netcdf-c/nc_test4/tst_simplerw_coll_r.c
2018-01-16 14:57:40 -07:00

417 lines
17 KiB
C

/* Copyright 2007-2011, UCAR/Unidata. See COPYRIGHT file for copying
* and redistribution conditions.
*
* This is part of the netCDF package.
*
* This test is for parallel IO and the collective access of metadata
* with HDF5.
*
* Ward Fisher, Ed Hartnett
*/
#include "config.h"
#include "nc_tests.h"
#include "err_macros.h"
#define TEST_NAME "tst_parallel4_simplerw_coll"
#define NDIMS 3
#define DIMSIZE 16
#define NUM_SLABS 16
#define DIM1_NAME "slab"
#define DIM2_NAME "x"
#define DIM3_NAME "y"
#define VAR_NAME "Bond_James_Bond"
#define NUM_FILL_TEST_RUNS 3
int
main(int argc, char **argv)
{
int mpi_namelen;
char mpi_name[MPI_MAX_PROCESSOR_NAME];
int mpi_size, mpi_rank;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;
double start_time = 0, total_time;
int mpi_size_in;
#define NUM_TEST_TYPES 11
nc_type test_type[NUM_TEST_TYPES] = {NC_BYTE, NC_CHAR, NC_SHORT, NC_INT, NC_FLOAT, NC_DOUBLE,
NC_UBYTE, NC_USHORT, NC_UINT, NC_INT64, NC_UINT64};
int tt, fv;
int j, i, k, ret;
/* Initialize MPI. */
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Get_processor_name(mpi_name, &mpi_namelen);
/* Must be able to evenly divide my slabs between processors. */
if (NUM_SLABS % mpi_size)
{
if (!mpi_rank)
printf("NUM_SLABS (%d) is not evenly divisible by mpi_size(%d)\n",
NUM_SLABS, mpi_size);
ERR;
}
if (!mpi_rank)
printf("\n*** Testing parallel I/O some more.\n");
/* Test for different fill value settings. */
for (fv = 0; fv < NUM_FILL_TEST_RUNS; fv++)
{
/* Test for different netCDF types. */
for (tt = 0; tt < NUM_TEST_TYPES; tt++)
{
char file_name[NC_MAX_NAME + 1];
int fill_mode_in;
void *data, *data_in;
void *fill_value, *fill_value_in;
size_t type_size;
size_t write_start[NDIMS] = {0, 0, 1};
size_t write_count[NDIMS] = {1, DIMSIZE, DIMSIZE - 1};
size_t read_start[NDIMS] = {0, 0, 0};
size_t read_count[NDIMS] = {1, DIMSIZE, DIMSIZE};
int ncid, varid, dimids[NDIMS];
int ndims_in, nvars_in, natts_in, unlimdimid_in;
/* Fill values to be expected. */
signed char byte_expected_fill_value;
unsigned char char_expected_fill_value;
short short_expected_fill_value;
int int_expected_fill_value;
float float_expected_fill_value;
double double_expected_fill_value;
unsigned char ubyte_expected_fill_value;
unsigned short ushort_expected_fill_value;
unsigned int uint_expected_fill_value;
long long int int64_expected_fill_value;
unsigned long long int uint64_expected_fill_value;
/* Fill values used when writing. */
signed char byte_fill_value = -TEST_VAL_42;
unsigned char char_fill_value = 'x';
short short_fill_value = TEST_VAL_42 * 100;
int int_fill_value = TEST_VAL_42 * 1000;
float float_fill_value = TEST_VAL_42 * 1000;
double double_fill_value = TEST_VAL_42 * 1000;
unsigned char ubyte_fill_value = TEST_VAL_42;
unsigned short ushort_fill_value = TEST_VAL_42 * 100;
unsigned int uint_fill_value = TEST_VAL_42 * 1000;
long long int int64_fill_value = TEST_VAL_42 * 1000;
unsigned long long int uint64_fill_value = TEST_VAL_42 * 1000;
/* Fill values read in. */
signed char byte_fill_value_in;
unsigned char char_fill_value_in;
short short_fill_value_in;
int int_fill_value_in;
float float_fill_value_in;
double double_fill_value_in;
unsigned char ubyte_fill_value_in;
unsigned short ushort_fill_value_in;
