netcdf-c/ncgen/semantics.c
2012-01-09 18:39:37 +00:00

1340 lines
41 KiB
C

/*********************************************************************
* Copyright 2009, UCAR/Unidata
* See netcdf/COPYRIGHT file for copying and redistribution conditions.
*********************************************************************/
/* $Id: semantics.c,v 1.4 2010/05/24 19:59:58 dmh Exp $ */
/* $Header: /upc/share/CVS/netcdf-3/ncgen/semantics.c,v 1.4 2010/05/24 19:59:58 dmh Exp $ */
#include "includes.h"
#include "dump.h"
#include "offsets.h"
/* Forward*/
static void filltypecodes(void);
static void processenums(void);
static void processtypes(void);
static void processtypesizes(void);
static void processvars(void);
static void processattributes(void);
static void processspecials(void);
static void processdatalists(void);
static void processdatalist(Symbol*);
static void inferattributetype(Symbol* asym);
static void checkconsistency(void);
static void validate(void);
static int tagvlentypes(Symbol* tsym);
static void walkdata(Symbol*);
static void walkarray(Symbol*, Datasrc*, int, Datalist*);
static void walktype(Symbol*, Datasrc*, Datalist*);
static void walkfieldarray(Symbol*, Datasrc*, Dimset*, int);
static void walkchararray(Symbol*,Datalist*);
static void walkchararrayr(Dimset* dimset, Datalist** datap, int lastunlim, int index, int fillchar);
static void walkcharfieldarray(Constant*, Dimset*, Datalist*);
static void walkcharvlen(Constant*);
static Symbol* uniquetreelocate(Symbol* refsym, Symbol* root);
List* vlenconstants; /* List<Constant*>;*/
/* ptr to vlen instances across all datalists*/
/* Post-parse semantic checks and actions*/
void
processsemantics(void)
{
/* Process each type and sort by dependency order*/
processtypes();
/* Make sure all typecodes are set if basetype is set*/
filltypecodes();
/* Process each type to compute its size*/
processtypesizes();
/* Process each var to fill in missing fields, etc*/
processvars();
/* If we are not allowing certain special attributes,
but they were defined, convert them back to attributes
*/
processspecials();
/* Process attributes to connect to corresponding variable*/
processattributes();
/* Fix up enum constant values*/
processenums();
/* Fix up datalists*/
processdatalists();
/* check internal consistency*/
checkconsistency();
/* do any needed additional semantic checks*/
validate();
}
/*
Given a reference symbol, produce the corresponding
definition symbol; return NULL if there is no definition
Note that this is somewhat complicated to conform to
various scoping rules, namely:
1. look into parent hierarchy for un-prefixed dimension names.
2. look in whole group tree for un-prefixed type names;
search is depth first. MODIFIED 5/26/2009: Search is as follows:
a. search parent hierarchy for matching type names.
b. search whole tree for unique matching type name
c. complain and require prefixed name.
3. look in the same group as ref for un-prefixed variable names.
4. ditto for group references
5. look in whole group tree for un-prefixed enum constants
*/
Symbol*
locate(Symbol* refsym)
{
Symbol* sym = NULL;
switch (refsym->objectclass) {
case NC_DIM:
if(refsym->is_prefixed) {
/* locate exact dimension specified*/
sym = lookup(NC_DIM,refsym);
} else { /* Search for matching dimension in all parent groups*/
Symbol* parent = lookupgroup(refsym->prefix);/*get group for refsym*/
while(parent != NULL) {
/* search this parent for matching name and type*/
sym = lookupingroup(NC_DIM,refsym->name,parent);
if(sym != NULL) break;
parent = parent->container;
}
}
break;
case NC_TYPE:
if(refsym->is_prefixed) {
/* locate exact type specified*/
sym = lookup(NC_TYPE,refsym);
} else {
Symbol* parent;
int i; /* Search for matching type in all groups (except...)*/
/* Short circuit test for primitive types*/
for(i=NC_NAT;i<=NC_STRING;i++) {
Symbol* prim = basetypefor(i);
if(prim == NULL) continue;
if(strcmp(refsym->name,prim->name)==0) {
sym = prim;
break;
}
}
if(sym == NULL) {
/* Added 5/26/09: look in parent hierarchy first */
parent = lookupgroup(refsym->prefix);/*get group for refsym*/
while(parent != NULL) {
/* search this parent for matching name and type*/
sym = lookupingroup(NC_TYPE,refsym->name,parent);
if(sym != NULL) break;
parent = parent->container;
}
}
if(sym == NULL) {
sym = uniquetreelocate(refsym,rootgroup); /* want unique */
}
}
break;
case NC_VAR:
if(refsym->is_prefixed) {
/* locate exact variable specified*/
sym = lookup(NC_VAR,refsym);
} else {
Symbol* parent = lookupgroup(refsym->prefix);/*get group for refsym*/
/* search this parent for matching name and type*/
sym = lookupingroup(NC_VAR,refsym->name,parent);
}
break;
case NC_GRP:
if(refsym->is_prefixed) {
/* locate exact group specified*/
sym = lookup(NC_GRP,refsym);
} else {
Symbol* parent = lookupgroup(refsym->prefix);/*get group for refsym*/
/* search this parent for matching name and type*/
sym = lookupingroup(NC_GRP,refsym->name,parent);
}
break;
default: PANIC1("locate: bad refsym type: %d",refsym->objectclass);
}
if(debug > 1) {
char* ncname;
if(refsym->objectclass == NC_TYPE)
ncname = ncclassname(refsym->subclass);
else
ncname = ncclassname(refsym->objectclass);
fdebug("locate: %s: %s -> %s\n",
ncname,fullname(refsym),(sym?fullname(sym):"NULL"));
}
return sym;
}
/*
Search for an object in all groups using preorder depth-first traversal.
