mirror of
https://github.com/Unidata/netcdf-c.git
synced 2025-01-24 16:04:40 +08:00
1438 lines
60 KiB
HTML
1438 lines
60 KiB
HTML
<html><!-- InstanceBegin template="/Templates/MyUnidata.dwt" codeOutsideHTMLIsLocked="true" -->
|
||
|
||
<head>
|
||
<!-- InstanceBeginEditable name="Title" -->
|
||
<TITLE>Introduction to FAN Language and Utilities </TITLE> <link rel="shortcut icon" href="https://www.unidata.ucar.edu/favicon.ico" type="image/x-icon" />
|
||
|
||
</head>
|
||
|
||
<body>
|
||
<!-- InstanceBeginEditable name="Content Goes Here" -->
|
||
<h1 align="center">Introduction to FAN Language and Utilities <br />
|
||
FAN Version 2.0 <br />
|
||
</h1>
|
||
<h3 align="center">Harvey Davies <br />
|
||
CSIRO Division of Atmospheric Research, <br />
|
||
Private Bag No. 1, Mordialloc 3195, Australia <br />
|
||
email: hld@dar.csiro.au <br />
|
||
<br />
|
||
Scientific Visitor from January to August 1996 at <br />
|
||
UCAR/Unidata Program Center, <br />
|
||
P.O. Box 3000, Boulder, Colorado 80307-3000, USA <br />
|
||
email: hld@ucar.edu <br />
|
||
</h3>
|
||
<hr />
|
||
<h1>Introduction</h1>
|
||
<p><em>FAN (File Array Notation)</em> is an array-oriented language for identifying
|
||
data items in files for the purpose of extraction or modification. FAN specifications
|
||
consist of</p>
|
||
<ul>
|
||
<li>one or more filenames</li>
|
||
<li>one or more variable (array) names or ID numbers</li>
|
||
<li>attribute names or ID numbers (optional)</li>
|
||
<li>dimension names or ID numbers (optional)</li>
|
||
<li>subscripts in various possible forms (optional)</li>
|
||
</ul>
|
||
<p>NetCDF is the only format currently supported. However FAN is intended to be
|
||
generic and it is hoped that there will eventually also be FAN interfaces to
|
||
various other formats.</p>
|
||
<p>This document describes the FAN language and four utilities based on FAN. The
|
||
use of these utilities can greatly decrease the need for programming in Fortran
|
||
or C. They can be called from the Unix command line and shell scripts.</p>
|
||
<p>The first is <tt><b>nc2text</b></tt> which prints selected data from netCDF
|
||
variables. The standard utility <tt><b>ncdump</b></tt> can also print data from
|
||
netCDF variables, but only entire variables and only together with metadata
|
||
in CDL form.</p>
|
||
<p>The second is <tt><b>ncmeta</b></tt> which prints selected metadata from one
|
||
or more netCDF files. This metadata can include rank, shape, file names, variable
|
||
names, dimension names and attribute names.</p>
|
||
<p>The third is <tt><b>ncrob</b></tt> which reads data from one or more netCDF
|
||
variables, performs some process on it and then either prints the result or
|
||
writes it to a netCDF array. The letters `<tt><b>rob</b></tt>' in `<tt><b>ncrob</b></tt>'
|
||
stand for <em>Reduce Or Broadcast</em>. <em>Reduce</em> means to produce an
|
||
array (e.g. sum, mean, maximum) with less dimensions than the original. <em>Broadcast</em>
|
||
means to copy one array to another, recycling values if necessary. An example
|
||
is copying the same vector to each row of a matrix. It is possible to process
|
||
large volumes of data (e.g. 100 MB) using <tt><b>ncrob</b></tt>.</p>
|
||
<p>The fourth is <tt><b>text2nc</b></tt> which can be used to read small volumes
|
||
(say up to a few thousand lines) of ASCII data and copy it into netCDF variables.