unsigned int uint_fill_value_in;
long long int int64_fill_value_in;
unsigned long long int uint64_fill_value_in;
/* Data to write and read. */
signed char byte_data[DIMSIZE * DIMSIZE], byte_data_in[DIMSIZE * DIMSIZE];
unsigned char char_data[DIMSIZE * DIMSIZE], char_data_in[DIMSIZE * DIMSIZE];
short short_data[DIMSIZE * DIMSIZE], short_data_in[DIMSIZE * DIMSIZE];
int int_data[DIMSIZE * DIMSIZE], int_data_in[DIMSIZE * DIMSIZE];
float float_data[DIMSIZE * DIMSIZE], float_data_in[DIMSIZE * DIMSIZE];
double double_data[DIMSIZE * DIMSIZE], double_data_in[DIMSIZE * DIMSIZE];
unsigned char ubyte_data[DIMSIZE * DIMSIZE], ubyte_data_in[DIMSIZE * DIMSIZE];
unsigned short ushort_data[DIMSIZE * DIMSIZE], ushort_data_in[DIMSIZE * DIMSIZE];
unsigned int uint_data[DIMSIZE * DIMSIZE], uint_data_in[DIMSIZE * DIMSIZE];
long long int int64_data[DIMSIZE * DIMSIZE], int64_data_in[DIMSIZE * DIMSIZE];
unsigned long long int uint64_data[DIMSIZE * DIMSIZE], uint64_data_in[DIMSIZE * DIMSIZE];
if (!mpi_rank)
printf("*** writing a %d x %d x %d file from %d processors for fill value test %d type %d...\n",
NUM_SLABS, DIMSIZE, DIMSIZE, mpi_size, fv, test_type[tt]);
/* Initialize test data. */
switch(test_type[tt])
{
case NC_BYTE:
for (i = 0; i < DIMSIZE * DIMSIZE; i++)
byte_data[i] = mpi_rank;
data = byte_data;
data_in = byte_data_in;
byte_expected_fill_value = fv ? byte_fill_value : NC_FILL_BYTE;
fill_value = &byte_expected_fill_value;
fill_value_in = &byte_fill_value_in;
break;
case NC_CHAR:
for (i = 0; i < DIMSIZE * DIMSIZE; i++)
char_data[i] = mpi_rank;
data = char_data;
data_in = char_data_in;
char_expected_fill_value = fv ? char_fill_value : NC_FILL_CHAR;
fill_value = &char_expected_fill_value;
fill_value_in = &char_fill_value_in;
break;
case NC_SHORT:
for (i = 0; i < DIMSIZE * DIMSIZE; i++)
short_data[i] = mpi_rank;
data = short_data;
data_in = short_data_in;
short_expected_fill_value = fv ? short_fill_value : NC_FILL_SHORT;
fill_value = &short_expected_fill_value;
fill_value_in = &short_fill_value_in;
break;
case NC_INT:
for (i = 0; i < DIMSIZE * DIMSIZE; i++)
int_data[i] = mpi_rank;
data = int_data;
data_in = int_data_in;
int_expected_fill_value = fv ? int_fill_value : NC_FILL_INT;
fill_value = &int_expected_fill_value;
fill_value_in = &int_fill_value_in;
break;
case NC_FLOAT:
for (i = 0; i < DIMSIZE * DIMSIZE; i++)
float_data[i] = mpi_rank;
data = float_data;
data_in = float_data_in;
float_expected_fill_value = fv ? float_fill_value : NC_FILL_FLOAT;
fill_value = &float_expected_fill_value;
fill_value_in = &float_fill_value_in;
break;
case NC_DOUBLE:
for (i = 0; i < DIMSIZE * DIMSIZE; i++)
double_data[i] = mpi_rank;
data = double_data;
data_in = double_data_in;
double_expected_fill_value = fv ? double_fill_value : NC_FILL_DOUBLE;
fill_value = &double_expected_fill_value;
fill_value_in = &double_fill_value_in;
break;
case NC_UBYTE:
for (i = 0; i < DIMSIZE * DIMSIZE; i++)
ubyte_data[i] = mpi_rank;
data = ubyte_data;
data_in = ubyte_data_in;
ubyte_expected_fill_value = fv ? ubyte_fill_value : NC_FILL_UBYTE;
fill_value = &ubyte_expected_fill_value;
fill_value_in = &ubyte_fill_value_in;
break;
case NC_USHORT:
for (i = 0; i < DIMSIZE * DIMSIZE; i++)
ushort_data[i] = mpi_rank;
data = ushort_data;
data_in = ushort_data_in;
ushort_expected_fill_value = fv ? ushort_fill_value : NC_FILL_USHORT;
