diff --git a/examples/widgets/Interact.ipynb b/examples/widgets/Interact.ipynb
new file mode 100644
index 000000000..2f485d884
--- /dev/null
+++ b/examples/widgets/Interact.ipynb
@@ -0,0 +1,475 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Interact Demos"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This Notebook shows basic demonstrations of IPython `interact` module. This provides a high-level interface for creating user interface controls to use in exploring code and data interactively."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%pylab inline"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from IPython.html.widgets.interact import interact, interactive\n",
+ "from IPython.html import widgets\n",
+ "from IPython.display import clear_output, display, HTML"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Basic interact"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Here is a simple function that displays its arguments as an HTML table:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "def show_args(**kwargs):\n",
+ " s = '
Arguments:
\\n'\n",
+ " for k,v in kwargs.items():\n",
+ " s += '{0} | {1} |
\\n'.format(k,v)\n",
+ " s += '
'\n",
+ " display(HTML(s))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "show_args(a=10, b='Hi There', c=True)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's use this function to explore how `interact` works."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "interact(show_args,\n",
+ " Temp=(0,10),\n",
+ " Current=(0.,10.,0.01),\n",
+ " z=(True,False),\n",
+ " Text=u'Type here!',\n",
+ " Algorithm=['This','That','Other'],\n",
+ " a=widgets.FloatRangeWidget(min=-10.0, max=10.0, step=0.1, value=5.0)\n",
+ " )"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The keyword arguments to `interact` can be any `Widget` instance that has a `value` and `description` attribute, or one of the shorthand notations shown above."
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Factoring polynomials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Here is an example that uses [SymPy](http://sympy.org/en/index.html) to factor polynomials."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from sympy import Symbol, Eq, factor, init_printing\n",
+ "init_printing(use_latex=True)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "x = Symbol('x')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "def factorit(n):\n",
+ " display(Eq(x**n-1, factor(x**n-1)))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Notice how the output of the `factorit` function is properly formatted LaTeX."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "interact(factorit, n=(2,40))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "A simple image browser"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This example shows how to browse through a set of images with a slider."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from sklearn import datasets"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We will use the digits dataset from [scikit-learn](http://scikit-learn.org/stable/)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "digits = datasets.load_digits()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "def browse_images(digits):\n",
+ " n = len(digits.images)\n",
+ " def view_image(i):\n",
+ " imshow(digits.images[i], cmap=cm.gray_r, interpolation='nearest')\n",
+ " title('Training: %s' % digits.target[i])\n",
+ " show()\n",
+ " interact(view_image, i=(0,n-1))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "browse_images(digits)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Explore random graphs"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "In this example, we build a simple UI for exploring random graphs with [NetworkX](http://networkx.github.io/)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import networkx as nx"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "def plot_random_graph(n, p, generator):\n",
+ " g = generator(n,p)\n",
+ " nx.draw(g)\n",
+ " show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "interact(plot_random_graph, n=(2,30), p=(0.0, 1.0, 0.001),\n",
+ " generator={'gnp': nx.gnp_random_graph,\n",
+ " 'erdos_renyi': nx.erdos_renyi_graph,\n",
+ " 'binomial': nx.binomial_graph})"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Image manipulation"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This example builds a simple UI for performing basic image manipulation with [scikit-image](http://scikit-image.org/)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import skimage\n",
+ "from skimage import data, filter, io"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "i = data.coffee()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "io.Image(i)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "def edit_image(image):\n",
+ " def apply_filter(sigma, r, g, b):\n",
+ " new_image = filter.gaussian_filter(image, sigma=sigma)\n",
+ " new_image[:,:,0] = r*new_image[:,:,0]\n",
+ " new_image[:,:,1] = g*new_image[:,:,1]\n",
+ " new_image[:,:,2] = b*new_image[:,:,2]\n",
+ " new_image = io.Image(new_image)\n",
+ " display(new_image)\n",
+ " return new_image\n",
+ " lims = (0.0,1.0,0.01)\n",
+ " return interactive(apply_filter, sigma=(0.1,10.0,0.01), r=lims, g=lims, b=lims)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "w = edit_image(i)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "display(w)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "w.arguments"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "w.result"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Playing with audio"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This example uses the `Audio` object and Matplotlib to explore the phenomenon of beat frequencies."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from IPython.display import Audio\n",
+ "import numpy as np"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "def beat_freq(f1=220.0, f2=224.0):\n",
+ " max_time = 3\n",
+ " rate = 8000.0\n",
+ " times = np.linspace(0,max_time,rate*max_time)\n",
+ " signal = np.sin(2*np.pi*f1*times) + np.sin(2*np.pi*f2*times)\n",
+ " print f1, f2, abs(f1-f2)\n",
+ " display(Audio(data=signal, rate=rate))\n",
+ " return signal"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "v = interactive(beat_freq, f1=(200.0,300.0), f2=(200.0,300.0))\n",
+ "display(v)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "plot(v.result[0:6000])"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file
diff --git a/examples/widgets/Lorenz.ipynb b/examples/widgets/Lorenz.ipynb
new file mode 100644
index 000000000..88ce4783e
--- /dev/null
+++ b/examples/widgets/Lorenz.ipynb
@@ -0,0 +1,269 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Exploring the Lorenz System of Differential Equations"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "In this Notebook we explore the Lorenz system of differential equations:\n",
+ "\n",
+ "$$\n",
+ "\\begin{aligned}\n",
+ "\\dot{x} & = \\sigma(y-x) \\\\\n",
+ "\\dot{y} & = \\rho x - y - xz \\\\\n",
+ "\\dot{z} & = -\\beta z + xy\n",
+ "\\end{aligned}\n",
+ "$$\n",
+ "\n",
+ "This is one of the classic systems in non-linear differential equations. It exhibits a range of different behaviors as the parameters ($\\sigma$, $\\beta$, $\\rho$) are varied."