|
||
It is also possible to use <tt><b>text2nc</b></tt> to create, modify and delete
|
||
attributes.</p>
|
||
<p>This document does not cover other ways of using FAN. These include some local
|
||
(CSIRO DAR) utilities (e.g. contouring program <tt><b>con_cif</b></tt>), the
|
||
array-oriented languages IDL and J (for which there are FAN interfaces) and
|
||
direct use of the C API (application programmer interface).</p>
|
||
<h2>Simple Examples</h2>
|
||
<p>Let us start with a simple netCDF file <tt><b>vec.nc</b></tt> which is printed
|
||
(in CDL) as follows:</p>
|
||
<pre>
|
||
<strong>$ ncdump vec.nc
|
||
netcdf vec {
|
||
dimensions:
|
||
n = UNLIMITED ; // (5 currently)
|
||
variables:
|
||
float v(n) ;
|
||
data:
|
||
v = 10 , 20.3 , 30.2 , 40.9 , 50 ;
|
||
}
|
||
</strong>
|
||
</pre>
|
||
<p>Here `<tt><b>$</b></tt>' is the UNIX command-line prompt. The following
|
||
uses <tt><b>nc2text</b></tt> to print the whole array <tt><b>v</b></tt>:</p>
|
||
<pre>
|
||
<strong>$ nc2text vec.nc v
|
||
10 20.3 30.2 40.9 50
|
||
</strong>
|
||
</pre>
|
||
<p>Individual elements can be selected using subscripts. For example:</p>
|
||
<pre>
|
||
<strong>$ nc2text vec.nc 'v[0]'
|
||
10
|
||
$ nc2text vec.nc 'v[3]'
|
||
40.9
|
||
</strong>
|
||
</pre>
|
||
<p>Several can be selected using a subscript consisting of a list of indices such
|
||
as:</p>
|
||
<pre>
|
||
<strong>$ nc2text vec.nc 'v[0 3 1 3]'
|
||
10 40.9 20.3 40.9
|
||
</strong>
|
||
</pre>
|
||
<p>We can write to a netCDF file using <tt><b>text2nc</b></tt>. The following
|
||
changes the third element from 30.2 to 30.7 and then prints <tt><b>v</b></tt>:</p>
|
||
<pre>
|
||
<strong>$ echo 30.7 | text2nc vec.nc 'v[2]'
|
||
$ nc2text vec.nc v
|
||
10 20.3 30.7 40.9 50
|
||
</strong>
|
||
</pre>
|
||
<p>Here <tt><b>text2nc</b></tt> reads ASCII text data from standard input, which
|
||
in this case is a pipe connected to the standard output of <tt><b>echo</b></tt>.
|
||
Since the dimension has <tt><b>UNLIMITED</b></tt> size, we can append values
|
||
as follows:</p>
|
||
<pre>
|
||
<strong>$ echo 60.5 70.2 | text2nc vec.nc 'v[5 6]'
|
||
$ nc2text vec.nc v
|
||
10 20.3 30.7 40.9 50 60.5 70.2
|
||
</strong>
|
||
</pre>
|
||
<p>Next we use <tt><b>ncrob</b></tt> to calculate and print the arithmetic mean
|
||
of <tt><b>v</b></tt>.</p>
|
||
<pre>
|
||
<strong>$ ncrob -r am vec.nc v /
|
||
40.3714
|
||
</strong>
|
||
</pre>
|
||
<p>The option <tt><b>-r am</b></tt> specifies that an <em>arithmetic mean</em>
|
||
is to be calculated. The following example stores the mean in the same file,
|
||
naming the variable <tt><b>v_mean</b></tt>:</p>
|
||
<pre>
|
||
<strong>$ ncrob -r am vec.nc v / v_mean
|
||
$ nc2text vec.nc v_mean
|
||
40.3714
|
||
</strong>
|
||
</pre>
|
||
<p>The `<tt><b>/</b></tt>' separates the input from the output. If no output
|
||
is specified then results are printed. In fact <tt><b>ncrob</b></tt> can be
|
||
used in place of <tt><b>nc2text</b></tt> to print data from a netCDF file. E.g.</p>
|
||
<pre>
|
||
<strong>$ ncrob vec.nc v /
|
||
10 20.3 30.7 40.9 50 60.5 70.2
|
||
$ ncrob vec.nc v_mean /
|
||
40.3714
|
||
</strong>
|
||
</pre>
|
||
<p>Finally we use <tt><b>ncmeta</b></tt> to print metadata. The shape is printed
|
||
by:</p>
|
||
<pre>
|
||
<strong>$ ncmeta v vec.nc
|
||
5
|
||
</strong>
|
||
</pre>
|
||
<p>and the following prints the variable name, dimension name and shape:</p>
|
||
<pre>
|
||
<strong>$ ncmeta -w vds v vec.nc
|
||
v n 5
|
||
</strong>
|
||
</pre>
|
||
<h2>What is New in Version 2?</h2>
|
||
<p>The utility <tt><b>ncmeta</b></tt> is new.</p>
|
||
<p>There are significant enhancements to the utility <tt><b>ncrob</b></tt>. It
