netcdf-c/libdispatch/nctime.c

1165 lines
30 KiB
C

/*********************************************************************
* Copyright 2018, University Corporation for Atmospheric Research
* See netcdf/COPYRIGHT file for copying and redistribution conditions.
* $Id: nctime.c,v 1.9 2010/05/05 22:15:39 dmh Exp $
*********************************************************************/
/*
* This code was extracted with permission from the CDMS time
* conversion and arithmetic routines developed by Bob Drach, Lawrence
* Livermore National Laboratory as part of the cdtime library. Russ
* Rew of the UCAR Unidata Program made changes and additions to
* support the "-t" option of the netCDF ncdump utility, including a
* 366-day climate calendar.
*
* For the complete time conversion and climate calendar facilities of
* the CDMS library, get the original sources from LLNL.
*/
#include "config.h"
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <math.h>
#include <string.h>
#include <stdarg.h>
#include <assert.h>
#include "nctime.h"
static const cdCompTime ZA = {1582, 10, 5, 0.0};
static const cdCompTime ZB = {1582, 10, 15, 0.0};
static int cuErrOpts; /* Error options */
static int cuErrorOccurred = 0; /* True iff cdError was called */
#define CD_DEFAULT_BASEYEAR "1979" /* Default base year for relative time (no 'since' clause) */
#define VALCMP(a,b) ((a)<(b)?-1:(b)<(a)?1:0)
/* forward declarations */
static void CdMonthDay(int *doy, CdTime *date);
static void CdDayOfYear(CdTime *date, int *doy);
static void cdComp2Rel(cdCalenType timetype, cdCompTime comptime, char* relunits, double* reltime);
static void cdRel2CompMixed(double reltime, cdUnitTime unit, cdCompTime basetime, cdCompTime *comptime);
static void cdRel2Comp(cdCalenType timetype, char* relunits, double reltime, cdCompTime* comptime);
/* Trim trailing whitespace, up to n characters. */
/* If no whitespace up to the last character, set */
/* the last character to null, else set the first */
/* whitespace character to null. */
static void
cdTrim(char* s, int n)
{
char* c;
if(s==NULL)
return;
for(c=s; *c && c<s+n-1 && !isspace((int)*c); c++);
*c='\0';
}
static void
cdError(char *fmt, ...)
{
va_list args;
cuErrorOccurred = 1;
if(cuErrOpts & CU_VERBOSE){
va_start(args,fmt);
fprintf(stderr, "CDMS error: ");
vfprintf(stderr, fmt, args);
fprintf(stderr, "\n");
va_end(args);
}
if(cuErrOpts & CU_FATAL)
exit(1);
}
#define ISLEAP(year,timeType) ((timeType & Cd366) || (((timeType) & CdHasLeap) && (!((year) % 4) && (((timeType) & CdJulianType) || (((year) % 100) || !((year) % 400))))))
static const int mon_day_cnt_normal[12] = {31,28,31,30,31,30,31,31,30,31,30,31};
static const int mon_day_cnt_leap[12] = {31,29,31,30,31,30,31,31,30,31,30,31};
static const int days_sum[12] = {0,31,59,90,120,151,181,212,243,273,304,334};
static const int* mon_day_cnt;
/* Compute month and day from year and day-of-year.
*
* Input:
* doy (int) (day-of-year)
* date->year (long) (year since 0 BC)
* date->timeType (CdTimetype) (time type)
* date->baseYear base year for relative times
* Output:
* date->month (short) (month in year)
* date->day (short) (day in month)
*
*
* Derived from NRL NEONS V3.6.
