netcdf-cxx4/cxx4/ncVar.h
Ed Hartnett 965b61a671 new
2011-08-17 18:56:14 +00:00

1139 lines
54 KiB
C++

#include <exception>
#include <string>
#include <typeinfo>
#include <map>
#include <vector>
#include "netcdf.h"
#include "ncVarAtt.h"
#include "ncGroup.h"
#include "ncByte.h"
#include "ncUbyte.h"
#include "ncChar.h"
#include "ncShort.h"
#include "ncUshort.h"
#include "ncInt.h"
#include "ncUint.h"
#include "ncInt64.h"
#include "ncUint64.h"
#include "ncFloat.h"
#include "ncDouble.h"
#include "ncString.h"
#ifndef NcVarClass
#define NcVarClass
namespace netCDF
{
// class NcGroup; // forward declaration.
class NcDim; // forward declaration.
// class NcVarAtt; // forward declaration.
class NcType; // forward declaration.
/*! Class represents a netCDF variable. */
class NcVar
{
public:
/*! Used for chunking specifications (see NcVar::setChunking, NcVar::getChunkingParameters). */
enum ChunkMode
{
/*!
Chunked storage is used for this variable.
*/
nc_CHUNKED = NC_CHUNKED,
/*! Contiguous storage is used for this variable. Variables with one or more unlimited
dimensions cannot use contiguous storage. If contiguous storage is turned on, the
chunkSizes parameter is ignored.
*/
nc_CONTIGUOUS = NC_CONTIGUOUS
};
/*!
Used to specifying the endianess of the data, (see NcVar::setEndianness, NcVar::getEndianness). By default this is NC_ENDIAN_NATIVE.
*/
enum EndianMode
{
nc_ENDIAN_NATIVE = NC_ENDIAN_NATIVE, //!< Native endian.
nc_ENDIAN_LITTLE = NC_ENDIAN_LITTLE, //!< Little endian.
nc_ENDIAN_BIG = NC_ENDIAN_BIG //!< Big endian.
};
/*! Used for checksum specification (see NcVar::setChecksum, NcVar::getChecksum). */
enum ChecksumMode
{
nc_NOCHECKSUM = NC_NOCHECKSUM, //!< No checksum (the default).
nc_FLETCHER32 = NC_FLETCHER32 //!< Selects the Fletcher32 checksum filter.
};
/*! destructor */
~NcVar(){};
/*! Constructor generates a \ref isNull "null object". */
NcVar ();
/*! Constructor for a variable .
The variable must already exist in the netCDF file. New netCDF variables can be added using NcGroup::addNcVar();
\param grp Parent NcGroup object.
\param varId Id of the is NcVar object.
*/
NcVar (const NcGroup& grp, const int& varId);
/*! assignment operator */
NcVar& operator =(const NcVar& rhs);
/*! equivalence operator */
bool operator==(const NcVar& rhs) const;
/*! != operator */
bool operator!=(const NcVar& rhs) const;
/*! The copy constructor. */
NcVar(const NcVar& ncVar);
/*! Name of this NcVar object.*/
std::string getName() const;
/*! Gets parent group. */
NcGroup getParentGroup() const;
/*! Returns the variable type. */
NcType getType() const;
/*! Rename the variable. */
void rename( const std::string& newname ) const;
/*! Get the variable id. */
int getId() const;
/*! Returns true if this object variable is not defined. */
bool isNull() const {return nullObject;}
/*! comparator operator */
friend bool operator<(const NcVar& lhs,const NcVar& rhs);
/*! comparator operator */
friend bool operator>(const NcVar& lhs,const NcVar& rhs);
/////////////////
// Information about Dimensions
/////////////////
/*! The the number of dimensions. */
int getDimCount() const ;
/*! Gets the i'th NcDim object. */
NcDim getDim(int i) const;
/*! Gets the set of NcDim objects. */
std::vector<NcDim> getDims() const;
/////////////////
// Information about Attributes
/////////////////
/*! Gets the number of attributes. */
int getAttCount() const;
/*! Gets attribute by name */
NcVarAtt getAtt(const std::string& name) const;
/*! Gets the set of attributes. */
std::map<std::string,NcVarAtt> getAtts() const;
/////////////////////////
/*! \overload
*/
NcVarAtt putAtt(const std::string& name, size_t len, const char** dataValues) const ;
/*! \overload
*/
NcVarAtt putAtt(const std::string& name, const std::string& dataValues) const ;