|
||
can now print results as well as write them to netCDF files. (This means that
|
||
<tt><b>nc2text</b></tt> is no longer really needed.) In version 1 the output
|
||
FAN specification could only be a single (final) argument. There can now be
|
||
zero (implying printed output) or more output arguments following a `<tt><b>/</b></tt>'
|
||
which separates input arguments from output arguments. (The old convention is
|
||
deprecated but still supported.) It is now possible to create new variables
|
||
without specifying the <tt><b>-c</b></tt> option or an output filename. There
|
||
is a facility for merging dimensions. There are several new options related
|
||
to printing and similar to those of <tt><b>nc2text</b></tt>. A number of bugs
|
||
in <tt><b>ncrob</b></tt> have been fixed, including one with a serious effect
|
||
on speed.</p>
|
||
<h1>FAN Language</h1>
|
||
<p><a id="High_level_Syntax" name="High_level_Syntax"></a></p>
|
||
<h2>High-level Syntax</h2>
|
||
<p>A FAN specification can be either a single command-line argument or span several
|
||
arguments. Use of multiple arguments decreases the need for quoting and allows
|
||
use of UNIX <em>wildcarding</em> (a.k.a. <em>globbing</em>) facilities. A FAN
|
||
specification can have any of the following forms:</p>
|
||
<center>
|
||
<table border="1" summary="syntax meaning">
|
||
<tr>
|
||
<td><b>Syntax</b> </td>
|
||
<td><b>Meaning</b></td>
|
||
</tr>
|
||
<tr>
|
||
<td><em>fanio</em> <tt><b>/</b></tt> <em>fanio</em> </td>
|
||
<td>netCDF input and netCDF output</td>
|
||
</tr>
|
||
<tr>
|
||
<td><em>fanio</em> <tt><b>/</b></tt> </td>
|
||
<td>netCDF input and output to <tt><b>stdout</b></tt> (i.e. printed)</td>
|
||
</tr>
|
||
<tr>
|
||
<td><em>fanio</em> </td>
|
||
<td>Either netCDF input or netCDF output (but not both)</td>
|
||
</tr>
|
||
</table>
|
||
</center>
|
||
<p>where <em>fanio</em> is a FAN input/output specification, which has the form:
|
||
<br />
|
||
<em>pair</em> <tt><b>;</b></tt> <em>pair</em> <tt><b>;</b></tt> <em>pair</em>
|
||
<tt><b>;</b></tt> ... <br />
|
||
A semicolon (`<tt><b>;</b></tt>') has the same effect as commencing a new
|
||
argument. Any sequence of one or more whitespace characters (space, tab, newline)
|
||
is equivalent to a single space.</p>
|
||
<p>A <em>pair</em> can take any of the following forms: <br />
|
||
<em>filename vas</em> <br />
|
||
<em>vas filename</em> <br />
|
||
<em>filename</em> <br />
|
||
<em>vas</em> <br />
|
||
</p>
|
||
<p>A <em>filename</em> must contain at least one period (`<tt><b>.</b></tt>')
|
||
to distinguish it from a variable name. This will be the case if netCDF filenames
|
||
have a conventional suffix such as the recommended <tt><b>.nc</b></tt>. (In
|
||
any case it is always possible to prefix a redundant `<tt><b>./</b></tt>'
|
||
directory as in `<tt><b>./unconventional</b></tt>' or `<tt><b>/usr/./IdidItMyWay</b></tt>'!)</p>
|
||
<p>A <em>vas</em> is a <em>variable or attribute specification</em> which can
|
||
have any of the following forms: <br />
|
||
<em>var</em> <br />
|
||
<em>var</em><tt><b>[</b></tt><em>subscript</em><tt><b>,</b></tt> <em>subscript</em><tt><b>,</b></tt>
|
||
<em>subscript</em><tt><b>,</b></tt> ...<tt><b>]</b></tt> <br />
|
||
<em>var</em><tt><b>[</b></tt><em>subscript</em><tt><b>,</b></tt> <em>subscript</em><tt><b>,</b></tt>
|
||
<em>subscript</em><tt><b>,</b></tt> ...<tt><b>)</b></tt> <br />
|
||
<em>var</em><tt><b>(</b></tt><em>subscript</em><tt><b>,</b></tt> <em>subscript</em><tt><b>,</b></tt>
|
||
<em>subscript</em><tt><b>,</b></tt> ...<tt><b>]</b></tt> <br />
|
||
