ec5b3f9a4f
This is a follow-on to pull request ````https://github.com/Unidata/netcdf-c/pull/1959````, which fixed up type scoping. The primary changes are to _nc\_inq\_dimid()_ and to ncdump. The _nc\_inq\_dimid()_ function is supposed to allow the name to be and FQN, but this apparently never got implemented. So if was modified to support FQNs. The ncdump program is supposed to output fully qualified dimension names in its generated CDL file under certain conditions. Suppose ncdump has a netcdf-4 file F with variable V, and V's parent group is G. For each dimension id D referenced by V, ncdump needs to determine whether to print its name as a simple name or as a fully qualified name (FQN). The algorithm is as follows: 1. Search up the tree of ancestor groups. 2. If one of those ancestor groups contains the dimid, then call it dimgrp. 3. If one of those ancestor groups contains a dim with the same name as the dimid, but with a different dimid, then record that as duplicate=true. 4. If dimgrp is defined and duplicate == false, then we do not need an fqn. 5. If dimgrp is defined and duplicate == true, then we do need an fqn to avoid incorrectly using the duplicate. 6. If dimgrp is undefined, then do a preorder breadth-first search of all the groups looking for the dimid. 7. If found, then use the fqn of the first found such dimension location. 8. If not found, then fail. Test case ncdump/test_scope.sh was modified to test the proper operation of ncdump and _nc\_inq\_dimid()_. Misc. Other Changes: * Fix nc_inq_ncid (NC4_inq_ncid actually) to return root group id if the name argument is NULL. * Modify _ncdump/printfqn_ to print out a dimid FQN; this supports verification that the resulting .nc files were properly created. |
||
---|---|---|
.github | ||
cmake | ||
conda.recipe | ||
ctest_scripts | ||
dap4_test | ||
debug | ||
docs | ||
examples | ||
h5_test | ||
hdf4_test | ||
include | ||
libdap2 | ||
libdap4 | ||
libdispatch | ||
libhdf4 | ||
libhdf5 | ||
liblib | ||
libnczarr | ||
libsrc | ||
libsrc4 | ||
libsrcp | ||
nc_perf | ||
nc_test | ||
nc_test4 | ||
ncdap_test | ||
ncdump | ||
ncgen | ||
ncgen3 | ||
nctest | ||
nczarr_test | ||
NUG | ||
oc2 | ||
plugins | ||
unit_test | ||
.gitignore | ||
acinclude.m4 | ||
appveyor.yml | ||
bootstrap | ||
cmake_uninstall.cmake.in | ||
CMakeInstallation.cmake | ||
CMakeLists.txt | ||
COMPILE.cmake.txt | ||
config.h.cmake.in | ||
config.h.cmake.in.old-works | ||
configure.ac | ||
COPYRIGHT | ||
CTestConfig.cmake.in | ||
CTestCustom.cmake | ||
dods.m4 | ||
FixBundle.cmake.in | ||
INSTALL.md | ||
lib_flags.am | ||
libnetcdf.settings.in | ||
Makefile.am | ||
mclean | ||
nc-config.cmake.in | ||
nc-config.in | ||
netcdf.pc.in | ||
netCDFConfig.cmake.in | ||
PostInstall.cmake | ||
postinstall.sh.in | ||
README.md | ||
RELEASE_NOTES.md | ||
test_common.in | ||
test_prog.c | ||
test-driver-verbose | ||
travis.yml | ||
wjna |
Unidata NetCDF
About
The Unidata network Common Data Form (netCDF) is an interface for scientific data access and a freely-distributed software library that provides an implementation of the interface. The netCDF library also defines a machine-independent format for representing scientific data. Together, the interface, library, and format support the creation, access, and sharing of scientific data. The current netCDF software provides C interfaces for applications and data. Separate software distributions available from Unidata provide Java, Fortran, Python, and C++ interfaces. They have been tested on various common platforms.
Properties
NetCDF files are self-describing, network-transparent, directly
accessible, and extendible. Self-describing
means that a netCDF file
includes information about the data it contains. Network-transparent
means that a netCDF file is represented in a form that can be accessed
by computers with different ways of storing integers, characters, and
floating-point numbers. Direct-access
means that a small subset of a
large dataset may be accessed efficiently, without first reading through
all the preceding data. Extendible
means that data can be appended to
a netCDF dataset without copying it or redefining its structure.
Use
NetCDF is useful for supporting access to diverse kinds of scientific data in heterogeneous networking environments and for writing application software that does not depend on application-specific formats. For information about a variety of analysis and display packages that have been developed to analyze and display data in netCDF form, see
More information
For more information about netCDF, see
Latest releases
You can obtain a copy of the latest released version of netCDF software for various languages:
- C library and utilities
- Fortran
- [Java](https://www.unidata.ucar.edu/downloads/netcdf-java/
- Python
- C++
Copyright
Copyright and licensing information can be found here, as well as in the COPYRIGHT file accompanying the software
Installation
To install the netCDF-C software, please see the file INSTALL in the netCDF-C distribution, or the (usually more up-to-date) document:
Documentation
A language-independent User's Guide for netCDF, and some other language-specific user-level documents are available from:
- Language-independent User's Guide
- NetCDF-C Tutorial
- Fortran-90 User's Guide
- Fortran-77 User's Guide
- netCDF-Java/Common Data Model library
- netCDF4-python
A mailing list, netcdfgroup@unidata.ucar.edu, exists for discussion of the netCDF interface and announcements about netCDF bugs, fixes, and enhancements. For information about how to subscribe, see the URL
Feedback
We appreciate feedback from users of this package. Please send comments, suggestions, and bug reports to support-netcdf@unidata.ucar.edu.