/*! \overload
*/
NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const unsigned char* dataValues) const ;
/*! \overload
*/
NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const signed char* dataValues) const ;
/*! \overload
*/
NcVarAtt putAtt(const std::string& name, const NcType& type, short datumValue) const ;
/*! \overload
*/
NcVarAtt putAtt(const std::string& name, const NcType& type, int datumValue) const ;
/*! \overload
*/
NcVarAtt putAtt(const std::string& name, const NcType& type, long datumValue) const ;
/*! \overload
*/
NcVarAtt putAtt(const std::string& name, const NcType& type, float datumValue) const ;
/*! \overload
*/
NcVarAtt putAtt(const std::string& name, const NcType& type, double datumValue) const ;
/*! \overload
*/
NcVarAtt putAtt(const std::string& name, const NcType& type, unsigned short datumValue) const ;
/*! \overload
*/
NcVarAtt putAtt(const std::string& name, const NcType& type, unsigned int datumValue) const ;
/*! \overload
*/
NcVarAtt putAtt(const std::string& name, const NcType& type, unsigned long long datumValue) const ;
/*! \overload
*/
NcVarAtt putAtt(const std::string& name, const NcType& type, long long datumValue) const ;
/*! \overload
*/
NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const short* dataValues) const ;
/*! \overload
*/
NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const int* dataValues) const ;
/*! \overload
*/
NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const long* dataValues) const ;
/*! \overload
*/
NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const float* dataValues) const ;
/*! \overload
*/
NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const double* dataValues) const ;
/*! \overload
*/
NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const unsigned short* dataValues) const ;
/*! \overload
*/
NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const unsigned int* dataValues) const ;
/*! \overload
*/
NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const unsigned long long* dataValues) const ;
/*! \overload
*/
NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const long long* dataValues) const ;
/*!
Creates a new variable attribute or if already exisiting replaces it.
If you are writing a _Fill_Value_ attribute, and will tell the HDF5 layer to use
the specified fill value for that variable.
\par
Although it's possible to create attributes of all types, text and double attributes are adequate for most purposes.
\param name Name of attribute.
\param type The attribute type.
\param len The length of the attribute (number of Nctype repeats).
\param dataValues Data Values to put into the new attribute.
If the type of data values differs from the netCDF variable type, type conversion will occur.
(However, no type conversion is carried out for variables using the user-defined data types:
nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
\return The NcVarAtt object for this new netCDF attribute.
*/
NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const void* dataValues) const ;
////////////////////
// Chunking details
////////////////////
/*! Sets chunking parameters.
\param chunkMode Enumeration type. Allowable parameters are: "nc_CONTIGUOUS", "nc_CHUNKED"
\param chunksizes Shape of chunking, used if ChunkMode=nc_CHUNKED.
*/
void setChunking(ChunkMode chunkMode, std::vector<size_t>& chunksizes) const;
/*! Gets the chunking parameters
\param chunkMode On return contains either: "nc_CONTIGUOUS" or "nc_CHUNKED"
\param chunksizes On return contains shape of chunking, used if ChunkMode=nc_CHUNKED.
*/
void getChunkingParameters(ChunkMode& chunkMode, std::vector<size_t>& chunkSizes) const;
////////////////////
// Fill details
////////////////////
// Sets the fill parameters
/*!