<em>var</em><tt><b>(</b></tt><em>subscript</em><tt><b>,</b></tt> <em>subscript</em><tt><b>,</b></tt>
|
||
<em>subscript</em><tt><b>,</b></tt> ...<tt><b>)</b></tt> <br />
|
||
<em>var</em><tt><b>:</b></tt><em>att</em> <br />
|
||
<tt><b>:</b></tt><em>att</em> <br />
|
||
where <em>var</em> is a variable name or ID number and <em>att</em> is an attribute
|
||
name or ID number. It is usually more convenient to identify variables, attributes
|
||
and dimensions by name rather than ID number. The use of ID numbers is discussed
|
||
in Section <a
|
||
href="#Using_ID_Numbers"><em>Using ID Numbers</em></a>. Attributes are discussed
|
||
in Section <a
|
||
href="#Attributes"><em>Attributes</em></a>.</p>
|
||
<p>A pair without a <em>filename</em> or <em>vas</em> uses that of the previous
|
||
pair. The first pair has no effect by itself unless it contains both a <em>filename</em>
|
||
and a <em>vas</em>. Thus the following all access the same values:</p>
|
||
<pre>
|
||
<strong>$ nc2text 'vec.nc v[0 4]'
|
||
10 50
|
||
$ nc2text 'v[0 4] vec.nc'
|
||
10 50
|
||
$ nc2text vec.nc 'v[0 4]'
|
||
10 50
|
||
$ nc2text 'v[0 4]' vec.nc
|
||
10 50
|
||
$ nc2text ' v [ 0 4 ] vec.nc '
|
||
10 50
|
||
</strong>
|
||
</pre>
|
||
<p>The following are equivalent ways of concatenating variables <tt><b>v</b></tt>
|
||
and <tt><b>v_mean</b></tt>:</p>
|
||
<pre>
|
||
<strong>$ nc2text 'vec.nc v' 'vec.nc v_mean'
|
||
10 20.3 30.7 40.9 50 60.5 70.2
|
||
40.3714
|
||
$ nc2text 'vec.nc v' 'v_mean'
|
||
10 20.3 30.7 40.9 50 60.5 70.2
|
||
40.3714
|
||
$ nc2text 'vec.nc v; v_mean'
|
||
10 20.3 30.7 40.9 50 60.5 70.2
|
||
40.3714
|
||
$ nc2text vec.nc v v_mean
|
||
10 20.3 30.7 40.9 50 60.5 70.2
|
||
40.3714
|
||
</strong>
|
||
</pre>
|
||
<p>Now let us copy file <tt><b>vec.nc</b></tt> to <tt><b>vec_new.nc</b></tt> and
|
||
then demonstrate concatenation of data from different files:</p>
|
||
<pre>
|
||
<strong>$ cp vec.nc vec_new.nc
|
||
$ nc2text v vec.nc vec_new.nc
|
||
10 20.3 30.7 40.9 50 60.5 70.2
|
||
10 20.3 30.7 40.9 50 60.5 70.2
|
||
$ nc2text v vec*.nc
|
||
10 20.3 30.7 40.9 50 60.5 70.2
|
||
10 20.3 30.7 40.9 50 60.5 70.2
|
||
</strong>
|
||
</pre>
|
||
<p>Note the use of UNIX <em>wildcarding</em> facilities in the latter example
|
||
using the <em>metacharacter</em> `<tt><b>*</b></tt>' in <tt><b>vec*.nc</b></tt>
|
||
which matches both <tt><b>vec.nc</b></tt> and <tt><b>vec_new.nc</b></tt>.</p>
|
||
<h2>Subscripts</h2>
|
||
<p>As mentioned in Section <a href="#High_level_Syntax"><em>High level Syntax</em></a>,
|
||
subscripts are enclosed by either `<tt><b>[</b></tt>' or `<tt><b>(</b></tt>'
|
||
on the left and either `<tt><b>]</b></tt>' or `<tt><b>)</b></tt>' on
|
||
the right.</p>
|
||
<p>A left bracket `<tt><b>[</b></tt>' implies the C convention of starting
|
||
subscripts at 0; while a left parenthesis `<tt><b>(</b></tt>' implies the
|
||
Fortran convention of starting at 1. This starting value of 0 or 1 is called
|
||
the <em>index origin</em>. A mnemonic to associate <em>left</em> with <em>index
|
||
origin</em> is an <em>x-axis with the origin on the left</em>.</p>
|
||
<p>The right hand delimiter controls the relative significance of multiple dimensions.
|
||
A `<tt><b>]</b></tt>' implies conventional <em>row-major</em> (or <em>lexicographic</em>)
|
||
order in which the rightmost subscript varies fastest; while a `<tt><b>)</b></tt>'
|
||
implies the Fortran convention of <em>column-major</em> order in which the leftmost
|
||
subscript varies fastest.</p>
|
||
<p>So far our examples have involved only a single dimension. Now consider a netCDF
|
||
file <tt><b>mat.nc</b></tt> containing a 2-dimensional array (i.e. a matrix).