Return NULL if symbol is not unique or not found at all.
*/
static Symbol*
uniquetreelocate(Symbol* refsym, Symbol* root)
{
int i;
Symbol* sym = NULL;
/* search the root for matching name and major type*/
sym = lookupingroup(refsym->objectclass,refsym->name,root);
if(sym == NULL) {
for(i=0;i<listlength(root->subnodes);i++) {
Symbol* grp = (Symbol*)listget(root->subnodes,i);
if(grp->objectclass == NC_GRP && !grp->is_ref) {
Symbol* nextsym = uniquetreelocate(refsym,grp);
if(nextsym != NULL) {
if(sym != NULL) return NULL; /* not unique */
sym = nextsym;
}
}
}
}
return sym;
}
/* 1. Do a topological sort of the types based on dependency*/
/* so that the least dependent are first in the typdefs list*/
/* 2. fill in type typecodes*/
/* 3. mark types that use vlen*/
static void
processtypes(void)
{
int i,j,keep,added;
List* sorted = listnew(); /* hold re-ordered type set*/
/* Prime the walk by capturing the set*/
/* of types that are dependent on primitive types*/
/* e.g. uint vlen(*) or primitive types*/
for(i=0;i<listlength(typdefs);i++) {
Symbol* sym = (Symbol*)listget(typdefs,i);
keep=0;
switch (sym->subclass) {
case NC_PRIM: /*ignore pre-defined primitive types*/
sym->touched=1;
break;
case NC_OPAQUE:
case NC_ENUM:
keep=1;
break;
case NC_VLEN: /* keep if its basetype is primitive*/
if(sym->typ.basetype->subclass == NC_PRIM) keep=1;
break;
case NC_COMPOUND: /* keep if all fields are primitive*/
keep=1; /*assume all fields are primitive*/
for(j=0;j<listlength(sym->subnodes);j++) {
Symbol* field = (Symbol*)listget(sym->subnodes,j);
ASSERT(field->subclass == NC_FIELD);
if(field->typ.basetype->subclass != NC_PRIM) {keep=0;break;}
}
break;
default: break;/* ignore*/
}
if(keep) {
sym->touched = 1;
listpush(sorted,(elem_t)sym);
}
}
/* 2. repeated walk to collect level i types*/
do {
added=0;
for(i=0;i<listlength(typdefs);i++) {
Symbol* sym = (Symbol*)listget(typdefs,i);
if(sym->touched) continue; /* ignore already processed types*/
keep=0; /* assume not addable yet.*/
switch (sym->subclass) {
case NC_PRIM:
case NC_OPAQUE:
case NC_ENUM:
PANIC("type re-touched"); /* should never happen*/
break;
case NC_VLEN: /* keep if its basetype is already processed*/
if(sym->typ.basetype->touched) keep=1;
break;
case NC_COMPOUND: /* keep if all fields are processed*/
keep=1; /*assume all fields are touched*/
for(j=0;j<listlength(sym->subnodes);j++) {
Symbol* field = (Symbol*)listget(sym->subnodes,j);
ASSERT(field->subclass == NC_FIELD);
if(!field->typ.basetype->touched) {keep=1;break;}
}
break;
default: break;
}
if(keep) {
listpush(sorted,(elem_t)sym);
sym->touched = 1;
added++;
}
}
} while(added > 0);
/* Any untouched type => circular dependency*/
for(i=0;i<listlength(typdefs);i++) {
Symbol* tsym = (Symbol*)listget(typdefs,i);
if(tsym->touched) continue;
semerror(tsym->lineno,"Circular type dependency for type: %s",fullname(tsym));
}
listfree(typdefs);
typdefs = sorted;
/* fill in type typecodes*/
for(i=0;i<listlength(typdefs);i++) {
Symbol* sym = (Symbol*)listget(typdefs,i);
if(sym->typ.basetype != NULL && sym->typ.typecode == NC_NAT)
sym->typ.typecode = sym->typ.basetype->typ.typecode;
}
/* Identify types containing vlens */
for(i=0;i<listlength(typdefs);i++) {
Symbol* tsym = (Symbol*)listget(typdefs,i);
tagvlentypes(tsym);
}
}
/* Recursively check for vlens*/
static int
tagvlentypes(Symbol* tsym)
{
int tagged = 0;
int j;
switch (tsym->subclass) {
case NC_VLEN:
tagged = 1;
tagvlentypes(tsym->typ.basetype);
break;
case NC_COMPOUND: /* keep if all fields are primitive*/
for(j=0;j<listlength(tsym->subnodes);j++) {
Symbol* field = (Symbol*)listget(tsym->subnodes,j);
ASSERT(field->subclass == NC_FIELD);
if(tagvlentypes(field->typ.basetype)) tagged = 1;
}
break;
default: break;/* ignore*/
}
if(tagged) tsym->typ.hasvlen = 1;
return tagged;
}
/* Make sure all typecodes are set if basetype is set*/
static void
filltypecodes(void)
{
Symbol* sym;
for(sym=symlist;sym != NULL;sym = sym->next) {
if(sym->typ.basetype != NULL && sym->typ.typecode == NC_NAT)
sym->typ.typecode = sym->typ.basetype->typ.typecode;
}
}
static void
processenums(void)
{
int i,j;
List* enumids = listnew();
for(i=0;i<listlength(typdefs);i++) {
Symbol* sym = (Symbol*)listget(typdefs,i);
ASSERT(sym->objectclass == NC_TYPE);
if(sym->subclass != NC_ENUM) continue;
for(j=0;j<listlength(sym->subnodes);j++) {