*/
static void
CdMonthDay(int *doy, CdTime *date)
{
int i; /* month counter */
int idoy; /* day of year counter */
long year;
if ((idoy = *doy) < 1) {
date->month = 0;
date->day = 0;
return;
}
if(!(date->timeType & CdChronCal)) /* Ignore year for Clim calendar */
year = 0;
else if(!(date->timeType & CdBase1970)) /* year is offset from base for relative time */
year = date->baseYear + date->year;
else
year = date->year;
if (ISLEAP(year,date->timeType)) {
mon_day_cnt = mon_day_cnt_leap;
} else {
mon_day_cnt = mon_day_cnt_normal;
}
date->month = 0;
for (i = 0; i < 12; i++) {
int delta;
(date->month)++;
date->day = (short)idoy;
delta = ((date->timeType & Cd365) || (date->timeType & Cd366) ? (mon_day_cnt[date->month-1]) : 30);
idoy -= delta;
if(idoy <= 0)
return;
}
}
/* Compute day-of-year from year, month and day
*
* Input:
* date->year (long) (year since 0 BC)
* date->month (short) (month in year)
* date->day (short) (day in month)
* date->baseYear base year for relative times
* Output: doy (int) (day-of-year)
*
* Derived from NRL NEONS V3.6
*/
static void
CdDayOfYear(CdTime *date, int *doy)
{
int leap_add = 0; /* add 1 day if leap year */
int month; /* month */
long year;
month = date->month;
if (month < 1 || month > 12) {
cdError( "Day-of-year error; month: %d\n", month);
month = 1;
}
if(!(date->timeType & CdChronCal)) /* Ignore year for Clim calendar */
year = 0;
else if(!(date->timeType & CdBase1970)) /* year is offset from base for relative time */
year = date->baseYear + date->year;
else
year = date->year;
if (ISLEAP(year,date->timeType) && month > 2) leap_add = 1;
if( ((date->timeType) & Cd365) || ((date->timeType) & Cd366) ) {
*doy = days_sum[month-1] + date->day + leap_add ;
} else { /* date->timeType & Cd360 */
*doy = 30*(month-1) + date->day + leap_add ;
}
}
/* Convert epochal time (hours since 00 jan 1, 1970)
* to human time (structured)
*
* Input:
* etime = epochal time representation
* timeType = time type (e.g., CdChron, CdClim, etc.) as defined in cdms.h
* baseYear = base real, used for relative time types only
*
* Output: htime = human (structured) time representation
*
* Derived from NRL Neons V3.6
*/
void
Cde2h(double etime, CdTimeType timeType, long baseYear, CdTime *htime)
{
long ytemp; /* temporary year holder */
int yr_day_cnt; /* count of days in year */
int doy; /* day of year */
int daysInLeapYear; /* number of days in a leap year */
int daysInYear; /* days in non-leap year */
doy = (int) floor(etime / 24.) + 1;
htime->hour = etime - (double) (doy - 1) * 24.;
/* Correct for goofy floor func on J90 */
if(htime->hour >= 24.){
doy += 1;
htime->hour -= 24.;
}
htime->baseYear = (timeType & CdBase1970) ? 1970 : baseYear;
if(!(timeType & CdChronCal)) htime->baseYear = 0; /* Set base year to 0 for Clim */
if(timeType & Cd366) {
daysInLeapYear = 366;
daysInYear = 366;
} else {
daysInLeapYear = (timeType & Cd365) ? 366 : 360;
daysInYear = (timeType & Cd365) ? 365 : 360;
}
if (doy > 0) {
for (ytemp = htime->baseYear; ; ytemp++) {
yr_day_cnt = ISLEAP(ytemp,timeType) ? daysInLeapYear : daysInYear;
if (doy <= yr_day_cnt) break;
doy -= yr_day_cnt;
}
} else {
for (ytemp = htime->baseYear-1; ; ytemp--) {
yr_day_cnt = ISLEAP(ytemp,timeType) ? daysInLeapYear : daysInYear;
doy += yr_day_cnt;
if (doy > 0) break;
}
}
htime->year = (timeType & CdBase1970) ? ytemp : (ytemp - htime->baseYear);
if(!(timeType & CdChronCal)) htime->year = 0; /* Set year to 0 for Clim */
htime->timeType = timeType;
CdMonthDay(&doy,htime);
}
/* Add 'nDel' times 'delTime' to epochal time 'begEtm',
* return the result in epochal time 'endEtm'.