\overload
*/
void setFill(bool fillMode,void* fillValue=NULL) const;
/*!
This is an overloaded member function, provided for convenience.
It differs from the above function in what argument(s) it accepts.
The function can be used for any type, including user-defined types.
\param fillMode Setting to true, turns on fill mode.
\param fillValue Pointer to fill value.
Must be the same type as the variable. Ignored if fillMode=.false.
*/
void setFill(bool fillMode,const void* fillValue=NULL) const;
/*! Sets the fill parameters
\param fillMode Setting to true, turns on fill mode.
\param fillValue Fill value for the variable.
Must be the same type as the variable. Ignored if fillMode=.false.
*/
template<class T>
void setFill(bool fillMode, T fillValue) const
{
ncCheck(nc_def_var_fill(groupId,myId,static_cast<int> (!fillMode),&fillValue),__FILE__,__LINE__);
}
/*!
This is an overloaded member function, provided for convenience.
It differs from the above function in what argument(s) it accepts.
The function can be used for any type, including user-defined types.
\param fillMode On return set to true if fill mode is enabled.
\param fillValue On return containts a pointer to fill value.
Must be the same type as the variable. Ignored if fillMode=.false.
*/
void getFillModeParameters(bool& fillMode, void* fillValue=NULL) const;
/*! Gets the fill parameters
\param On return set to true if fill mode is enabled.
\param On return is set to the fill value.
*/
template <class T> void getFillModeParameters(bool& fillMode,T& fillValue) const{
int fillModeInt;
ncCheck(nc_inq_var_fill(groupId,myId,&fillModeInt,&fillValue),__FILE__,__LINE__);
fillMode= static_cast<bool> (fillModeInt == 0);
}
////////////////////
// Compression details
////////////////////
/*! Sets the compression parameters
\param enableShuffleFilter Set to true to turn on shuffle filter.
\param enableDeflateFilter Set to true to turn on deflate filter.
\param deflateLevel The deflate level, must be 0 and 9.
*/
void setCompression(bool enableShuffleFilter, bool enableDeflateFilter, int deflateLevel) const;
/*! Gets the compression parameters
\param enableShuffleFilter On return set to true if the shuffle filter is enabled.
\param enableDeflateFilter On return set to true if the deflate filter is enabled.
\param deflateLevel On return set to the deflate level.
*/
void getCompressionParameters(bool& shuffleFilterEnabled, bool& deflateFilterEnabled, int& deflateLevel) const;
////////////////////
// Endianness details
////////////////////
/*! Sets the endianness of the variable.
\param Endianness enumeration type. Allowable parameters are: "nc_ENDIAN_NATIVE" (the default), "nc_ENDIAN_LITTLE", "nc_ENDIAN_BIG"
*/
void setEndianness(EndianMode endianMode) const;
/*! Gets the endianness of the variable.
\return Endianness enumeration type. Allowable parameters are: "nc_ENDIAN_NATIVE" (the default), "nc_ENDIAN_LITTLE", "nc_ENDIAN_BIG"
*/
EndianMode getEndianness() const;
////////////////////
// Checksum details
////////////////////
/*! Sets the checksum parameters of a variable.
\param ChecksumMode Enumeration type. Allowable parameters are: "nc_NOCHECKSUM", "nc_FLETCHER32".
*/
void setChecksum(ChecksumMode checksumMode) const;
/*! Gets the checksum parameters of the variable.
\return ChecksumMode Enumeration type. Allowable parameters are: "nc_NOCHECKSUM", "nc_FLETCHER32".
*/
ChecksumMode getChecksum() const;
////////////////////
// data reading
////////////////////
// Reads the entire data into the netCDF variable.
/*!
This is an overloaded member function, provided for convenience.
It differs from the above function in what argument(s) it accepts.
In addition, no data conversion is carried out. This means that
the type of the data in memory must match the type of the variable.