Symbol* esym = (Symbol*)listget(sym->subnodes,j);
ASSERT(esym->subclass == NC_ECONST);
listpush(enumids,(elem_t)esym);
}
}
/* Now walk set of enum ids to look for duplicates with same prefix*/
for(i=0;i<listlength(enumids);i++) {
Symbol* sym1 = (Symbol*)listget(enumids,i);
for(j=i+1;j<listlength(enumids);j++) {
Symbol* sym2 = (Symbol*)listget(enumids,j);
if(strcmp(sym1->name,sym2->name) != 0) continue;
if(!prefixeq(sym1->prefix,sym2->prefix)) continue;
semerror(sym1->lineno,"Duplicate enumeration ids in same scope: %s",
fullname(sym1));
}
}
/* Convert enum values to match enum type*/
for(i=0;i<listlength(typdefs);i++) {
Symbol* tsym = (Symbol*)listget(typdefs,i);
ASSERT(tsym->objectclass == NC_TYPE);
if(tsym->subclass != NC_ENUM) continue;
for(j=0;j<listlength(tsym->subnodes);j++) {
Symbol* esym = (Symbol*)listget(tsym->subnodes,j);
Constant newec;
ASSERT(esym->subclass == NC_ECONST);
newec.nctype = esym->typ.typecode;
convert1(&esym->typ.econst,&newec);
esym->typ.econst = newec;
}
}
}
/* Compute type sizes and compound offsets*/
void
computesize(Symbol* tsym)
{
int i;
int offset = 0;
unsigned long totaldimsize;
if(tsym->touched) return;
tsym->touched=1;
switch (tsym->subclass) {
case NC_VLEN: /* actually two sizes for vlen*/
computesize(tsym->typ.basetype); /* first size*/
tsym->typ.size = ncsize(tsym->typ.typecode);
tsym->typ.alignment = nctypealignment(tsym->typ.typecode);
tsym->typ.nelems = 1; /* always a single compound datalist */
break;
case NC_PRIM:
tsym->typ.size = ncsize(tsym->typ.typecode);
tsym->typ.alignment = nctypealignment(tsym->typ.typecode);
tsym->typ.nelems = 1;
break;
case NC_OPAQUE:
/* size and alignment already assigned*/
tsym->typ.nelems = 1;
break;
case NC_ENUM:
computesize(tsym->typ.basetype); /* first size*/
tsym->typ.size = tsym->typ.basetype->typ.size;
tsym->typ.alignment = tsym->typ.basetype->typ.alignment;
tsym->typ.nelems = 1;
break;
case NC_COMPOUND: /* keep if all fields are primitive*/
/* First, compute recursively, the size and alignment of fields*/
for(i=0;i<listlength(tsym->subnodes);i++) {
Symbol* field = (Symbol*)listget(tsym->subnodes,i);
ASSERT(field->subclass == NC_FIELD);
computesize(field);
/* alignment of struct is same as alignment of first field*/
if(i==0) tsym->typ.alignment = field->typ.alignment;
}
/* now compute the size of the compound based on*/
/* what user specified*/
offset = 0;
for(i=0;i<listlength(tsym->subnodes);i++) {
Symbol* field = (Symbol*)listget(tsym->subnodes,i);
/* only support 'c' alignment for now*/
int alignment = field->typ.alignment;
offset += getpadding(offset,alignment);
field->typ.offset = offset;
offset += field->typ.size;
}
tsym->typ.size = offset;
break;
case NC_FIELD: /* Compute size of all non-unlimited dimensions*/
if(tsym->typ.dimset.ndims > 0) {
computesize(tsym->typ.basetype);
totaldimsize = arraylength(&tsym->typ.dimset);
tsym->typ.size = tsym->typ.basetype->typ.size * totaldimsize;
tsym->typ.alignment = tsym->typ.basetype->typ.alignment;
tsym->typ.nelems = 1;
} else {
tsym->typ.size = tsym->typ.basetype->typ.size;
tsym->typ.alignment = tsym->typ.basetype->typ.alignment;
tsym->typ.nelems = tsym->typ.basetype->typ.nelems;
}
break;
default:
PANIC1("computesize: unexpected type class: %d",tsym->subclass);
break;
}
}
void
processvars(void)
{
int i,j;
for(i=0;i<listlength(vardefs);i++) {
Symbol* vsym = (Symbol*)listget(vardefs,i);
Symbol* tsym = vsym->typ.basetype;
/* fill in the typecode*/
vsym->typ.typecode = tsym->typ.typecode;
for(j=0;j<tsym->typ.dimset.ndims;j++) {
/* deref the dimensions*/
tsym->typ.dimset.dimsyms[j] = tsym->typ.dimset.dimsyms[j];
#ifndef USE_NETCDF4
/* UNLIMITED must only be in first place*/
if(tsym->typ.dimset.dimsyms[j]->dim.declsize == NC_UNLIMITED) {
if(j != 0)
semerror(vsym->lineno,"Variable: %s: UNLIMITED must be in first dimension only",fullname(vsym));
}
#endif
}
}
}
static void
processtypesizes(void)
{
int i;
/* use touch flag to avoid circularity*/
for(i=0;i<listlength(typdefs);i++) {
Symbol* tsym = (Symbol*)listget(typdefs,i);
tsym->touched = 0;
}
for(i=0;i<listlength(typdefs);i++) {
Symbol* tsym = (Symbol*)listget(typdefs,i);
computesize(tsym); /* this will recurse*/
}
}
static void
makespecial(int tag, Symbol* vsym, nc_type typ, Datalist* dlist)
{
Symbol* attr = install(specialname(tag));
attr->objectclass = NC_ATT;
attr->data = dlist;
if(vsym) {