fill_value = &ushort_expected_fill_value;
fill_value_in = &ushort_fill_value_in;
break;
case NC_UINT:
for (i = 0; i < DIMSIZE * DIMSIZE; i++)
uint_data[i] = mpi_rank;
data = uint_data;
data_in = uint_data_in;
uint_expected_fill_value = fv ? uint_fill_value : NC_FILL_UINT;
fill_value = &uint_expected_fill_value;
fill_value_in = &uint_fill_value_in;
break;
case NC_INT64:
for (i = 0; i < DIMSIZE * DIMSIZE; i++)
int64_data[i] = mpi_rank;
data = int64_data;
data_in = int64_data_in;
int64_expected_fill_value = fv ? int64_fill_value : NC_FILL_INT64;
fill_value = &int64_expected_fill_value;
fill_value_in = &int64_fill_value_in;
break;
case NC_UINT64:
for (i = 0; i < DIMSIZE * DIMSIZE; i++)
uint64_data[i] = mpi_rank;
data = uint64_data;
data_in = uint64_data_in;
uint64_expected_fill_value = fv ? uint64_fill_value : NC_FILL_UINT64;
fill_value = &uint64_expected_fill_value;
fill_value_in = &uint64_fill_value_in;
break;
}
/* Create a file name. */
sprintf(file_name, "%s_type_%d_fv_%d.nc", TEST_NAME, test_type[tt], fv);
/* Create a parallel netcdf-4 file. */
if (nc_create_par(file_name, NC_NETCDF4|NC_MPIIO, comm, info, &ncid)) ERR;
/* Get the type len. */
if (nc_inq_type(ncid, test_type[tt], NULL, &type_size)) ERR;
/* A global attribute holds the number of processors that created
* the file. */
if (nc_put_att_int(ncid, NC_GLOBAL, "num_processors", NC_INT, 1, &mpi_size)) ERR;
/* Create three dimensions. */
if (nc_def_dim(ncid, DIM1_NAME, NUM_SLABS, dimids)) ERR;
if (nc_def_dim(ncid, DIM2_NAME, DIMSIZE, &dimids[1])) ERR;
if (nc_def_dim(ncid, DIM3_NAME, DIMSIZE, &dimids[2])) ERR;
/* Create one var. */
if (nc_def_var(ncid, VAR_NAME, test_type[tt], NDIMS, dimids, &varid)) ERR;
if (nc_put_att_int(ncid, varid, "var_num_processors", NC_INT, 1, &mpi_size)) ERR;
if (fv == 1)
{
if (nc_def_var_fill(ncid, varid, NC_FILL, fill_value)) ERR;
if (nc_inq_var_fill(ncid, varid, &fill_mode_in, fill_value_in)) ERR;
if (fill_mode_in != NC_FILL) ERR;
if (memcmp(fill_value_in, fill_value, type_size)) ERR;
}
else if (fv == 2)
{
if (nc_def_var_fill(ncid, varid, NC_NOFILL, NULL)) ERR;
if (nc_inq_var_fill(ncid, varid, &fill_mode_in, NULL)) ERR;
if (!fill_mode_in) ERR; /* nofill will be true */
}
/* Write metadata to file. */
if (nc_enddef(ncid)) ERR;
/* Change access mode to collective, then back to independent. */
if (nc_var_par_access(ncid, varid, NC_COLLECTIVE)) ERR;
if (nc_var_par_access(ncid, varid, NC_INDEPENDENT)) ERR;
if (!mpi_rank)
start_time = MPI_Wtime();
/* Write all the slabs this process is responsible for. */
for (i = 0; i < NUM_SLABS / mpi_size; i++)
{
write_start[0] = NUM_SLABS / mpi_size * mpi_rank + i;
/* Write one slab of data. Due to start/count settings,
* every 16th value will be a fill value. */
if (nc_put_vara(ncid, varid, write_start, write_count, data)) ERR;
}
/* On rank 0, keep track of time. */
if (!mpi_rank)
{
total_time = MPI_Wtime() - start_time;
printf("%d\t%g\t%g\n", mpi_size, total_time, DIMSIZE * DIMSIZE * NUM_SLABS *
sizeof(int) / total_time);
}
/* Close the netcdf file. */
if (nc_close(ncid)) ERR;
/* Reopen the file and check it. */
if ((ret = nc_open_par(file_name, NC_NOWRITE|NC_MPIIO, comm, info, &ncid))) ERR;
if (nc_inq(ncid, &ndims_in, &nvars_in, &natts_in, &unlimdimid_in)) ERR;
if (ndims_in != NDIMS || nvars_in != 1 || natts_in != 1 ||
unlimdimid_in != -1) ERR;