*/
static void
CdAddDelTime(double begEtm, long nDel, CdDeltaTime delTime, CdTimeType timeType,
long baseYear, double *endEtm)
{
double delHours;
long delMonths, delYears;
CdTime bhtime, ehtime;
switch(delTime.units){
case CdYear:
delMonths = 12;
break;
case CdSeason:
delMonths = 3;
break;
case CdMonth:
delMonths = 1;
break;
case CdWeek:
delHours = 168.0;
break;
case CdDay:
delHours = 24.0;
break;
case CdHour:
delHours = 1.0;
break;
case CdMinute:
delHours = 1./60.;
break;
case CdSecond:
delHours = 1./3600.;
break;
default:
cdError("Invalid delta time units: %d\n",delTime.units);
return;
}
switch(delTime.units){
case CdYear: case CdSeason: case CdMonth:
Cde2h(begEtm,timeType,baseYear,&bhtime);
delMonths = delMonths * nDel * delTime.count + bhtime.month - 1;
delYears = (delMonths >= 0 ? (delMonths/12) : (delMonths+1)/12 - 1);
ehtime.year = bhtime.year + delYears;
ehtime.month = (short)(delMonths - (12 * delYears) + 1);
ehtime.day = 1;
ehtime.hour = 0.0;
ehtime.timeType = timeType;
ehtime.baseYear = !(timeType & CdChronCal) ? 0 :
(timeType & CdBase1970) ? 1970 : baseYear; /* base year is 0 for Clim, */
/* 1970 for Chron, */
/* or input base year for Rel */
Cdh2e(&ehtime,endEtm);
break;
case CdWeek: case CdDay: case CdHour: case CdMinute: case CdSecond:
delHours = delHours * (double)(nDel * delTime.count);
*endEtm = begEtm + delHours;
break;
default: break;
}
}
/* Parse relative units, returning the unit and base component time. */
/* Function returns 1 if error, 0 on success */
int
cdParseRelunits(cdCalenType timetype, char* relunits, cdUnitTime* unit, cdCompTime* base_comptime)
{
char charunits[CD_MAX_RELUNITS];
char basetime_1[CD_MAX_CHARTIME];
char basetime_2[CD_MAX_CHARTIME];
char basetime[2 * CD_MAX_CHARTIME + 1];
int nconv;
/* Parse the relunits. First parse assuming white space only. */
nconv = sscanf(relunits,"%s since %s %s",charunits,basetime_1,basetime_2);
/* Handle ISO-8601 "T" date-time separator in place of blank separator. */
if (nconv!=EOF && nconv>=2) {
if (strchr (basetime_1, 'T') != NULL) {
nconv = sscanf(relunits,"%s since %[^T]T%s",charunits,basetime_1,basetime_2);
}
}
if(nconv==EOF || nconv==0){
cdError("Error on relative units conversion, string = %s\n",relunits);
return 1;
}
/* Get the units */
cdTrim(charunits,CD_MAX_RELUNITS);
if(!strncasecmp(charunits,"sec",3) || !strcasecmp(charunits,"s")){
*unit = cdSecond;
}
else if(!strncasecmp(charunits,"min",3) || !strcasecmp(charunits,"mn")){
*unit = cdMinute;
}
else if(!strncasecmp(charunits,"hour",4) || !strcasecmp(charunits,"hr")){
*unit = cdHour;
}
else if(!strncasecmp(charunits,"day",3) || !strcasecmp(charunits,"dy")){
*unit = cdDay;
}
else if(!strncasecmp(charunits,"week",4) || !strcasecmp(charunits,"wk")){
*unit = cdWeek;
}
else if(!strncasecmp(charunits,"month",5) || !strcasecmp(charunits,"mo")){
*unit = cdMonth;
}
else if(!strncasecmp(charunits,"season",6)){
*unit = cdSeason;
}
else if(!strncasecmp(charunits,"year",4) || !strcasecmp(charunits,"yr")){
if(!(timetype & cdStandardCal)){
cdError("Error on relative units conversion: climatological units cannot be 'years'.\n");
return 1;
}
*unit = cdYear;
}
else {
cdError("Error on relative units conversion: invalid units = %s\n",charunits);
return 1;
}
/* Build the basetime, if any (default is 1979), */
/* or month 1 for climatological time. */
if(nconv == 1){
if(timetype & cdStandardCal)
strcpy(basetime,CD_DEFAULT_BASEYEAR);
else
strcpy(basetime,"1");
}
/* Convert the basetime to component, then epochal (hours since 1970) */
else{
if(nconv == 2){
cdTrim(basetime_1,CD_MAX_CHARTIME);
strcpy(basetime,basetime_1);
}
else{