|
||
We print it as follows:</p>
|
||
<pre>
|
||
<strong>$ ncdump mat.nc
|
||
netcdf mat {
|
||
dimensions:
|
||
row = 2 ;
|
||
col = 3 ;
|
||
variables:
|
||
short M(row, col) ;
|
||
data:
|
||
M =
|
||
11, 12, 13,
|
||
21, 22, 23 ;
|
||
}
|
||
</strong>
|
||
</pre>
|
||
<p>The following are equivalent ways of printing the final element:</p>
|
||
<pre>
|
||
<strong>$ nc2text 'mat.nc M[1,2]'
|
||
23
|
||
$ nc2text 'mat.nc M(2,3]'
|
||
23
|
||
$ nc2text 'mat.nc M(3,2)'
|
||
23
|
||
$ nc2text 'mat.nc M[2,1)'
|
||
23
|
||
</strong>
|
||
</pre>
|
||
<p>Subscript values can be less than the index origin and are then relative to
|
||
the end. So the final element could also be accessed by:</p>
|
||
<pre>
|
||
<strong>$ nc2text 'mat.nc M[-1,-1]'
|
||
23
|
||
$ nc2text 'mat.nc M(0,0)'
|
||
23
|
||
</strong>
|
||
</pre>
|
||
<p>As we have seen before, a subscript can contain a list of indices. Thus one
|
||
could use any of the following to select all rows, but exclude the middle column:</p>
|
||
<pre>
|
||
<strong>$ nc2text mat.nc 'M[0 1,0 2]'
|
||
11 13
|
||
21 23
|
||
$ nc2text mat.nc 'M(1 2,1 3]'
|
||
11 13
|
||
21 23
|
||
$ nc2text mat.nc 'M(1 3,1 2)'
|
||
11 13
|
||
21 23
|
||
</strong>
|
||
</pre>
|
||
<h3>Triplet Notation</h3>
|
||
<p>A sequence of indices forming an <em>arithmetic progression</em> as in</p>
|
||
<pre>
|
||
<strong>$ nc2text vec.nc 'v[0 2 4 6]'
|
||
10 30.7 50 70.2
|
||
</strong>
|
||
</pre>
|
||
<p>can be specified using a generalization of Fortran 90 <em>triplet notation</em>,
|
||
in this case:</p>
|
||
<pre>
|
||
<strong>$ nc2text vec.nc 'v[0:6:2]'
|
||
10 30.7 50 70.2
|
||
</strong>
|
||
</pre>
|
||
<p>The triplet <tt><b>0:6:2</b></tt> means <em>0 to 6 in steps of 2</em>. A <em>triplet</em>
|
||
can take two forms: <br />
|
||
<em>start</em><tt><b>:</b></tt><em>finish</em><tt><b>:</b></tt><em>stride</em>
|
||
<br />
|
||
<em>start</em><tt><b>:</b></tt><em>finish</em> <br />
|
||
The second form implies a stride of 1. It is possible to omit <em>start</em>
|
||
and/or <em>finish</em>. Let <var>I</var> be the index-origin (0
|
||
or 1). If the stride is positive then <em>start</em> defaults to <var>I</var>
|
||
(i.e. first element) and <em>finish</em> to <var>I</var>-1 (i.e.
|
||
final element). These are reversed for a negative stride; <em>start</em> defaults
|
||
to <var>I</var>-1 and <em>finish</em> to <var>I</var>. E.g.</p>
|
||
<pre>
|
||
<strong>$ nc2text vec.nc v
|
||
10 20.3 30.7 40.9 50 60.5 70.2
|
||
$ nc2text vec.nc 'v[:6:2]'
|
||
10 30.7 50 70.2
|
||
$ nc2text vec.nc 'v[0::2]'
|
||
10 30.7 50 70.2
|
||
$ nc2text vec.nc 'v[::2]'
|
||
10 30.7 50 70.2
|
||
$ nc2text vec.nc 'v[0:2]'
|
||
10 20.3 30.7
|
||
$ nc2text vec.nc 'v[:2]'
|
||
10 20.3 30.7
|
||
$ nc2text vec.nc 'v[2:]'
|
||
30.7 40.9 50 60.5 70.2
|
||
$ nc2text vec.nc 'v[::-1]'
|
||
70.2 60.5 50 40.9 30.7 20.3 10
|
||
</strong>
|
||
</pre>
|
||
<p>Note how the latter example reverses the order. A triplet can wrap-around the
|
||
start or end. This is useful with cyclic dimensions such as longitude. Wrap-around
|
||
is shown by:</p>
|
||
<pre>
|
||
<strong>$ nc2text vec.nc 'v[3:1]'
|
||
40.9 50 60.5 70.2 10 20.3
|
||
$ nc2text vec.nc 'v[1:3:-1]'
|
||
20.3 10 70.2 60.5 50 40.9
|
||
</strong>
|
||
</pre>
|
||
<p>But the following does not imply wrap-around:</p>
|
||
<pre>
|
||
<strong>$ nc2text vec.nc 'v[0:-1:1]'
|
||
10 20.3 30.7 40.9 50 60.5 70.2
|
||
</strong>
|
||
</pre>
|
||
<p>since <tt><b>-1</b></tt> means <em>final</em> (i.e. same as <tt><b>6</b></tt>).
|
||
Each subscript can contain any number of triplets and individual values. The
|
||
colon (<tt><b>:</b></tt>) operator has higher precedence than concatenation.