Symbol* grp = vsym->container;
if(grp) listpush(grp->subnodes,(elem_t)attr);
attr->container = grp;
}
attr->att.var = vsym;
attr->typ.basetype = primsymbols[typ==NC_STRING?NC_CHAR:typ];
listpush(attdefs,(elem_t)attr);
}
static void
processspecial1(Symbol* vsym)
{
unsigned long flags = vsym->var.special.flags;
int i,tag;
Constant con;
Datalist* dlist;
if(flags == 0) return; /* no specials defined */
con = nullconstant;
if((tag=(flags & _CHUNKSIZES_FLAG))) {
dlist = builddatalist(vsym->var.special.nchunks);
for(i=0;i<vsym->var.special.nchunks;i++) {
con = nullconstant;
con.nctype = NC_INT;
con.value.int32v = (int)vsym->var.special._ChunkSizes[i];
dlappend(dlist,&con);
}
makespecial(tag,vsym,con.nctype,dlist);
} else if((tag=(flags & _STORAGE_FLAG))) {
con.nctype = NC_STRING;
con.value.stringv.stringv
= (vsym->var.special._Storage == NC_CHUNKED? "chunked"
: "contiguous");
con.value.stringv.len = strlen(con.value.stringv.stringv);
dlist = builddatalist(1);
dlappend(dlist,&con);
makespecial(tag,vsym,con.nctype,dlist);
}
if((tag=(flags & _FLETCHER32_FLAG))) {
con.nctype = NC_STRING;
con.value.stringv.stringv
= (vsym->var.special._Fletcher32 == 1? "true"
: "false");
con.value.stringv.len = strlen(con.value.stringv.stringv);
dlist = builddatalist(1);
dlappend(dlist,&con);
makespecial(tag,vsym,con.nctype,dlist);
}
if((tag=(flags & _DEFLATE_FLAG))) {
con.nctype = NC_INT;
con.value.int32v = vsym->var.special._DeflateLevel;
dlist = builddatalist(1);
dlappend(dlist,&con);
makespecial(tag,vsym,con.nctype,dlist);
}
if((tag=(flags & _SHUFFLE_FLAG))) {
con.nctype = NC_STRING;
con.value.stringv.stringv
= (vsym->var.special._Shuffle == 1? "true"
: "false");
con.value.stringv.len = strlen(con.value.stringv.stringv);
dlist = builddatalist(1);
dlappend(dlist,&con);
makespecial(tag,vsym,con.nctype,dlist);
}
if((tag=(flags & _ENDIAN_FLAG))) {
con.nctype = NC_STRING;
con.value.stringv.stringv
= (vsym->var.special._Endianness == 1? "little"
:"big");
con.value.stringv.len = strlen(con.value.stringv.stringv);
dlist = builddatalist(1);
dlappend(dlist,&con);
makespecial(tag,vsym,con.nctype,dlist);
}
if((tag=(flags & _NOFILL_FLAG))) {
con.nctype = NC_STRING;
/* Watch out: flags is NOFILL, but we store FILL */
con.value.stringv.stringv
= (vsym->var.special._Fill == 1? "false"
: "true");
con.value.stringv.len = strlen(con.value.stringv.stringv);
dlist = builddatalist(1);
dlappend(dlist,&con);
makespecial(tag,vsym,con.nctype,dlist);
}
}
static void
processspecials(void)
{
int i;
if(allowspecial) return; /* Only dump attributes if using netcdf-3 */
for(i=0;i<listlength(vardefs);i++) {
Symbol* vsym = (Symbol*)listget(vardefs,i);
processspecial1(vsym);
}
}
static void
processattributes(void)
{
int i,j;
/* process global attributes*/
for(i=0;i<listlength(gattdefs);i++) {
Symbol* asym = (Symbol*)listget(gattdefs,i);
/* If the attribute has a zero length, then default it */
if(asym->data == NULL || asym->data->length == 0) {
asym->data = builddatalist(1);
dlappend(asym->data,NULL);
emptystringconst(asym->lineno,&asym->data->data[asym->data->length]);
/* force type to be NC_CHAR */
asym->typ.basetype = primsymbols[NC_CHAR];
}
if(asym->typ.basetype == NULL) inferattributetype(asym);
/* fill in the typecode*/
asym->typ.typecode = asym->typ.basetype->typ.typecode;
}
/* process per variable attributes*/
for(i=0;i<listlength(attdefs);i++) {
Symbol* asym = (Symbol*)listget(attdefs,i);
/* If the attribute has a zero length, then default it */
if(asym->data == NULL || asym->data->length == 0) {
asym->data = builddatalist(1);
dlappend(asym->data,NULL);
emptystringconst(asym->lineno,&asym->data->data[asym->data->length]);
/* force type to be NC_CHAR */
asym->typ.basetype = primsymbols[NC_CHAR];
}
if(asym->typ.basetype == NULL) inferattributetype(asym);
/* fill in the typecode*/
asym->typ.typecode = asym->typ.basetype->typ.typecode;
}
/* collect per-variable attributes per variable*/
for(i=0;i<listlength(vardefs);i++) {
Symbol* vsym = (Symbol*)listget(vardefs,i);
List* list = listnew();
for(j=0;j<listlength(attdefs);j++) {
Symbol* asym = (Symbol*)listget(attdefs,j);
ASSERT(asym->att.var != NULL);
if(asym->att.var != vsym) continue;
listpush(list,(elem_t)asym);
}
vsym->var.attributes = list;
}
}
/*
Look at the first primitive value of the
attribute's datalist to infer the type of the attribute.