*/
void getVar(void* dataValues) const;
/*! \overload
*/
void getVar(char** dataValues) const;
/*! \overload
*/
void getVar(char* dataValues) const;
/*! \overload
*/
void getVar(unsigned char* dataValues) const;
/*! \overload
*/
void getVar(signed char* dataValues) const;
/*! \overload
*/
void getVar(short* dataValues) const;
/*! \overload
*/
void getVar(int* dataValues) const;
/*! \overload
*/
void getVar(long* dataValues) const;
/*! \overload
*/
void getVar(float* dataValues) const;
/*! \overload
*/
void getVar(double* dataValues) const;
/*! \overload
*/
void getVar(unsigned short* dataValues) const;
/*! \overload
*/
void getVar(unsigned int* dataValues) const;
/*! \overload
*/
void getVar(unsigned long long* dataValues) const;
/*!
Reads the entire data from an netCDF variable.
This is the simplest interface to use for reading the value of a scalar variable
or when all the values of a multidimensional variable can be read at once. The values
are read into consecutive locations with the last dimension varying fastest.
Take care when using the simplest forms of this interface with record variables when you
don't specify how many records are to be read. If you try to read all the values of a
record variable into an array but there are more records in the file than you assume,
more data will be read than you expect, which may cause a segmentation violation.
\param dataValues Pointer to the location into which the data value is read. If the type of
data value differs from the netCDF variable type, type conversion will occur.
(However, no type conversion is carried out for variables using the user-defined data types:
nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
*/
void getVar(long long* dataValues) const;
//////////////////////
// Reads a single datum value from a variable of an open netCDF dataset.
/*!
This is an overloaded member function, provided for convenience.
It differs from the above function in what argument(s) it accepts.
In addition, no data conversion is carried out. This means that
the type of the data in memory must match the type of the variable.
*/
void getVar(const std::vector<size_t>& index, void* datumValue) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& index, char** datumValue) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& index, char* datumValue) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& index, unsigned char* datumValue) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& index, signed char* datumValue) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& index, short* datumValue) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& index, int* datumValue) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& index, long* datumValue) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& index, float* datumValue) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& index, double* datumValue) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& index, unsigned short* datumValue) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& index, unsigned int* datumValue) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& index, unsigned long long* datumValue) const;
/*! Reads a single datum value from a variable of an open netCDF dataset.
The value is converted from the external data type of the variable, if necessary.
\param index Vector specifying the index of the data value to be read.
The indices are relative to 0, so for example, the first data value of a two-dimensional
variable would have index (0,0). The elements of index must correspond to the variable's dimensions.
Hence, if the variable is a record variable, the first index is the record number.
\param datumValue Pointer to the location into which the data value is read. If the type of
data value differs from the netCDF variable type, type conversion will occur.
(However, no type conversion is carried out for variables using the user-defined data types:
nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
*/
void getVar(const std::vector<size_t>& index, long long* datumValue) const;
//////////////////////
// Reads an array of values from a netCDF variable of an open netCDF dataset.
/*!
This is an overloaded member function, provided for convenience.
It differs from the above function in what argument(s) it accepts.
In addition, no data conversion is carried out. This means that
the type of the data in memory must match the type of the variable.
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, void* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, char** dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, char* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, unsigned char* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, signed char* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, short* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, int* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, long* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, float* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, double* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, unsigned short* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, unsigned int* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, unsigned long long* dataValues) const;
/*!
Reads an array of values from a netCDF variable of an open netCDF dataset.
The array is specified by giving a corner and a vector of edge lengths.
The values are read into consecutive locations with the last dimension varying fastest.
\param start
Vector specifying the index in the variable where the first of the data values will be read.
The indices are relative to 0, so for example, the first data value of a variable would have index (0, 0, ... , 0).
The length of start must be the same as the number of dimensions of the specified variable.
