netcdf-c/ncgen/genlib.c
Dennis Heimbigner 59e04ae071 This PR adds EXPERIMENTAL support for accessing data in the
cloud using a variant of the Zarr protocol and storage
format. This enhancement is generically referred to as "NCZarr".

The data model supported by NCZarr is netcdf-4 minus the user-defined
types and the String type. In this sense it is similar to the CDF-5
data model.

More detailed information about enabling and using NCZarr is
described in the document NUG/nczarr.md and in a
[Unidata Developer's blog entry](https://www.unidata.ucar.edu/blogs/developer/en/entry/overview-of-zarr-support-in).

WARNING: this code has had limited testing, so do use this version
for production work. Also, performance improvements are ongoing.
Note especially the following platform matrix of successful tests:

Platform | Build System | S3 support
------------------------------------
Linux+gcc      | Automake     | yes
Linux+gcc      | CMake        | yes
Visual Studio  | CMake        | no

Additionally, and as a consequence of the addition of NCZarr,
major changes have been made to the Filter API. NOTE: NCZarr
does not yet support filters, but these changes are enablers for
that support in the future.  Note that it is possible
(probable?) that there will be some accidental reversions if the
changes here did not correctly mimic the existing filter testing.

In any case, previously filter ids and parameters were of type
unsigned int. In order to support the more general zarr filter
model, this was all converted to char*.  The old HDF5-specific,
unsigned int operations are still supported but they are
wrappers around the new, char* based nc_filterx_XXX functions.
This entailed at least the following changes:
1. Added the files libdispatch/dfilterx.c and include/ncfilter.h
2. Some filterx utilities have been moved to libdispatch/daux.c
3. A new entry, "filter_actions" was added to the NCDispatch table
   and the version bumped.
4. An overly complex set of structs was created to support funnelling
   all of the filterx operations thru a single dispatch
   "filter_actions" entry.
5. Move common code to from libhdf5 to libsrc4 so that it is accessible
   to nczarr.

Changes directly related to Zarr:
1. Modified CMakeList.txt and configure.ac to support both C and C++
   -- this is in support of S3 support via the awd-sdk libraries.
2. Define a size64_t type to support nczarr.
3. More reworking of libdispatch/dinfermodel.c to
   support zarr and to regularize the structure of the fragments
   section of a URL.

Changes not directly related to Zarr:
1. Make client-side filter registration be conditional, with default off.
2. Hack include/nc4internal.h to make some flags added by Ed be unique:
   e.g. NC_CREAT, NC_INDEF, etc.
3. cleanup include/nchttp.h and libdispatch/dhttp.c.
4. Misc. changes to support compiling under Visual Studio including:
   * Better testing under windows for dirent.h and opendir and closedir.
5. Misc. changes to the oc2 code to support various libcurl CURLOPT flags
   and to centralize error reporting.
6. By default, suppress the vlen tests that have unfixed memory leaks; add option to enable them.
7. Make part of the nc_test/test_byterange.sh test be contingent on remotetest.unidata.ucar.edu being accessible.

Changes Left TO-DO:
1. fix provenance code, it is too HDF5 specific.
2020-06-28 18:02:47 -06:00

159 lines
3.5 KiB
C

/*********************************************************************
* Copyright 2018, UCAR/Unidata
* See netcdf/COPYRIGHT file for copying and redistribution conditions.
* $Header: /upc/share/CVS/netcdf-3/ncgen/genlib.c,v 1.57 2010/04/04 19:39:47 dmh Exp $
*********************************************************************/
#include "includes.h"
/* invoke netcdf calls (or generate C or Fortran code) to create netcdf
* from in-memory structure.
*/
void
define_netcdf(void)
{
/* Execute exactly one of these */
#ifdef ENABLE_C
if (l_flag == L_C) genc_netcdf(); else /* create C code to create netcdf */
#endif
#ifdef ENABLE_F77
if (l_flag == L_F77) genf77_netcdf(); else /* create Fortran code */
#endif
#ifdef ENABLE_JAVA
if(l_flag == L_JAVA) genjava_netcdf(); else
#endif
/* Binary is the default */
#ifdef ENABLE_BINARY
genbin_netcdf(); /* create netcdf */
#else
derror("No language specified");
#endif
close_netcdf();
cleanup();
}
void
close_netcdf(void)
{
#ifdef ENABLE_C
if (l_flag == L_C) genc_close(); else /* create C code to close netcdf */
#endif
#ifdef ENABLE_F77
if (l_flag == L_F77) genf77_close(); else
#endif
#ifdef ENABLE_JAVA
if (l_flag == L_JAVA) genjava_close(); else
#endif
#ifdef ENABLE_BINARY
if (l_flag == L_BINARY) genbin_close();
#endif
}
/**
Return a string representing
the fully qualified name of the symbol.
Symbol must be top level
Caller must free.
*/
void
topfqn(Symbol* sym)
{
#ifdef USE_NETCDF4
char* fqn;
char* fqnname;
char* parentfqn;
Symbol* parent;
#endif
if(sym->fqn != NULL)
return; /* already defined */
#ifdef USE_NETCDF4
if(!usingclassic) {
parent = sym->container;
/* Recursively compute parent fqn */
if(parent == NULL) { /* implies this is the rootgroup */
assert(sym->grp.is_root);
sym->fqn = estrdup("");
return;
} else if(parent->fqn == NULL) {
topfqn(parent);
}
parentfqn = parent->fqn;
fqnname = fqnescape(sym->name);
fqn = (char*)ecalloc(strlen(fqnname) + strlen(parentfqn) + 1 + 1);
strcpy(fqn,parentfqn);
strcat(fqn,"/");
strcat(fqn,fqnname);
sym->fqn = fqn;
} else
#endif /*USE_NETCDF4*/
{
sym->fqn = strdup(sym->name);
}
}
/**
Return a string representing
the fully qualified name of a nested symbol
(i.e. field or econst).
Caller must free.
*/
void
nestedfqn(Symbol* sym)
{
char* fqn;
char* fqnname;
Symbol* parent;
if(sym->fqn != NULL)
return; /* already defined */
/* Parent must be a type */
parent = sym->container;
assert (parent->objectclass == NC_TYPE);
assert(parent->fqn != NULL);
fqnname = fqnescape(sym->name);
fqn = (char*)ecalloc(strlen(fqnname) + strlen(parent->fqn) + 1 + 1);
strcpy(fqn,parent->fqn);
strcat(fqn,".");
strcat(fqn,fqnname);
sym->fqn = fqn;
}
/**
Return a string representing
the fully qualified name of an attribute.
Caller must free.
*/
void
attfqn(Symbol* sym)
{
char* fqn;
char* fqnname;
char* parentfqn;
Symbol* parent;
if(sym->fqn != NULL)
return; /* already defined */
assert (sym->objectclass == NC_ATT);
parent = sym->container;
if(parent == NULL)
parentfqn = "";
else
parentfqn = parent->fqn;
fqnname = fqnescape(sym->name);
fqn = (char*)ecalloc(strlen(fqnname) + strlen(parentfqn) + 1 + 1);
strcpy(fqn,parentfqn);
strcat(fqn,"_");
strcat(fqn,fqnname);
sym->fqn = fqn;
}