There is a potential ambiguity when that value is a string.
Is the attribute type NC_CHAR or NC_STRING?
The answer is we always assume it is NC_CHAR in order to
be back compatible with ncgen.
*/
static nc_type
inferattributetype1(Datasrc* src)
{
nc_type result = NC_NAT;
/* Recurse down any enclosing compound markers to find first non-fill "primitive"*/
while(result == NC_NAT && srcmore(src)) {
if(issublist(src)) {
srcpush(src);
result = inferattributetype1(src);
srcpop(src);
} else {
Constant* con = srcnext(src);
if(isprimplus(con->nctype)) result = con->nctype;
/* else keep looking*/
}
}
return result;
}
static void
inferattributetype(Symbol* asym)
{
Datalist* datalist;
Datasrc* src;
nc_type nctype;
ASSERT(asym->data != NULL);
datalist = asym->data;
if(datalist->length == 0) {
/* Default for zero length attributes */
asym->typ.basetype = basetypefor(NC_CHAR);
return;
}
src = datalist2src(datalist);
nctype = inferattributetype1(src);
freedatasrc(src);
/* get the corresponding primitive type built-in symbol*/
/* special case for string*/
if(nctype == NC_STRING)
asym->typ.basetype = basetypefor(NC_CHAR);
else if(usingclassic) {
/* If we are in classic mode, then restrict the inferred type
to the classic types */
switch (nctype) {
case NC_UBYTE:
nctype = NC_SHORT;
break;
case NC_USHORT:
case NC_UINT:
case NC_INT64:
case NC_UINT64:
case NC_OPAQUE:
case NC_ENUM:
nctype = NC_INT;
break;
default: /* leave as is */
break;
}
asym->typ.basetype = basetypefor(nctype);
} else
asym->typ.basetype = basetypefor(nctype);
}
/* Find name within group structure*/
Symbol*
lookupgroup(List* prefix)
{
#ifdef USE_NETCDF4
if(prefix == NULL || listlength(prefix) == 0)
return rootgroup;
else
return (Symbol*)listtop(prefix);
#else
return rootgroup;
#endif
}
/* Find name within given group*/
Symbol*
lookupingroup(nc_class objectclass, char* name, Symbol* grp)
{
int i;
if(name == NULL) return NULL;
if(grp == NULL) grp = rootgroup;
dumpgroup(grp);
for(i=0;i<listlength(grp->subnodes);i++) {
Symbol* sym = (Symbol*)listget(grp->subnodes,i);
if(sym->is_ref) continue;
if(sym->objectclass != objectclass) continue;
if(strcmp(sym->name,name)!=0) continue;
return sym;
}
return NULL;
}
/* Find symbol within group structure*/
Symbol*
lookup(nc_class objectclass, Symbol* pattern)
{
Symbol* grp;
if(pattern == NULL) return NULL;
grp = lookupgroup(pattern->prefix);
if(grp == NULL) return NULL;
return lookupingroup(objectclass,pattern->name,grp);
}
#ifndef NO_STDARG
void
semerror(const int lno, const char *fmt, ...)
#else
void
semerror(lno,fmt,va_alist) const int lno; const char* fmt; va_dcl
#endif
{
va_list argv;
vastart(argv,fmt);
(void)fprintf(stderr,"%s: %s line %d: ", progname, cdlname, lno);
vderror(fmt,argv);
exit(1);
}
/* return internal size for values of specified netCDF type */
size_t
nctypesize(
nc_type type) /* netCDF type code */
{
switch (type) {
case NC_BYTE: return sizeof(char);
case NC_CHAR: return sizeof(char);
case NC_SHORT: return sizeof(short);
case NC_INT: return sizeof(int);
case NC_FLOAT: return sizeof(float);
case NC_DOUBLE: return sizeof(double);
case NC_UBYTE: return sizeof(unsigned char);
case NC_USHORT: return sizeof(unsigned short);
case NC_UINT: return sizeof(unsigned int);
case NC_INT64: return sizeof(long long);
case NC_UINT64: return sizeof(unsigned long long);
case NC_STRING: return sizeof(char*);
default:
PANIC("nctypesize: bad type code");
}
return 0;
}
static int
sqContains(List* seq, Symbol* sym)
{
int i;
if(seq == NULL) return 0;
for(i=0;i<listlength(seq);i++) {
Symbol* sub = (Symbol*)listget(seq,i);
if(sub == sym) return 1;
}
return 0;
}
static void
checkconsistency(void)
{
int i;
for(i=0;i<listlength(grpdefs);i++) {
Symbol* sym = (Symbol*)listget(grpdefs,i);
if(sym == rootgroup) {
if(sym->container != NULL)
PANIC("rootgroup has a container");
} else if(sym->container == NULL && sym != rootgroup)
PANIC1("symbol with no container: %s",sym->name);
else if(sym->container->is_ref != 0)
PANIC1("group with reference container: %s",sym->name);
else if(sym != rootgroup && !sqContains(sym->container->subnodes,sym))
PANIC1("group not in container: %s",sym->name);
if(sym->subnodes == NULL)
PANIC1("group with null subnodes: %s",sym->name);
}
for(i=0;i<listlength(typdefs);i++) {
Symbol* sym = (Symbol*)listget(typdefs,i);
if(!sqContains(sym->container->subnodes,sym))
PANIC1("type not in container: %s",sym->name);
}
for(i=0;i<listlength(dimdefs);i++) {
Symbol* sym = (Symbol*)listget(dimdefs,i);
if(!sqContains(sym->container->subnodes,sym))
PANIC1("dimension not in container: %s",sym->name);
}
for(i=0;i<listlength(vardefs);i++) {
Symbol* sym = (Symbol*)listget(vardefs,i);
if(!sqContains(sym->container->subnodes,sym))
PANIC1("variable not in container: %s",sym->name);
if(!(isprimplus(sym->typ.typecode)
|| sqContains(typdefs,sym->typ.basetype)))
PANIC1("variable with undefined type: %s",sym->name);
}
}
static void
validate(void)
{
int i;
for(i=0;i<listlength(vardefs);i++) {
Symbol* sym = (Symbol*)listget(vardefs,i);
if(sym->var.special._Fillvalue != NULL) {
}
}
}
/*
Do any pre-processing of datalists.