The elements of start correspond, in order, to the variable's dimensions. Hence, if the variable is a record variable,
the first index would correspond to the starting record number for reading the data values.
\param count
Vector specifying the edge lengths along each dimension of the block of data values to be read.
To read a single value, for example, specify count as (1, 1, ... , 1). The length of count is the number of
dimensions of the specified variable. The elements of count correspond, in order, to the variable's dimensions.
Hence, if the variable is a record variable, the first element of count corresponds to a count of the number of records to read.
Note: setting any element of the count array to zero causes the function to exit without error, and without doing anything.
\param dataValues Pointer to the location into which the data value is read. If the type of
data value differs from the netCDF variable type, type conversion will occur.
(However, no type conversion is carried out for variables using the user-defined data types:
nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, long long* dataValues) const;
//////////////////////
// Reads a subsampled (strided) array section of values from a netCDF variable.
/*!
This is an overloaded member function, provided for convenience.
It differs from the above function in what argument(s) it accepts.
In addition, no data conversion is carried out. This means that
the type of the data in memory must match the type of the variable.
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, void* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, char** dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, char* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, unsigned char* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, signed char* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, short* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, int* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, long* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, float* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, double* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, unsigned short* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, unsigned int* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, unsigned long long* dataValues) const;
/*!
Reads a subsampled (strided) array section of values from a netCDF variable.
The subsampled array section is specified by giving a corner, a vector of edge lengths, and a stride vector.
The values are read with the last dimension of the netCDF variable varying fastest.
\param start
Vector specifying the index in the variable where the first of the data values will be read.
The indices are relative to 0, so for example, the first data value of a variable would have index (0, 0, ... , 0).
The length of start must be the same as the number of dimensions of the specified variable.
The elements of start correspond, in order, to the variable's dimensions. Hence, if the variable is a record variable,
the first index would correspond to the starting record number for reading the data values.
\param count
Vector specifying the edge lengths along each dimension of the block of data values to be read.
To read a single value, for example, specify count as (1, 1, ... , 1). The length of count is the number of
dimensions of the specified variable. The elements of count correspond, in order, to the variable's dimensions.
Hence, if the variable is a record variable, the first element of count corresponds to a count of the number of records to read.
Note: setting any element of the count array to zero causes the function to exit without error, and without doing anything.
\param stride
Vector specifying the interval between selected indices. The elements of the stride vector correspond, in order,
to the variable's dimensions. A value of 1 accesses adjacent values of the netCDF variable in the corresponding
dimension; a value of 2 accesses every other value of the netCDF variable in the corresponding dimension; and so
on. A NULL stride argument is treated as (1, 1, ... , 1).
\param dataValues Pointer to the location into which the data value is read. If the type of
data value differs from the netCDF variable type, type conversion will occur.
(However, no type conversion is carried out for variables using the user-defined data types:
nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, long long* dataValues) const;
//////////////////////
// Reads a mapped array section of values from a netCDF variable.
/*!
This is an overloaded member function, provided for convenience.
It differs from the above function in what argument(s) it accepts.
In addition, no data conversion is carried out. This means that
the type of the data in memory must match the type of the variable.
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, void* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, char** dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, char* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, unsigned char* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, signed char* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, short* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, int* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, long* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, float* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, double* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, unsigned short* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, unsigned int* dataValues) const;
/*! \overload
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, unsigned long long* dataValues) const;
/*!
Reads a mapped array section of values from a netCDF variable.
The mapped array section is specified by giving a corner, a vector of edge lengths, a stride vector, and an
index mapping vector. The index mapping vector is a vector of integers that specifies the mapping between the
dimensions of a netCDF variable and the in-memory structure of the internal data array. No assumptions are
made about the ordering or length of the dimensions of the data array.
\param start
Vector specifying the index in the variable where the first of the data values will be read.
The indices are relative to 0, so for example, the first data value of a variable would have index (0, 0, ... , 0).