cdTrim(basetime_1,CD_MAX_CHARTIME);
cdTrim(basetime_2,CD_MAX_CHARTIME);
snprintf(basetime,sizeof(basetime),"%s %s",basetime_1,basetime_2);
}
}
cdChar2Comp(timetype, basetime, base_comptime);
return 0;
}
/* ca - cb in Gregorian calendar */
/* Result is in hours. */
static double
cdDiffGregorian(cdCompTime ca, cdCompTime cb){
double rela, relb;
cdComp2Rel(cdStandard, ca, "hours", &rela);
cdComp2Rel(cdStandard, cb, "hours", &relb);
return (rela - relb);
}
/* Return -1, 0, 1 as ca is less than, equal to, */
/* or greater than cb, respectively. */
static int
cdCompCompare(cdCompTime ca, cdCompTime cb){
int test;
if ((test = VALCMP(ca.year, cb.year)))
return test;
else if ((test = VALCMP(ca.month, cb.month)))
return test;
else if ((test = VALCMP(ca.day, cb.day)))
return test;
else
return (VALCMP(ca.hour, cb.hour));
}
/* ca - cb in Julian calendar. Result is in hours. */
static double
cdDiffJulian(cdCompTime ca, cdCompTime cb){
double rela, relb;
cdComp2Rel(cdJulian, ca, "hours", &rela);
cdComp2Rel(cdJulian, cb, "hours", &relb);
return (rela - relb);
}
/* ca - cb in mixed Julian/Gregorian calendar. */
/* Result is in hours. */
static double
cdDiffMixed(cdCompTime ca, cdCompTime cb)
{
double result;
if (cdCompCompare(cb, ZB) == -1){
if (cdCompCompare(ca, ZB) == -1) {
result = cdDiffJulian(ca, cb);
}
else {
result = cdDiffGregorian(ca, ZB) + cdDiffJulian(ZA, cb);
}
}
else {
if (cdCompCompare(ca, ZB) == -1){
result = cdDiffJulian(ca, ZA) + cdDiffGregorian(ZB, cb);
}
else {
result = cdDiffGregorian(ca, cb);
}
}
return result;
}
/* Divide ('endEtm' - 'begEtm') by 'delTime',
* return the integer portion of the result in 'nDel'.
*/
static void
CdDivDelTime(double begEtm, double endEtm, CdDeltaTime delTime, CdTimeType timeType,
long baseYear, long *nDel)
{
double delHours, frange;
long delMonths, range;
CdTime bhtime, ehtime;
int hoursInYear;
switch(delTime.units){
case CdYear:
delMonths = 12;
break;
case CdSeason:
delMonths = 3;
break;
case CdMonth:
delMonths = 1;
break;
case CdWeek:
delHours = 168.0;
break;
case CdDay:
delHours = 24.0;
break;
case CdHour:
delHours = 1.0;
break;
case CdMinute:
delHours = 1./60.;
break;
case CdSecond:
delHours = 1./3600.;
break;
default:
cdError("Invalid delta time units: %d\n",delTime.units);
return;
}
switch(delTime.units){
case CdYear: case CdSeason: case CdMonth:
delMonths *= delTime.count;
Cde2h(begEtm,timeType,baseYear,&bhtime);
Cde2h(endEtm,timeType,baseYear,&ehtime);
if(timeType & CdChronCal){ /* Chron and Rel time */
range = 12*(ehtime.year - bhtime.year)
+ (ehtime.month - bhtime.month);
}
else{ /* Clim time, ignore year */
range = (ehtime.month - bhtime.month);
if(range < 0) range += 12;
}
*nDel = abs((int)range)/delMonths;
break;
case CdWeek: case CdDay: case CdHour: case CdMinute: case CdSecond:
delHours *= (double)delTime.count;
if(timeType & CdChronCal){ /* Chron and Rel time */
frange = fabs(endEtm - begEtm);
}
else{ /* Clim time, ignore year, but */
/* wraparound relative to hours-in-year*/
frange = endEtm - begEtm;
if(timeType & Cd366) {
hoursInYear = 8784;
} else {
hoursInYear = (timeType & Cd365) ? 8760. : 8640.;
}
/* Normalize frange to interval [0,hoursInYear) */
if(frange < 0.0 || frange >= hoursInYear)
frange -= hoursInYear * floor(frange/hoursInYear);
}
*nDel = (long)((frange + 1.e-10*delHours)/delHours);
break;
default: break;
}
}
/* Value is in hours. Translate to units. */
static double
cdFromHours(double value, cdUnitTime unit){
double result;
switch(unit){
case cdSecond:
result = value * 3600.0;
break;
case cdMinute:
result = value * 60.0;
break;
case cdHour:
result = value;
break;
case cdDay:
result = value/24.0;
break;
case cdWeek:
result = value/168.0;
break;
case cdMonth:
case cdSeason:
case cdYear:
case cdFraction:
default:
cdError("Error on conversion from hours to vague unit");
result = 0;
break;
}
return result;
}
/* Map to old timetypes */
static int
cdToOldTimetype(cdCalenType newtype, CdTimeType* oldtype)
{
switch(newtype){
case cdStandard:
*oldtype = CdChron;
break;
case cdJulian:
*oldtype = CdJulianCal;
break;
case cdNoLeap:
*oldtype = CdChronNoLeap;
break;
case cd360:
*oldtype = CdChron360;
break;
case cd366:
*oldtype = CdChron366;
break;
case cdClim:
*oldtype = CdClim;
break;
case cdClimLeap:
*oldtype = CdClimLeap;
break;
case cdClim360:
*oldtype = CdClim360;
break;
default:
cdError("Error on relative units conversion, invalid timetype = %d",newtype);
return 1;
}
return 0;
}
/* Convert human time to epochal time (hours since 00 jan 1, 1970)
*
* Input: htime = human time representation
*
* Output: etime = epochal time representation
*
* Derived from NRL Neons V3.6
*/
void
Cdh2e(CdTime *htime, double *etime)
{
long ytemp, year; /* temporary year holder */
int day_cnt; /* count of days */
int doy; /* day of year */
long baseYear; /* base year for epochal time */
int daysInLeapYear; /* number of days in a leap year */
int daysInYear; /* days in non-leap year */
CdDayOfYear(htime,&doy);
day_cnt = 0;
baseYear = ((htime->timeType) & CdBase1970) ? 1970 : htime->baseYear;
year = ((htime->timeType) & CdBase1970) ? htime->year : (htime->year + htime->baseYear);
if(!((htime->timeType) & CdChronCal)) baseYear = year = 0; /* set year and baseYear to 0 for Clim */
if((htime->timeType) & Cd366) {
daysInLeapYear = 366;
daysInYear = 366;
} else {
daysInLeapYear = ((htime->timeType) & Cd365) ? 366 : 360;
daysInYear = ((htime->timeType) & Cd365) ? 365 : 360;
}
if (year > baseYear) {
for (ytemp = year - 1; ytemp >= baseYear; ytemp--) {
day_cnt += ISLEAP(ytemp,htime->timeType) ? daysInLeapYear : daysInYear;
}
} else if (year < baseYear) {
for (ytemp = year; ytemp < baseYear; ytemp++) {
day_cnt -= ISLEAP(ytemp,htime->timeType) ? daysInLeapYear : daysInYear;
}
}
*etime = (double) (day_cnt + doy - 1) * 24. + htime->hour;
}
/* Validate the component time, return 0 if valid, 1 if not */
static int
cdValidateTime(cdCalenType timetype, cdCompTime comptime)
{
NC_UNUSED(timetype);
if(comptime.month<1 || comptime.month>12){
cdError("Error on time conversion: invalid month = %hd\n",comptime.month);
return 1;
}
if(comptime.day<1 || comptime.day>31){
cdError("Error on time conversion: invalid day = %hd\n",comptime.day);
return 1;
}
if(comptime.hour<0.0 || comptime.hour>24.0){
cdError("Error on time conversion: invalid hour = %lf\n",comptime.hour);
return 1;
}
return 0;
}
void
cdChar2Comp(cdCalenType timetype, char* chartime, cdCompTime* comptime)
{
double sec;
int ihr, imin, nconv;
long year;
short day;
short month;
comptime->year = CD_NULL_YEAR;
comptime->month = CD_NULL_MONTH;
comptime->day = CD_NULL_DAY;
comptime->hour = CD_NULL_HOUR;
if(timetype & cdStandardCal){
nconv = sscanf(chartime,"%ld-%hd-%hd %d:%d:%lf",&year,&month,&day,&ihr,&imin,&sec);
if(nconv==EOF || nconv==0){
cdError("Error on character time conversion, string = %s\n",chartime);
return;
}
if(nconv >= 1){
comptime->year = year;
}
if(nconv >= 2){
comptime->month = month;
}
if(nconv >= 3){
comptime->day = day;
}
if(nconv >= 4){
if(ihr<0 || ihr>23){
cdError("Error on character time conversion: invalid hour = %d\n",ihr);
return;
}
comptime->hour = (double)ihr;
}
if(nconv >= 5){
if(imin<0 || imin>59){
cdError("Error on character time conversion: invalid minute = %d\n",imin);
return;