1. Compute the effective size of unlimited
dimensions vis-a-vis this data list
2. Compute the length of attribute lists
3. Collect the VLEN constants
4. add fills as needed to get lengths correct
5. comput max of interior unlimited instances
*/
void
processdatalists(void)
{
int i;
if(debug > 0) fdebug("processdatalists:\n");
vlenconstants = listnew();
listsetalloc(vlenconstants,1024);
/* process global attributes*/
for(i=0;i<listlength(gattdefs);i++) {
Symbol* asym = (Symbol*)listget(gattdefs,i);
if(asym->data != NULL)
processdatalist(asym);
if(debug > 0 && asym->data != NULL) {
fdebug(":%s.datalist: ",asym->name);
dumpdatalist(asym->data,"");
fdebug("\n");
}
}
/* process per variable attributes*/
for(i=0;i<listlength(attdefs);i++) {
Symbol* asym = (Symbol*)listget(attdefs,i);
if(asym->data != NULL)
processdatalist(asym);
if(debug > 0 && asym->data != NULL) {
fdebug("%s:%s.datalist: ",asym->att.var->name,asym->name);
dumpdatalist(asym->data,"");
fdebug("\n");
}
}
/* process all variable data lists */
for(i=0;i<listlength(vardefs);i++) {
Symbol* vsym = (Symbol*)listget(vardefs,i);
if(vsym->data != NULL)
processdatalist(vsym);
if(debug > 0 && vsym->data != NULL) {
fdebug("%s.datalist: ",vsym->name);
dumpdatalist(vsym->data,"");
fdebug("\n");
}
}
}
static void
processdatalist(Symbol* sym)
{
walkdata(sym);
}
/*
Recursively walk the variable/basetype and
simultaneously walk the datasrc.
Uses separate code for:
1. variables
2. types
3. field arrays
This set of procedures is an example of the
canonical way to simultaneously walk a variable
and a datalist.
*/
static void
walkdata(Symbol* sym)
{
int rank = sym->typ.dimset.ndims;
size_t total = 0;
Datasrc* src = NULL;
Datalist* fillsrc = sym->var.special._Fillvalue;
int ischartype = (sym->typ.basetype->typ.typecode == NC_CHAR);
/* special case */
if(sym->objectclass == NC_VAR && ischartype && rank > 0) {
walkchararray(sym, fillsrc);
} else {
src = datalist2src(sym->data);
switch (sym->objectclass) {
case NC_VAR:
if(rank == 0) /*scalar*/
walktype(sym->typ.basetype,src,fillsrc);
else
walkarray(sym,src,0,fillsrc);
break;
case NC_ATT:
for(total=0;srcpeek(src) != NULL;total++)
walktype(sym->typ.basetype,src,NULL);
break;
default:
PANIC1("walkdata: illegal objectclass: %d",(int)sym->objectclass);
break;
}
if(src) freedatasrc(src);
}
}
/* Walk non-character arrays */
static void
walkarray(Symbol* vsym, Datasrc* src, int dimindex, Datalist* fillsrc)
{
int i;
Dimset* dimset = &vsym->typ.dimset;
int rank = dimset->ndims;
int lastdim = (dimindex == (rank-1));
int firstdim = (dimindex == 0);
Symbol* dim = dimset->dimsyms[dimindex];
int isunlimited = (dim->dim.declsize == NC_UNLIMITED);
size_t count = 0;
ASSERT(rank > 0);
ASSERT(vsym->typ.basetype->typ.typecode != NC_CHAR);
if(isunlimited) {
int pushed = 0;
if(!firstdim) {
if(!issublist(src))
semerror(srcline(src),"Expected {..} found primitive");
srcpush(src);
pushed = 1;
}
for(count=0;srcpeek(src) != NULL;count++) {
if(lastdim)
walktype(vsym->typ.basetype,src,fillsrc);
else
walkarray(vsym,src,dimindex+1,fillsrc);
}
/* compute unlimited max */
dim->dim.unlimitedsize = MAX(count,dim->dim.unlimitedsize);
if(pushed) srcpop(src);
} else { /* !ischartype && !isunlimited */
count = dim->dim.declsize;
for(i=0;i<dim->dim.declsize;i++) {
if(lastdim)
walktype(vsym->typ.basetype,src,fillsrc);
else
walkarray(vsym,src,dimindex+1,fillsrc);
}
}
}
static void
walktype(Symbol* tsym, Datasrc* src, Datalist* fillsrc)
{
int i;
int count;
Constant* con;
Datalist* dl;
ASSERT(tsym->objectclass == NC_TYPE);
switch (tsym->subclass) {
case NC_ENUM: case NC_OPAQUE: case NC_PRIM:
srcnext(src);
break;
case NC_COMPOUND:
if(!isfillvalue(src) && !issublist(src)) {/* fail on no compound*/
semerror(srcline(src),"Compound constants must be enclosed in {..}");
}
con = srcnext(src);
if(con == NULL || con->nctype == NC_FILLVALUE) {
dl = getfiller(tsym,fillsrc);
ASSERT(dl->length == 1);
con = &dl->data[0];
if(con->nctype != NC_COMPOUND) {
semerror(srcline(src),"Vlen fill constants must be enclosed in {..}");
}
}
dl = con->value.compoundv;
srcpushlist(src,dl); /* enter the sublist*/
for(count=0,i=0;i<listlength(tsym->subnodes) && srcmore(src);i++,count++) {