The length of start must be the same as the number of dimensions of the specified variable.
The elements of start correspond, in order, to the variable's dimensions. Hence, if the variable is a record variable,
the first index would correspond to the starting record number for reading the data values.
\param count
Vector specifying the edge lengths along each dimension of the block of data values to be read.
To read a single value, for example, specify count as (1, 1, ... , 1). The length of count is the number of
dimensions of the specified variable. The elements of count correspond, in order, to the variable's dimensions.
Hence, if the variable is a record variable, the first element of count corresponds to a count of the number of records to read.
Note: setting any element of the count array to zero causes the function to exit without error, and without doing anything.
\param stride
Vector specifying the interval between selected indices. The elements of the stride vector correspond, in order,
to the variable's dimensions. A value of 1 accesses adjacent values of the netCDF variable in the corresponding
dimension; a value of 2 accesses every other value of the netCDF variable in the corresponding dimension; and so
on. A NULL stride argument is treated as (1, 1, ... , 1).
\param imap
Vector of integers that specifies the mapping between the dimensions of a netCDF variable and the in-memory
structure of the internal data array. imap[0] gives the distance between elements of the internal array corresponding
to the most slowly varying dimension of the netCDF variable. imap[n-1] (where n is the rank of the netCDF variable)
gives the distance between elements of the internal array corresponding to the most rapidly varying dimension of the
netCDF variable. Intervening imap elements correspond to other dimensions of the netCDF variable in the obvious way.
Distances between elements are specified in type-independent units of elements (the distance between internal elements
that occupy adjacent memory locations is 1 and not the element's byte-length as in netCDF 2).
\param dataValues Pointer to the location into which the data value is read. If the type of
data value differs from the netCDF variable type, type conversion will occur.
(However, no type conversion is carried out for variables using the user-defined data types:
nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
*/
void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, long long* dataValues) const;
////////////////////
// data writing
////////////////////
// Writes the entire data into the netCDF variable.
/*!
This is an overloaded member function, provided for convenience.
It differs from the above function in what argument(s) it accepts.
In addition, no data conversion is carried out. This means that
the type of the data in memory must match the type of the variable.
*/
void putVar(const void* dataValues) const;
/*! \overload
*/
void putVar(const char** dataValues) const;
/*! \overload
*/
void putVar(const char* dataValues) const;
/*! \overload
*/
void putVar(const unsigned char* dataValues) const;
/*! \overload
*/
void putVar(const signed char* dataValues) const;
/*! \overload
*/
void putVar(const short* dataValues) const;
/*! \overload
*/
void putVar(const int* dataValues) const;
/*! \overload
*/
void putVar(const long* dataValues) const;
/*! \overload
*/
void putVar(const float* dataValues) const;
/*! \overload
*/
void putVar(const double* dataValues) const;
/*! \overload
*/
void putVar(const unsigned short* dataValues) const;
/*! \overload
*/
void putVar(const unsigned int* dataValues) const;
/*! \overload
*/
void putVar(const unsigned long long* dataValues) const;
/*!
Writes the entire data into the netCDF variable.
This is the simplest interface to use for writing a value in a scalar variable
or whenever all the values of a multidimensional variable can all be
written at once. The values to be written are associated with the
netCDF variable by assuming that the last dimension of the netCDF
variable varies fastest in the C interface.
Take care when using the simplest forms of this interface with
record variables when you don't specify how many records are to be
written. If you try to write all the values of a record variable
into a netCDF file that has no record data yet (hence has 0 records),
nothing will be written. Similarly, if you try to write all of a record
variable but there are more records in the file than you assume, more data
may be written to the file than you supply, which may result in a
segmentation violation.
\param dataValues The data values. The order in which the data will be written to the netCDF variable is with the last
dimension of the specified variable varying fastest. If the type of data values differs from the netCDF variable type, type conversion will occur.
