the `factorit` function is properly formatted LaTeX."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"interact(factorit, n=(2,40))"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"A simple image browser"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This example shows how to browse through a set of images with a slider."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from sklearn import datasets"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will use the digits dataset from [scikit-learn](http://scikit-learn.org/stable/)."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"digits = datasets.load_digits()"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def browse_images(digits):\n",
" n = len(digits.images)\n",
" def view_image(i):\n",
" imshow(digits.images[i], cmap=cm.gray_r, interpolation='nearest')\n",
" title('Training: %s' % digits.target[i])\n",
" show()\n",
" interact(view_image, i=(0,n-1))"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"browse_images(digits)"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Explore random graphs"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this example, we build a simple UI for exploring random graphs with [NetworkX](http://networkx.github.io/)."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import networkx as nx"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def plot_random_graph(n, p, generator):\n",
" g = generator(n,p)\n",
" nx.draw(g)\n",
" show()"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"interact(plot_random_graph, n=(2,30), p=(0.0, 1.0, 0.001),\n",
" generator={'gnp': nx.gnp_random_graph,\n",
" 'erdos_renyi': nx.erdos_renyi_graph,\n",
" 'binomial': nx.binomial_graph})"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Image manipulation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This example builds a simple UI for performing basic image manipulation with [scikit-image](http://scikit-image.org/)."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import skimage\n",
"from skimage import data, filter, io"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"i = data.coffee()"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"io.Image(i)"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def edit_image(image):\n",
" def apply_filter(sigma, r, g, b):\n",
" new_image = filter.gaussian_filter(image, sigma=sigma)\n",
" new_image[:,:,0] = r*new_image[:,:,0]\n",
" new_image[:,:,1] = g*new_image[:,:,1]\n",
" new_image[:,:,2] = b*new_image[:,:,2]\n",
" new_image = io.Image(new_image)\n",
" display(new_image)\n",
" return new_image\n",
" lims = (0.0,1.0,0.01)\n",
" return interactive(apply_filter, sigma=(0.1,10.0,0.01), r=lims, g=lims, b=lims)"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"w = edit_image(i)"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"display(w)"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"w.arguments"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"w.result"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Playing with audio"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This example uses the `Audio` object and Matplotlib to explore the phenomenon of beat frequencies."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from IPython.display import Audio\n",
"import numpy as np"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def beat_freq(f1=220.0, f2=224.0):\n",
" max_time = 3\n",
" rate = 8000.0\n",
" times = np.linspace(0,max_time,rate*max_time)\n",
" signal = np.sin(2*np.pi*f1*times) + np.sin(2*np.pi*f2*times)\n",
" print f1, f2, abs(f1-f2)\n",
" display(Audio(data=signal, rate=rate))\n",
" return signal"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"v = interactive(beat_freq, f1=(200.0,300.0), f2=(200.0,300.0))\n",
"display(v)"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"plot(v.result[0:6000])"
],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}

View File

@ -0,0 +1,269 @@
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Exploring the Lorenz System of Differential Equations"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this Notebook we explore the Lorenz system of differential equations:\n",
"\n",
"$$\n",
"\\begin{aligned}\n",
"\\dot{x} & = \\sigma(y-x) \\\\\n",
"\\dot{y} & = \\rho x - y - xz \\\\\n",
"\\dot{z} & = -\\beta z + xy\n",
"\\end{aligned}\n",
"$$\n",
"\n",
"This is one of the classic systems in non-linear differential equations. It exhibits a range of different behaviors as the parameters ($\\sigma$, $\\beta$, $\\rho$) are varied."
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Imports"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, we import the needed things from IPython, NumPy, Matplotlib and SciPy."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%pylab inline"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from IPython.html.widgets.interact import interact, interactive\n",
"from IPython.display import clear_output, display, HTML"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy as np\n",
"from scipy import integrate\n",
"\n",
"from matplotlib import pyplot as plt\n",
"from mpl_toolkits.mplot3d import Axes3D\n",
"from matplotlib.colors import cnames\n",
"from matplotlib import animation"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Computing the trajectories and plotting the result"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We define a function that can integrate the differential equations numerically and then plot the solutions. This function has arguments that control the parameters of the differential equation ($\\sigma$, $\\beta$, $\\rho$), the numerical integration (`N`, `max_time`) and the visualization (`angle`)."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def solve_lorenz(N=10, angle=0.0, max_time=4.0, sigma=10.0, beta=8./3, rho=28.0):\n",
"\n",
" fig = plt.figure()\n",
" ax = fig.add_axes([0, 0, 1, 1], projection='3d')\n",
" ax.axis('off')\n",
"\n",
" # prepare the axes limits\n",
" ax.set_xlim((-25, 25))\n",
" ax.set_ylim((-35, 35))\n",
" ax.set_zlim((5, 55))\n",
" \n",
" def lorenz_deriv((x, y, z), t0, sigma=sigma, beta=beta, rho=rho):\n",
" \"\"\"Compute the time-derivative of a Lorentz system.\"\"\"\n",
" return [sigma * (y - x), x * (rho - z) - y, x * y - beta * z]\n",
"\n",
" # Choose random starting points, uniformly distributed from -15 to 15\n",
" np.random.seed(1)\n",
" x0 = -15 + 30 * np.random.random((N, 3))\n",
"\n",
" # Solve for the trajectories\n",
" t = np.linspace(0, max_time, int(250*max_time))\n",
" x_t = np.asarray([integrate.odeint(lorenz_deriv, x0i, t)\n",
" for x0i in x0])\n",
" \n",
" # choose a different color for each trajectory\n",
" colors = plt.cm.jet(np.linspace(0, 1, N))\n",
"\n",
" for i in range(N):\n",
" x, y, z = x_t[i,:,:].T\n",
" lines = ax.plot(x, y, z, '-', c=colors[i])\n",
" setp(lines, linewidth=2)\n",
"\n",
" ax.view_init(30, angle)\n",
" show()\n",
"\n",
" return t, x_t"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's call the function once to view the solutions. For this set of parameters, we see the trajectories swirling around two points, called attractors. "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"t, x_t = solve_lorenz(angle=0, N=10)"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Using IPython's `interactive` function, we can explore how the trajectories behave as we change the various parameters."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"w = interactive(solve_lorenz, angle=(0.,360.), N=(0,50), sigma=(0.0,50.0), rho=(0.0,50.0))\n",
"display(w)"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The object returned by `interactive` is a `Widget` object and it has attributes that contain the current result and arguments:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"t, x_t = w.result"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"w.arguments"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"After interacting with the system, we can take the result and perform further computations. In this case, we compute the average positions in $x$, $y$ and $z$."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"xyz_avg = x_t.mean(axis=1)"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"xyz_avg.shape"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Creating histograms of the average positions (across different trajectories) show that on average the trajectories swirl about the attractors."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"hist(xyz_avg[:,0])\n",
"title('Average $x(t)$')"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"hist(xyz_avg[:,1])\n",
"title('Average $y(t)$')"
],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}