Symbol* field = (Symbol*)listget(tsym->subnodes,i);
walktype(field,src,NULL);
}
srcpop(src);
break;
case NC_VLEN:
if(!isfillvalue(src) && !issublist(src)) {/* fail on no compound*/
semerror(srcline(src),"Vlen constants must be enclosed in {..}");
}
con = srcnext(src);
if(con == NULL || con->nctype == NC_FILLVALUE) {
dl = getfiller(tsym,fillsrc);
ASSERT(dl->length == 1);
con = &dl->data[0];
if(con->nctype != NC_COMPOUND) {
semerror(srcline(src),"Vlen fill constants must be enclosed in {..}");
}
}
if(!listcontains(vlenconstants,(elem_t)con)) {
dl = con->value.compoundv;
/* Process list only if new */
srcpushlist(src,dl); /* enter the sublist*/
if(tsym->typ.basetype->typ.typecode == NC_CHAR) {
walkcharvlen(con);
} else for(count = 0;srcmore(src);count++) {
walktype(tsym->typ.basetype,src,NULL);
}
srcpop(src);
dl->vlen.count = count;
dl->vlen.uid = listlength(vlenconstants);
dl->vlen.schema = tsym;
listpush(vlenconstants,(elem_t)con);
}
break;
case NC_FIELD:
if(tsym->typ.dimset.ndims > 0) {
if(tsym->typ.basetype->typ.typecode == NC_CHAR) {
Constant* con = srcnext(src);
walkcharfieldarray(con,&tsym->typ.dimset,fillsrc);
} else
walkfieldarray(tsym->typ.basetype,src,&tsym->typ.dimset,0);
} else
walktype(tsym->typ.basetype,src,NULL);
break;
default: PANIC1("processdatalist: unexpected subclass %d",tsym->subclass);
}
}
/* Used only for structure field arrays*/
static void
walkfieldarray(Symbol* basetype, Datasrc* src, Dimset* dimset, int index)
{
int i;
int rank = dimset->ndims;
int lastdim = (index == (rank-1));
Symbol* dim = dimset->dimsyms[index];
size_t datasize = dim->dim.declsize;
ASSERT(datasize != 0);
for(i=0;i<datasize;i++) {
if(lastdim)
walktype(basetype,src,NULL);
else
walkfieldarray(basetype,src,dimset,index+1);
}
}
/* Return 1 if the set of dimensions from..rank-1 are not unlimited */
int
nounlimited(Dimset* dimset, int from)
{
int index;
index = lastunlimited(dimset);
return (index <= from ? 1: 0);
}
/* Return index of the rightmost unlimited dimension; -1 => no unlimiteds */
int
lastunlimited(Dimset* dimset)
{
int i,index;
for(index=-1,i=0;i<dimset->ndims;i++) {
Symbol* dim = dimset->dimsyms[i];
if(dim->dim.declsize == NC_UNLIMITED) index = i;
}
return index;
}
/* Field is an array and basetype is character.
The constant should be of the form { <stringable>, <stringable>...}.
Make each stringable be a multiple of the size of the last
dimension of the field array. Then concat all of them
together into one long string. Then pad that string to be
as long as the product of the array dimensions. Finally,
modify the constant to hold that long string.
*/
static void
walkcharfieldarray(Constant* con, Dimset* dimset, Datalist* fillsrc)
{
int rank = dimset->ndims;
Symbol* lastdim = dimset->dimsyms[rank-1];
size_t lastdimsize = lastdim->dim.declsize;
size_t slabsize = subarraylength(dimset,0);
int fillchar = getfillchar(fillsrc);
Datalist* data;
Constant newcon;
/* By data constant rules, con should be a compound object */
if(con->nctype != NC_COMPOUND) {
semerror(con->lineno,"Malformed character field array");
return;
}
data = con->value.compoundv;
/* canonicalize the strings in con and then pad to slabsize */
if(!buildcanonicalcharlist(data,lastdimsize,fillchar,&newcon))
return;
/* pad to slabsize */
padstring(&newcon,slabsize,fillchar);
/* Now, since we have a compound containing a single string,
optimize by replacing the compound with the string.
*/
*con = newcon;
}
/* Vsym is an array variable whose basetype is character.
The vsym->data list should be a set of strings
possibly enclosed in one or more nested sets of braces.
{<stringlist>}, {<stringlist>}...
There are several cases to consider.
1. the variable's dimension set has no unlimiteds
Actions:
1. for each stringable in the data list,
pad it up to a multiple of the size of the
last dimension.
2. concat all of the stringables
3. pad the concat to the size of the product of
the dimension sizes.
2. the dimension set has one or more unlimiteds.
This means that we have to recursively deal with
nested compound instances.
The last (rightmost) unlimited will correspond
to a sequence of stringables.