(However, no type conversion is carried out for variables using the user-defined data types:
nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
*/
void putVar(const long long* dataValues) const;
/////////////////////////
// Writes a single datum into the netCDF variable.
/*!
This is an overloaded member function, provided for convenience.
It differs from the above function in what argument(s) it accepts.
In addition, no data conversion is carried out. This means that
the type of the data in memory must match the type of the variable.
*/
void putVar(const std::vector<size_t>& index, const void* datumValue) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& index, const char** datumValue) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& index, const std::string& datumValue) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& index, const unsigned char* datumValue) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& index, const signed char* datumValue) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& index, const short datumValue) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& index, const int datumValue) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& index, const long datumValue) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& index, const float datumValue) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& index, const double datumValue) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& index, const unsigned short datumValue) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& index, const unsigned int datumValue) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& index, const unsigned long long datumValue) const;
/*!
Writes a single datum into the netCDF variable.
\param index Vector specifying the index where the data values will be written. The indices are relative to 0, so for example,
the first data value of a two-dimensional variable would have index (0,0). The elements of index must correspond to the variable's dimensions.
Hence, if the variable uses the unlimited dimension, the first index would correspond to the unlimited dimension.
\param datumValue The data value. If the type of data values differs from the netCDF variable type, type conversion will occur.
(However, no type conversion is carried out for variables using the user-defined data types:
nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
*/
void putVar(const std::vector<size_t>& index, const long long datumValue) const;
/////////////////////////
// Writes an array of values into the netCDF variable.
/*!
This is an overloaded member function, provided for convenience.
It differs from the above function in what argument(s) it accepts.
In addition, no data conversion is carried out. This means that
the type of the data in memory must match the type of the variable.
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const void* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const char** dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const char* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const unsigned char* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const signed char* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const short* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const int* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const long* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const float* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const double* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const unsigned short* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const unsigned int* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const unsigned long long* dataValues) const;
/*!
Writes an array of values into the netCDF variable.
The portion of the netCDF variable to write is specified by giving a corner and a vector of edge lengths
that refer to an array section of the netCDF variable. The values to be written are associated with
the netCDF variable by assuming that the last dimension of the netCDF variable varies fastest.
\param startp Vector specifying the index where the first data values will be written. The indices are relative to 0, so for
example, the first data value of a variable would have index (0, 0, ... , 0). The elements of start correspond, in order, to the
variable's dimensions. Hence, if the variable is a record variable, the first index corresponds to the starting record number for writing the data values.
\param countp Vector specifying the number of indices selected along each dimension.
To write a single value, for example, specify count as (1, 1, ... , 1). The elements of
count correspond, in order, to the variable's dimensions. Hence, if the variable is a record
variable, the first element of count corresponds to a count of the number of records to write. Note: setting any element
of the count array to zero causes the function to exit without error, and without doing anything.
\param dataValues The data values. The order in which the data will be written to the netCDF variable is with the last
dimension of the specified variable varying fastest. If the type of data values differs from the netCDF variable
type, type conversion will occur. (However, no type conversion is
carried out for variables using the user-defined data types:
nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const long long* dataValues) const;
////////////////
// Writes a set of subsampled array values into the netCDF variable.
/*!
This is an overloaded member function, provided for convenience.
It differs from the above function in what argument(s) it accepts.
In addition, no data conversion is carried out. This means that
the type of the data in memory must match the type of the variable.
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const void* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const char** dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const char* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const unsigned char* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const signed char* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const short* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const int* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const long* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const float* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const double* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const unsigned short* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const unsigned int* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const unsigned long long* dataValues) const;
/*!
Writes an array of values into the netCDF variable.
The subsampled array section is specified by giving a corner, a vector of counts, and a stride vector.
\param startp Vector specifying the index where the first data values will be written. The indices are relative to 0, so for
example, the first data value of a variable would have index (0, 0, ... , 0). The elements of start correspond, in order, to the
variable's dimensions. Hence, if the variable is a record variable, the first index corresponds to the starting record number for writing the data values.