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Imports"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "First, we import the needed things from IPython, NumPy, Matplotlib and SciPy."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%pylab inline"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from IPython.html.widgets.interact import interact, interactive\n",
+ "from IPython.display import clear_output, display, HTML"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import numpy as np\n",
+ "from scipy import integrate\n",
+ "\n",
+ "from matplotlib import pyplot as plt\n",
+ "from mpl_toolkits.mplot3d import Axes3D\n",
+ "from matplotlib.colors import cnames\n",
+ "from matplotlib import animation"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Computing the trajectories and plotting the result"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We define a function that can integrate the differential equations numerically and then plot the solutions. This function has arguments that control the parameters of the differential equation ($\\sigma$, $\\beta$, $\\rho$), the numerical integration (`N`, `max_time`) and the visualization (`angle`)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "def solve_lorenz(N=10, angle=0.0, max_time=4.0, sigma=10.0, beta=8./3, rho=28.0):\n",
+ "\n",
+ " fig = plt.figure()\n",
+ " ax = fig.add_axes([0, 0, 1, 1], projection='3d')\n",
+ " ax.axis('off')\n",
+ "\n",
+ " # prepare the axes limits\n",
+ " ax.set_xlim((-25, 25))\n",
+ " ax.set_ylim((-35, 35))\n",
+ " ax.set_zlim((5, 55))\n",
+ " \n",
+ " def lorenz_deriv((x, y, z), t0, sigma=sigma, beta=beta, rho=rho):\n",
+ " \"\"\"Compute the time-derivative of a Lorentz system.\"\"\"\n",
+ " return [sigma * (y - x), x * (rho - z) - y, x * y - beta * z]\n",
+ "\n",
+ " # Choose random starting points, uniformly distributed from -15 to 15\n",
+ " np.random.seed(1)\n",
+ " x0 = -15 + 30 * np.random.random((N, 3))\n",
+ "\n",
+ " # Solve for the trajectories\n",
+ " t = np.linspace(0, max_time, int(250*max_time))\n",
+ " x_t = np.asarray([integrate.odeint(lorenz_deriv, x0i, t)\n",
+ " for x0i in x0])\n",
+ " \n",
+ " # choose a different color for each trajectory\n",
+ " colors = plt.cm.jet(np.linspace(0, 1, N))\n",
+ "\n",
+ " for i in range(N):\n",
+ " x, y, z = x_t[i,:,:].T\n",
+ " lines = ax.plot(x, y, z, '-', c=colors[i])\n",
+ " setp(lines, linewidth=2)\n",
+ "\n",
+ " ax.view_init(30, angle)\n",
+ " show()\n",
+ "\n",
+ " return t, x_t"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's call the function once to view the solutions. For this set of parameters, we see the trajectories swirling around two points, called attractors. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "t, x_t = solve_lorenz(angle=0, N=10)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Using IPython's `interactive` function, we can explore how the trajectories behave as we change the various parameters."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "w = interactive(solve_lorenz, angle=(0.,360.), N=(0,50), sigma=(0.0,50.0), rho=(0.0,50.0))\n",
+ "display(w)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The object returned by `interactive` is a `Widget` object and it has attributes that contain the current result and arguments:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "t, x_t = w.result"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "w.arguments"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "After interacting with the system, we can take the result and perform further computations. In this case, we compute the average positions in $x$, $y$ and $z$."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "xyz_avg = x_t.mean(axis=1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "xyz_avg.shape"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Creating histograms of the average positions (across different trajectories) show that on average the trajectories swirl about the attractors."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "hist(xyz_avg[:,0])\n",
+ "title('Average $x(t)$')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "hist(xyz_avg[:,1])\n",
+ "title('Average $y(t)$')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file