}
comptime->hour += (double)imin/60.;
}
if(nconv >= 6){
if(sec<0.0 || sec>60.0){
cdError("Error on character time conversion: invalid second = %lf\n",sec);
return;
}
comptime->hour += sec/3600.;
}
}
else{ /* Climatological */
nconv = sscanf(chartime,"%hd-%hd %d:%d:%lf",&month,&day,&ihr,&imin,&sec);
if(nconv==EOF || nconv==0){
cdError("Error on character time conversion, string = %s",chartime);
return;
}
if(nconv >= 1){
comptime->month = month;
}
if(nconv >= 2){
comptime->day = day;
}
if(nconv >= 3){
if(ihr<0 || ihr>23){
cdError("Error on character time conversion: invalid hour = %d\n",ihr);
return;
}
comptime->hour = (double)ihr;
}
if(nconv >= 4){
if(imin<0 || imin>59){
cdError("Error on character time conversion: invalid minute = %d\n",imin);
return;
}
comptime->hour += (double)imin/60.;
}
if(nconv >= 5){
if(sec<0.0 || sec>60.0){
cdError("Error on character time conversion: invalid second = %lf\n",sec);
return;
}
comptime->hour += sec/3600.;
}
}
(void)cdValidateTime(timetype,*comptime);
}
/* Convert ct to relunits (unit, basetime) */
/* in the mixed Julian/Gregorian calendar. */
/* unit is anything but year, season, month. unit and basetime are */
/* from the parsed relunits. Return result in reltime. */
static void
cdComp2RelMixed(cdCompTime ct, cdUnitTime unit, cdCompTime basetime, double *reltime){
double hourdiff;
hourdiff = cdDiffMixed(ct, basetime);
*reltime = cdFromHours(hourdiff, unit);
}
static void
cdComp2Rel(cdCalenType timetype, cdCompTime comptime, char* relunits, double* reltime)
{
cdCompTime base_comptime;
CdDeltaTime deltime;
CdTime humantime;
CdTimeType old_timetype;
cdUnitTime unit;
double base_etm, etm, delta;
long ndel, hoursInYear;
/* Parse the relunits */
if(cdParseRelunits(timetype, relunits, &unit, &base_comptime))
return;
/* Handle mixed Julian/Gregorian calendar */
if (timetype == cdMixed){
switch(unit){
case cdWeek: case cdDay: case cdHour: case cdMinute: case cdSecond:
cdComp2RelMixed(comptime, unit, base_comptime, reltime);
return;
case cdYear: case cdSeason: case cdMonth:
timetype = cdStandard;
break;
case cdFraction:
cdError("invalid unit in conversion");
break;
default: break;
}
}
/* Convert basetime to epochal */
humantime.year = base_comptime.year;
humantime.month = base_comptime.month;
humantime.day = base_comptime.day;
humantime.hour = base_comptime.hour;
humantime.baseYear = 1970;
/* Map to old-style timetype */
if(cdToOldTimetype(timetype,&old_timetype))
return;
humantime.timeType = old_timetype;
Cdh2e(&humantime,&base_etm);
/* Map end time to epochal */
humantime.year = comptime.year;
humantime.month = comptime.month;
humantime.day = comptime.day;
humantime.hour = comptime.hour;
Cdh2e(&humantime,&etm);
/* Calculate relative time value for months or hours */
deltime.count = 1;
/* Coverity[MIXED_ENUMS] */
deltime.units = (CdTimeUnit)unit;
switch(unit){
case cdWeek: case cdDay: case cdHour: case cdMinute: case cdSecond:
delta = etm - base_etm;
if(!(timetype & cdStandardCal)){ /* Climatological time */
hoursInYear = (timetype & cd365Days) ? 8760. : (timetype & cdHasLeap) ? 8784. : 8640.;
/* Normalize delta to interval [0,hoursInYear) */
if(delta < 0.0 || delta >= hoursInYear) {
double down = ((double)delta)/((double)hoursInYear);
down = floor(down);
down = down * (double)hoursInYear;
delta = delta - down;
}
}
break;
case cdYear: case cdSeason: case cdMonth:
CdDivDelTime(base_etm, etm, deltime, old_timetype, 1970, &ndel);
break;
case cdFraction:
cdError("invalid unit in conversion");
break;
default: break;
}
/* Convert to output units */
switch(unit){
case cdSecond:
*reltime = 3600.0 * delta;
break;