\param countp Vector specifying the number of indices selected along each dimension.
To write a single value, for example, specify count as (1, 1, ... , 1). The elements of
count correspond, in order, to the variable's dimensions. Hence, if the variable is a record
variable, the first element of count corresponds to a count of the number of records to write. Note: setting any element
of the count array to zero causes the function to exit without error, and without doing anything.
\param stridep A vector of ptrdiff_t integers that specifies the sampling interval along each dimension of the netCDF variable.
The elements of the stride vector correspond, in order, to the netCDF variable's dimensions (stride[0] gives the sampling interval
along the most slowly varying dimension of the netCDF variable). Sampling intervals are specified in type-independent units of
elements (a value of 1 selects consecutive elements of the netCDF variable along the corresponding dimension, a value of 2 selects
every other element, etc.). A NULL stride argument is treated as (1, 1, ... , 1).
\param dataValues The data values. The order in which the data will be written to the netCDF variable is with the last
dimension of the specified variable varying fastest. If the type of data values differs from the netCDF variable type, type conversion will occur.
(However, no type conversion is carried out for variables using the user-defined data types: nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const long long* dataValues) const;
////////////////
// Writes a mapped array section of values into the netCDF variable.
/*!
This is an overloaded member function, provided for convenience.
It differs from the above function in what argument(s) it accepts.
In addition, no data conversion is carried out. This means that
the type of the data in memory must match the type of the variable.
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const void* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const char** dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const char* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const unsigned char* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const signed char* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const short* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const int* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const long* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const float* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const double* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const unsigned short* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const unsigned int* dataValues) const;
/*! \overload
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const unsigned long long* dataValues) const;
/*!
Writes a mapped array section of values into the netCDF variable.
The mapped array section is specified by giving a corner, a vector of counts, a stride vector, and an index mapping vector.
The index mapping vector is a vector of integers that specifies the mapping between the dimensions of a netCDF variable and the in-memory structure of the internal data array.
No assumptions are made about the ordering or length of the dimensions of the data array.
\param countp Vector specifying the number of indices selected along each dimension.
To write a single value, for example, specify count as (1, 1, ... , 1). The elements of
count correspond, in order, to the variable's dimensions. Hence, if the variable is a record
variable, the first element of count corresponds to a count of the number of records to write. Note: setting any element
of the count array to zero causes the function to exit without error, and without doing anything.
\param stridep A vector of ptrdiff_t integers that specifies the sampling interval along each dimension of the netCDF variable.
The elements of the stride vector correspond, in order, to the netCDF variable's dimensions (stride[0] gives the sampling interval
along the most slowly varying dimension of the netCDF variable). Sampling intervals are specified in type-independent units of
elements (a value of 1 selects consecutive elements of the netCDF variable along the corresponding dimension, a value of 2 selects
every other element, etc.). A NULL stride argument is treated as (1, 1, ... , 1).
\param imap Vector specifies the mapping between the dimensions of a netCDF variable and the in-memory structure of the internal data array.
The elements of the index mapping vector correspond, in order, to the netCDF variable's dimensions (imap[0] gives the distance between elements
of the internal array corresponding to the most slowly varying dimension of the netCDF variable). Distances between elements are
specified in type-independent units of elements (the distance between internal elements that occupy adjacent memory locations is
1 and not the element's byte-length as in netCDF 2). A NULL argument means the memory-resident values have the same structure as
the associated netCDF variable.
\param dataValues The data values. The order in which the data will be written to the netCDF variable is with the last
dimension of the specified variable varying fastest. If the type of data values differs from the netCDF variable type, type conversion will occur.
(However, no type conversion is carried out for variables using the user-defined data types: nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
*/
void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const long long* dataValues) const;
private:
bool nullObject;
int myId;
int groupId;
};
}
#endif