|
||
This is shown by the following:</p>
|
||
<pre>
|
||
<strong>$ nc2text vec.nc 'v[2 :4]'
|
||
30.2 40.9 50
|
||
</strong>
|
||
</pre>
|
||
<p>which is equivalent to:</p>
|
||
<pre>
|
||
<strong>$ nc2text vec.nc 'v[2:4]'
|
||
30.2 40.9 50
|
||
</strong>
|
||
</pre>
|
||
<p>However parentheses can be used to override this precedence rule. E.g.</p>
|
||
<pre>
|
||
<strong>$ nc2text vec.nc 'v[2 (:4)]'
|
||
30.2 10 20.3 30.2 40.9 50
|
||
</strong>
|
||
</pre>
|
||
<h3>Omitting Subscripts</h3>
|
||
<p>An omitted subscript implies the whole dimension. Thus we can print the first
|
||
row of <tt><b>mat</b></tt> as follows:</p>
|
||
<pre>
|
||
<strong>$ nc2text mat.nc 'M[0]'
|
||
11 12 13
|
||
</strong>
|
||
</pre>
|
||
<p>and exclude the middle column by:</p>
|
||
<pre>
|
||
<strong>$ nc2text mat.nc 'M[,0 -1]'
|
||
11 13
|
||
21 23
|
||
</strong>
|
||
</pre>
|
||
<h3>Dimension Names</h3>
|
||
<p>Dimension names play an important role in FAN. Instead of:</p>
|
||
<pre>
|
||
<strong>$ nc2text mat.nc 'M(2 1,1 3]'
|
||
21 23
|
||
11 13
|
||
</strong>
|
||
</pre>
|
||
<p>one can use:</p>
|
||
<pre>
|
||
<strong>$ nc2text mat.nc 'M(row=2 1,col=1 3]'
|
||
21 23
|
||
11 13
|
||
</strong>
|
||
</pre>
|
||
<p>This is clearer for human readers. But specifying dimension names also provides
|
||
the important facility of transposing dimensions. For example this allows <tt><b>ncrob</b></tt>
|
||
to produce statistics (e.g. means) for rows as well as the normal columns. To
|
||
transpose the above matrix, one could specify:</p>
|
||
<pre>
|
||
<strong>$ nc2text mat.nc 'M(col=1 3,row=2 1]'
|
||
21 11
|
||
23 13
|
||
</strong>
|
||
</pre>
|
||
<p>since the order in which dimensions are specified controls their order in the
|
||
output. To transpose a whole matrix one need only specify the dimension names
|
||
as in the following:</p>
|
||
<pre>
|
||
<strong>$ nc2text mat.nc 'M[col,row]'
|
||
11 21
|
||
12 22
|
||
13 23
|
||
</strong>
|
||
</pre>
|
||
<p>or using column-major order:</p>
|
||
<pre>
|
||
<strong>$ nc2text mat.nc 'M(row,col)'
|
||
11 21
|
||
12 22
|
||
13 23
|
||
</strong>
|
||
</pre>
|
||
<p>In fact only one dimension name is needed, since any not mentioned are appended
|
||
in their input order. E.g.</p>
|
||
<pre>
|
||
<strong>$ nc2text mat.nc 'M[col]'
|
||
11 21
|
||
12 22
|
||
13 23
|
||
</strong>
|
||
</pre>
|
||
<h3>Indirect Indexing</h3>
|
||
<p>So far we have located elements using direct index values. FAN also allows
|
||
an indirect method using <em>coordinate variables</em> (i.e. variables with
|
||
the same names as dimensions). Consider the following geographic netCDF file
|
||
<tt><b>geog.nc</b></tt>:</p>
|
||
<pre>
|
||
<strong>$ ncdump geog.nc
|
||
netcdf geog {
|
||
dimensions:
|
||
lat = 3 ;
|
||
lon = 4 ;
|
||
variables:
|
||
float lat(lat) ;
|
||
lat:units = "degrees_north" ;
|
||
float lon(lon) ;
|
||
lon:units = "degrees_east" ;
|
||
double tsur(lat, lon) ;
|
||
data:
|
||
lat = -45 , 0 , 45 ;
|
||
lon = -180 , -90 , 0 , 90 ;
|
||
tsur =
|
||
11, 12, 13, 14,
|
||
21, 22, 23, 24,
|
||
31, 32, 33, 34 ;
|
||
}
|
||
</strong>
|
||
</pre>
|
||
<p>FAN provides several <em>indirect indexing operators</em>. Perhaps the most
|
||
useful of these is `<tt><b>~</b></tt>', which gives the index of the coordinate
|
||
value <em>closest to</em> its argument. Thus:</p>
|
||
<pre>
|
||
<strong>$ nc2text geog.nc 'lat[~-40]'
|
||
-45
|
||
</strong>
|
||
</pre>
|
||
<p>prints the latitude closest to 40<34>S and</p>
|
||
<pre>
|
||
<strong>$ nc2text geog.nc 'tsur[~-40,~10]'
|
||
13
|
||
</strong>
|
||
</pre>
|
||
<p>prints the element of <tt><b>tsur</b></tt> closest to the point 40<34>S, 10<31>E.