case cdMinute:
*reltime = 60.0 * delta;
break;
case cdHour:
*reltime = delta;
break;
case cdDay:
*reltime = delta/24.0;
break;
case cdWeek:
*reltime = delta/168.0;
break;
case cdMonth: case cdSeason: case cdYear: /* Already in correct units */
if(timetype & cdStandardCal)
*reltime = (base_etm <= etm) ? (double)ndel : (double)(-ndel);
else /* Climatological time is already normalized*/
*reltime = (double)ndel;
break;
default:
cdError("invalid unit in conversion");
break;
}
}
/* Add (value,unit) to comptime. */
/* value is in hours. */
/* calendar is anything but cdMixed. */
static void
cdCompAdd(cdCompTime comptime, double value, cdCalenType calendar, cdCompTime *result){
double reltime;
cdComp2Rel(calendar, comptime, "hours", &reltime);
reltime += value;
cdRel2Comp(calendar, "hours", reltime, result);
}
/* Add value in hours to ct, in the mixed Julian/Gregorian
* calendar. */
static void
cdCompAddMixed(cdCompTime ct, double value, cdCompTime *result){
double xj, xg;
if (cdCompCompare(ct, ZB) == -1){
xj = cdDiffJulian(ZA, ct);
if (value <= xj){
cdCompAdd(ct, value, cdJulian, result);
}
else {
cdCompAdd(ZB, value-xj, cdStandard, result);
}
}
else {
xg = cdDiffGregorian(ZB, ct);
if (value > xg){
cdCompAdd(ct, value, cdStandard, result);
}
else {
cdCompAdd(ZA, value-xg, cdJulian, result);
}
}
}
/* Return value expressed in hours. */
static double
cdToHours(double value, cdUnitTime unit){
double result = 0;
switch(unit){
case cdSecond:
result = value/3600.0;
break;
case cdMinute:
result = value/60.0;
break;
case cdHour:
result = value;
break;
case cdDay:
result = 24.0 * value;
break;
case cdWeek:
result = 168.0 * value;
break;
default:
cdError("invalid unit in conversion");
break;
}
return result;
}
/* Convert relative time (reltime, unit, basetime) to comptime in the
* mixed Julian/Gregorian calendar. unit is anything but year, season,
* month. unit and basetime are from the parsed relunits. Return
* result in comptime. */
static void
cdRel2CompMixed(double reltime, cdUnitTime unit, cdCompTime basetime, cdCompTime *comptime){
reltime = cdToHours(reltime, unit);
cdCompAddMixed(basetime, reltime, comptime);
}
static void
cdRel2Comp(cdCalenType timetype, char* relunits, double reltime, cdCompTime* comptime)
{
CdDeltaTime deltime;
CdTime humantime;
CdTimeType old_timetype;
cdCompTime base_comptime;
cdUnitTime unit, baseunits;
double base_etm, result_etm;
double delta;
long idelta;
/* Parse the relunits */
if(cdParseRelunits(timetype, relunits, &unit, &base_comptime))
return;
if (timetype == cdMixed){
switch(unit){
case cdWeek: case cdDay: case cdHour: case cdMinute: case cdSecond:
cdRel2CompMixed(reltime, unit, base_comptime, comptime);
return;
case cdYear: case cdSeason: case cdMonth:
timetype = cdStandard;
break;
case cdFraction:
cdError("invalid unit in conversion");
break;
default: break;
}
}
baseunits =cdBadUnit;
switch(unit){
case cdSecond:
delta = reltime/3600.0;
baseunits = cdHour;
break;
case cdMinute:
delta = reltime/60.0;
baseunits = cdHour;
break;
case cdHour:
delta = reltime;
baseunits = cdHour;
break;
case cdDay:
delta = 24.0 * reltime;
baseunits = cdHour;
break;
case cdWeek:
delta = 168.0 * reltime;
baseunits = cdHour;
break;
case cdMonth:
idelta = (long)(reltime + (reltime<0 ? -1.e-10 : 1.e-10));
baseunits = cdMonth;
break;
case cdSeason:
idelta = (long)(3.0 * reltime + (reltime<0 ? -1.e-10 : 1.e-10));
baseunits = cdMonth;
break;
case cdYear:
idelta = (long)(12 * reltime + (reltime<0 ? -1.e-10 : 1.e-10));
baseunits = cdMonth;
break;
default:
cdError("invalid unit in conversion");
break;
}
deltime.count = 1;
/* Coverity[MIXED_ENUMS] */