/* Check the attributes. */
if (nc_get_att_int(ncid, NC_GLOBAL, "num_processors", &mpi_size_in)) ERR;
if (mpi_size_in != mpi_size) ERR;
if (nc_get_att_int(ncid, 0, "var_num_processors", &mpi_size_in)) ERR;
if (mpi_size_in != mpi_size) ERR;
if (fv == 1)
{
if (nc_inq_var_fill(ncid, varid, &fill_mode_in, fill_value_in)) ERR;
if (fill_mode_in != NC_FILL) ERR;
if (memcmp(fill_value_in, fill_value, type_size)) ERR;
}
/* Read all the slabs this process is responsible for. */
for (i = 0; i < NUM_SLABS / mpi_size; i++)
{
read_start[0] = NUM_SLABS / mpi_size * mpi_rank + i;
/* printf("mpi_rank %d i %d read_start[0] %ld\n", mpi_rank, i, read_start[0]); */
/* Read one slab of data. */
if (nc_get_vara(ncid, varid, read_start, read_count, data_in)) ERR;
/* Check data. For the third fill value test, fill is
* turned off. So don't bother testing the values where k
* is zero. */
/* printf("mpi_rank %d fv %d i %d j %d k %d int_data_in[j * k] %d int_expected_fill_value %d " */
/* "expected_value %d\n", mpi_rank, fv, i, j, k, int_data_in[j * k], */
/* int_expected_fill_value, expected_value); */
switch (test_type[tt])
{
case NC_BYTE:
for (j = 0; j < DIMSIZE; j++)
for (k = 0; k < DIMSIZE; k++)
if (fv < 2 || k)
if (byte_data_in[j * DIMSIZE + k] != (signed char)(k ? mpi_rank : byte_expected_fill_value)) ERR;
break;
case NC_SHORT:
for (j = 0; j < DIMSIZE; j++)
for (k = 0; k < DIMSIZE; k++)
if (fv < 2 || k)
if (short_data_in[j * DIMSIZE + k] != (short)(k ? mpi_rank : short_expected_fill_value)) ERR;
break;
case NC_INT:
for (j = 0; j < DIMSIZE; j++)
for (k = 0; k < DIMSIZE; k++)
if (fv < 2 || k)
if (int_data_in[j * DIMSIZE + k] != (int)(k ? mpi_rank : int_expected_fill_value)) ERR;
break;
case NC_FLOAT:
for (j = 0; j < DIMSIZE; j++)
for (k = 0; k < DIMSIZE; k++)
if (fv < 2 || k)
if (float_data_in[j * DIMSIZE + k] != (float)(k ? mpi_rank : float_expected_fill_value)) ERR;
break;
case NC_DOUBLE:
for (j = 0; j < DIMSIZE; j++)
for (k = 0; k < DIMSIZE; k++)
if (fv < 2 || k)
if (double_data_in[j * DIMSIZE + k] != (double)(k ? mpi_rank : double_expected_fill_value)) ERR;
break;
case NC_UBYTE:
for (j = 0; j < DIMSIZE; j++)
for (k = 0; k < DIMSIZE; k++)
if (fv < 2 || k)
if (ubyte_data_in[j * DIMSIZE + k] != (unsigned char)(k ? mpi_rank : ubyte_expected_fill_value)) ERR;
break;
case NC_USHORT:
for (j = 0; j < DIMSIZE; j++)
for (k = 0; k < DIMSIZE; k++)
if (fv < 2 || k)
if (ushort_data_in[j * DIMSIZE + k] != (unsigned short)(k ? mpi_rank : ushort_expected_fill_value)) ERR;
break;
case NC_UINT:
for (j = 0; j < DIMSIZE; j++)
for (k = 0; k < DIMSIZE; k++)
if (fv < 2 || k)
if (uint_data_in[j * DIMSIZE + k] != (unsigned int)(k ? mpi_rank : uint_expected_fill_value)) ERR;
break;
case NC_INT64:
for (j = 0; j < DIMSIZE; j++)
for (k = 0; k < DIMSIZE; k++)
if (fv < 2 || k)
if (int64_data_in[j * DIMSIZE + k] != (long long int)(k ? mpi_rank : int64_expected_fill_value)) ERR;
break;
case NC_UINT64:
for (j = 0; j < DIMSIZE; j++)
for (k = 0; k < DIMSIZE; k++)
if (fv < 2 || k)
if (uint64_data_in[j * DIMSIZE + k] != (unsigned long long int)(k ? mpi_rank : uint64_expected_fill_value)) ERR;
break;
}
} /* next slab */
/* Close the netcdf file. */
if (nc_close(ncid)) ERR;
if (!mpi_rank)
SUMMARIZE_ERR;
} /* next test type */
} /* next fill value test run */
/* Shut down MPI. */
MPI_Finalize();
if (!mpi_rank)
FINAL_RESULTS;
return 0;
}