|
||
Note that FAN knows nothing about circular wrap-around and does not consider
|
||
360<36> to be equal to 0<>. The following shows how indirect indexing can be used
|
||
within triplets:</p>
|
||
<pre>
|
||
<strong>$ nc2text geog.nc 'tsur[ lat = ~90:~-90:-2 , lon = ~10: ]'
|
||
33 34
|
||
13 14
|
||
</strong>
|
||
</pre>
|
||
<p>This gives every second latitude from that closest the north pole to that closest
|
||
the south pole, and all longitudes from that closest to 10<31>E to the final one.
|
||
The other indirect indexing operators are as follows:</p>
|
||
<table border="1" summary="other @ max and min operators">
|
||
<tr>
|
||
<td><tt><b>@ max <</b></tt> </td>
|
||
<td>index value corresponding to maximum coordinate value less than argument</td>
|
||
</tr>
|
||
<tr>
|
||
<td><tt><b>@ max <=</b></tt> </td>
|
||
<td>index value corresponding to maximum coordinate value less than or equal
|
||
to argument</td>
|
||
</tr>
|
||
<tr>
|
||
<td><tt><b>@ min ></b></tt> </td>
|
||
<td>index value corresponding to minimum coordinate value greater than argument</td>
|
||
</tr>
|
||
<tr>
|
||
<td><tt><b>@ min >=</b></tt> </td>
|
||
<td>index value corresponding to minimum coordinate value greater than or
|
||
equal to argument</td>
|
||
</tr>
|
||
</table>
|
||
<p>Thus the following prints the minimum longitude greater than 10<31>E:</p>
|
||
<pre>
|
||
<strong>$ nc2text geog.nc 'lon[@ min > 10]'
|
||
90
|
||
</strong>
|
||
</pre>
|
||
<p>and the following retrieves the rows from the <em>maximum latitude less than
|
||
or equal to 30<33>N</em> to the <em>closest latitude to 90<39>N</em>, and the columns
|
||
from the second (i.e 1 with respect to index origin of 0) to <em>minimum longitude
|
||
greater than 0</em>.</p>
|
||
<pre>
|
||
<strong>$ nc2text geog.nc 'tsur[lat= @max<=30 : ~90, lon= 1 : @min > 0]'
|
||
22 23 24
|
||
32 33 34
|
||
</strong>
|
||
</pre>
|
||
<h3>Offsets</h3>
|
||
<p>It is possible to specify <em>offsets</em> using an expression of the form
|
||
<br />
|
||
<em>index</em> <tt><b>+</b></tt> <em>offset</em> <br />
|
||
where <em>offset</em> is an integer constant (which can be negative). The offset
|
||
must be the right hand argument of `<tt><b>+</b></tt>'. Note that this `<tt><b>+</b></tt>'
|
||
operator has even higher precedence than `<tt><b>:</b></tt>'. Here are some
|
||
examples of the use of offsets:</p>
|
||
<pre>
|
||
<strong>$ nc2text geog.nc 'lon[ ~-100 + -1 : ~-360 + 2 ]'
|
||
-180 -90 0
|
||
</strong>
|
||
</pre>
|
||
<p>prints the longitudes from that <em>one before the closest to 100<30>W</em> to
|
||
that <em>two beyond the closest to 360<36>W</em>. Note how the negative offset
|
||
is specified as `<tt><b>+ -1</b></tt>', which is <em>not</em> equivalent
|
||
to `<tt><b>-1</b></tt>' as in:</p>
|
||
<pre>
|
||
<strong>$ nc2text geog.nc 'lon[ ~-100-1 : ~-360 + 2 ]'
|
||
-90 90 -180 -90 0
|
||
</strong>
|
||
</pre>
|
||
<p>which is equivalent to both the following (Note the wrap-around.):</p>
|
||
<pre>
|
||
<strong>$ nc2text geog.nc 'lon[ (~-100) (-1:~-360 + 2) ]'
|
||
-90 90 -180 -90 0
|
||
$ nc2text geog.nc 'lon[ 1 3:2 ]'
|
||
-90 90 -180 -90 0
|
||
</strong>
|
||
</pre>
|
||
<p>One use for offsets is to append along the <tt><b>UNLIMITED</b></tt> dimension
|
||
without needing to know its current size. The expression `<tt><b>-1+1</b></tt>'
|
||
represents the index value for appending immediately after the current final
|
||
record. Thus we could append a value to variable <tt><b>v</b></tt> in file <tt><b>vec_new.nc</b></tt>
|
||
(whose <tt><b>UNLIMITED</b></tt> dimension <tt><b>n</b></tt> has the current
|
||
size 7) by:</p>
|
||
<pre>
|
||
<strong>$ echo 80 | text2nc 'vec_new.nc v[-1 + 1]'
|
||
$ nc2text 'vec_new.nc v'
|
||
10 20.3 30.7 40.9 50 60.5 70.2 80
|
||
</strong>
|
||
</pre>
|
||
<p>Then we could append two more values by:</p>
|
||
<pre>
|
||
<strong>$ echo 90 100.1 | text2nc 'vec_new.nc v[ -1 + 1 : -1 + 2 ]'
|
||
$ nc2text 'vec_new.nc v'
|
||
10 20.3 30.7 40.9 50 60.5 70.2 80 90 100.1
|
||
</strong>
|
||
</pre>
|
||
<p>giving a new size of 10 for the <tt><b>UNLIMITED</b></tt> dimension.</p>
|
||
<h3>Coordinate Variable Unit Conversion</h3>
|
||
<p>In file <tt><b>geog.nc</b></tt> the <tt><b>units</b></tt> attribute is <tt><b>degrees_north</b></tt>
|
||
for <tt><b>lat</b></tt> and <tt><b>degrees_east</b></tt> for <tt><b>lon</b></tt>.