This has two special subcases
2a. the last dimension IS NOT unlimited
Actions:
1. for each stringable in the data list,
pad it up to a multiple of the size of the
last dimension.
2. concat all of the stringables
3. Use the length of the concat plus the
product of the dimensions from just
after the last unlimited to the last dimension
to inform the size of the unlimited.
2b. the last dimension IS unlimited
Actions:
1. concat all of the stringables with no padding
2. Use the length of the concat to inform the size
of the unlimited.
Each unlimited dimension to the left of the last unlimited
will introduce another nesting of braces.
3. For each dimension to the left of the last
unlimited, there are two cases.
3a. dimension is NOT unlimited
ACTION:
1. The set of items from the right are padded to
the length of the dimension size
3b. dimension IS unlimited
ACTION:
1. no action
Finally, modify the variable's data list to contain these
modified stringlists.
*/
static void
walkchararray(Symbol* vsym, Datalist* fillsrc)
{
Dimset* dimset = &vsym->typ.dimset;
int lastunlimindex;
int rank = dimset->ndims;
Symbol* lastdim = dimset->dimsyms[rank-1];
size_t lastdimsize = lastdim->dim.declsize;
Constant newcon = nullconstant;
int fillchar = getfillchar(fillsrc);
lastunlimindex = lastunlimited(dimset);
#ifdef IGNORE
simpleunlim = (lastunlimindex == 0);
#endif
/* If the unlimited is also the last dimension, then do no padding */
if(lastdimsize == 0) lastdimsize = 1;
if(lastunlimindex < 0) {
/* If it turns out that there are no unlimiteds, then canonicalize
the string and then pad to the dim product
*/
size_t slabsize = arraylength(dimset);
/* If rank is 1, then dont' pad the string */
if(rank == 1) lastdimsize = 1;
if(!buildcanonicalcharlist(vsym->data,lastdimsize,fillchar,&newcon))
return;
/* pad to slabsize */
padstring(&newcon,slabsize,fillchar);
/* replace vsym->data */
vsym->data = const2list(&newcon);
#ifdef IGNORE
} else if(simpleunlim) {
/* First dimension is the only unlimited */
/* canonicalize but do not attempt to pad because
we do not yet know the final size of the unlimited dimension
*/
size_t count, subslabsize;
Symbol* dim0 = dimset->dimsyms[0];
ASSERT(dim0->dim.declsize == NC_UNLIMITED);
if(!buildcanonicalcharlist(vsym->data,lastdimsize,fillchar,&newcon))
return;
/* track consistency with the unlimited dimension */
/* Compute the size of the subslab below this dimension */
subslabsize = subarraylength(dimset,lastunlimindex+1);
/* divide stringv.len by subslabsize and use as the unlim count*/
count = newcon.value.stringv.len / subslabsize;
dim0->dim.unlimitedsize = MAX(count,dim0->dim.unlimitedsize);
/* replace vsym->data */
vsym->data = const2list(&newcon);
#endif
} else {/* 1 or more unlimiteds */
walkchararrayr(&vsym->typ.dimset, &vsym->data, lastunlimindex, 0, fillchar);
}
}
/* Handle case 3:
this will recursively walk down the
compound nesting to apply actions.
*/
static void
walkchararrayr(Dimset* dimset, Datalist** datap, int lastunlimited, int index, int fillchar)
{
int i;
Symbol* dim = dimset->dimsyms[index];
int rank = dimset->ndims;
int isunlimited = (dim->dim.declsize == NC_UNLIMITED);
Datalist* data = *datap;
/* Split on islastunlimited or not */
if(index == lastunlimited) {
size_t subslabsize,count;
Symbol* lastdim = dimset->dimsyms[rank-1];
size_t lastdimsize = (lastdim->dim.declsize==NC_UNLIMITED?1:lastdim->dim.declsize);
Constant newcon = nullconstant;
/* The datalist should contain just stringables; concat them with padding */
if(!buildcanonicalcharlist(data,lastdimsize,fillchar,&newcon))
return;
/* track consistency with the unlimited dimension */
/* Compute the size of the subslab below this dimension */
subslabsize = subarraylength(dimset,index+1);
/* divide stringv.len by subslabsize and use as the unlim count*/
count = newcon.value.stringv.len / subslabsize;
dim->dim.unlimitedsize = MAX(count,dim->dim.unlimitedsize);
/* replace parent compound */
*datap = const2list(&newcon);
} else {/* dimension to left of last unlimited */
/* data should be a set of compounds */
size_t expected = (isunlimited ? data->length : dim->dim.declsize );
for(i=0;i<expected;i++) {
Constant* con;
if(i >= data->length) {/* extend data */
Constant cmpd;
emptycompoundconst(datalistline(data),&cmpd);
dlappend(data,&cmpd);
}
con = data->data+i;
if(con->nctype != NC_COMPOUND) {
semerror(datalistline(data),"Malformed Character datalist");
continue;
}
/* recurse */
walkchararrayr(dimset,&con->value.compoundv,lastunlimited,index+1,fillchar);
if(isunlimited) /* set unlim count */
dim->dim.unlimitedsize = MAX(data->length,dim->dim.unlimitedsize);
}
}
}
static void
walkcharvlen(Constant* src)
{
Datalist* data;
Constant newcon;
/* By data constant rules, src should be a compound object */
if(src->nctype != NC_COMPOUND) {
semerror(src->lineno,"Malformed character vlen");
return;
}
data = src->value.compoundv;
/* canonicalize the strings in src */
if(!buildcanonicalcharlist(data,1,NC_FILL_CHAR,&newcon))
return;
/* replace src */
*src = newcon;
}