deltime.units = (CdTimeUnit)baseunits;
humantime.year = base_comptime.year;
humantime.month = base_comptime.month;
humantime.day = base_comptime.day;
humantime.hour = base_comptime.hour;
humantime.baseYear = 1970;
/* Map to old-style timetype */
if(cdToOldTimetype(timetype,&old_timetype))
return;
humantime.timeType = old_timetype;
Cdh2e(&humantime,&base_etm);
/* If months, seasons, or years, */
if(baseunits == cdMonth){
/* Calculate new epochal time from integer months. */
/* Convert back to human, then comptime. */
/* For zero reltime, just return the basetime*/
if(reltime != 0.0){
CdAddDelTime(base_etm,idelta,deltime,old_timetype,1970,&result_etm);
Cde2h(result_etm, old_timetype, 1970, &humantime);
}
}
/* Calculate new epochal time. */
/* Convert back to human, then comptime. */
else if(baseunits == cdHour){
Cde2h(base_etm+delta, old_timetype, 1970, &humantime);
}
comptime->year = humantime.year;
comptime->month = humantime.month;
comptime->day = humantime.day;
comptime->hour = humantime.hour;
}
/* rkr: output as ISO 8601 strings */
static void
cdComp2Iso(cdCalenType timetype, int separator, cdCompTime comptime, char* time, size_t time_size)
{
double dtmp, sec;
int ihr, imin, isec;
int nskip;
const double epssec = 0.5e-6; /* microsecond*/
const double epsmin = epssec / 60.; /*maximum error for comptime.hour < 24 , in hour */
const double epshr = epsmin / 60.; /*maximum error for comptime.hour < 24 , in hour */
if(cdValidateTime(timetype,comptime))
return;
ihr = (int)(comptime.hour + epshr);
dtmp = 60.0 * (comptime.hour - (double)ihr);
imin = (int)(dtmp + epsmin);
sec = 60.0 * (dtmp - (double)imin);
isec = (int)(sec + epssec);
if( sec - isec < epssec)
if(isec == 0)
if(imin == 0)
if(ihr == 0)
nskip = 4;
else
nskip = 3;
else
nskip = 2;
else
nskip = 1;
else
nskip = 0;
if(timetype & cdStandardCal){
switch (nskip) {
case 0: /* sec != 0 && (int)sec != sec */
snprintf(time,time_size,"%4.4ld-%2.2hd-%2.2hd%c%2.2d:%2.2d:%lf",
comptime.year,comptime.month,comptime.day,separator,ihr,imin,sec);
break;
case 1:
snprintf(time,time_size,"%4.4ld-%2.2hd-%2.2hd%c%2.2d:%2.2d:%2.2d",
comptime.year,comptime.month,comptime.day,separator,ihr,imin,isec);
break;
case 2:
snprintf(time,time_size,"%4.4ld-%2.2hd-%2.2hd%c%2.2d:%2.2d",
comptime.year,comptime.month,comptime.day,separator,ihr,imin);
break;
case 3:
snprintf(time,time_size,"%4.4ld-%2.2hd-%2.2hd%c%2.2d",
comptime.year,comptime.month,comptime.day,separator,ihr);
break;
case 4:
snprintf(time,time_size,"%4.4ld-%2.2hd-%2.2hd",
comptime.year,comptime.month,comptime.day);
break;
}
}
else { /* Climatological */
switch (nskip) {
case 0: /* sec != 0 && (int)sec != sec */
snprintf(time,time_size,"%2.2hd-%2.2hd%c%2.2d:%2.2d:%lf",
comptime.month,comptime.day,separator,ihr,imin,sec);
break;
case 1:
snprintf(time,time_size,"%2.2hd-%2.2hd%c%2.2d:%2.2d:%2.2d",
comptime.month,comptime.day,separator,ihr,imin,isec);
break;
case 2:
snprintf(time,time_size,"%2.2hd-%2.2hd%c%2.2d:%2.2d",
comptime.month,comptime.day,separator,ihr,imin);
break;
case 3:
snprintf(time,time_size,"%2.2hd-%2.2hd%c%2.2d",
comptime.month,comptime.day,separator,ihr);
break;
case 4:
snprintf(time,time_size,"%2.2hd-%2.2hd",
comptime.month,comptime.day);
break;
}
}
}
/* rkr: added for output closer to ISO 8601 */
void
cdRel2Iso(cdCalenType timetype, char* relunits, int separator, double reltime, char* chartime, size_t chartime_size)
{
cdCompTime comptime;
cdRel2Comp(timetype, relunits, reltime, &comptime);
cdComp2Iso(timetype, separator, comptime, chartime, chartime_size);
}
int
cdSetErrOpts(int opts)
{
int old = cuErrOpts;
cuErrOpts = opts;
return old;
}