|
||
One may want to specify coordinate values in some other units. The following
|
||
shows how this can be done by appending the unit (enclosed in braces i.e. `<tt><b>{}</b></tt>')
|
||
to the value:</p>
|
||
<pre>
|
||
<strong>$ nc2text geog.nc 'tsur[ lat=~0.8{radian}, lon = ~ -1.5 { radian } ]'
|
||
32
|
||
</strong>
|
||
</pre>
|
||
<p>giving the value at the point closest to latitude 0.8 radians north and longitude
|
||
1.5 radians west. This unit conversion (like that during FAN input and output)
|
||
is done using the Unidata units library discussed in Appendix C of <a
|
||
href="/software/netcdf/guide_toc.html"> NetCDF
|
||
User's Guide</a>.</p>
|
||
<p><a id="Attributes" name="Attributes"></a></p>
|
||
<h2>Attributes</h2>
|
||
<p>As noted in Section <a href="#High_level_Syntax"><em>High level Syntax</em></a>
|
||
an attribute <em>vas</em> can take two forms: <br />
|
||
<em>var</em><tt><b>:</b></tt><em>att</em> <br />
|
||
<tt><b>:</b></tt><em>att</em> <br />
|
||
As in CDL, the latter denotes a <em>global attribute</em>. The following writes
|
||
the global attribute <tt><b>title</b></tt> and then reads and prints it:</p>
|
||
<pre>
|
||
<strong>$ echo 'Sample geographic file' | text2nc -h 'geog.nc :title'
|
||
$ nc2text 'geog.nc :title'
|
||
Sample geographic file
|
||
</strong>
|
||
</pre>
|
||
<p>(The <tt><b>-h</b></tt> flag means `<em>Do not append a line to the global
|
||
attribute</em> <tt><b>history</b></tt>'.)</p>
|
||
<p>Attributes cannot have subscripts, so there is no way of accessing only part
|
||
of an attribute. Attributes are automatically created if they do not exist and
|
||
their type and size can be changed. The following gives variable <tt><b>lat</b></tt>
|
||
the new attribute <tt><b>valid_range</b></tt> (with type <tt><b>float</b></tt>)
|
||
and then prints it:</p>
|
||
<pre>
|
||
<strong>$ echo -90 90 | text2nc -h -t float 'geog.nc lat:valid_range'
|
||
$ nc2text 'geog.nc lat:valid_range'
|
||
-90 90
|
||
</strong>
|
||
</pre>
|
||
<p>The following gives variable <tt><b>lat</b></tt> another new attribute <tt><b>foo</b></tt>
|
||
(by copying variable <tt><b>v</b></tt> from file <tt><b>vec.nc</b></tt>), then
|
||
modifies it, then deletes it.</p>
|
||
<pre>
|
||
<strong>$ nc2text 'vec.nc v[:4]' | text2nc -h -t double 'geog.nc lat:foo'
|
||
$ nc2text 'geog.nc lat:foo'
|
||
10 20.3 30.2 40.9 50
|
||
$ echo 'Hello' | text2nc -h 'geog.nc lat:foo' # Modify attribute 'lat:foo'
|
||
$ nc2text 'geog.nc lat:foo'
|
||
Hello
|
||
$ text2nc -h 'geog.nc lat:foo' < /dev/null # Delete attribute 'lat:foo'
|
||
</strong>
|
||
</pre>
|
||
<p>Note how one can delete attributes by changing their size to 0. The file <tt><b>/dev/null</b></tt>
|
||
is a standard UNIX pseudo-file that is empty for input.</p>
|
||
<p><a id="Using_ID_Numbers" name="Using_ID_Numbers"></a></p>
|
||
<h2>Using ID Numbers for Variables, Dimensions and Attributes</h2>
|
||
<p>It is possible to use ID numbers in place of names for variables, dimensions
|
||
and attributes. However dimension ID numbers must be followed by <tt><b>=</b></tt>
|
||
so they can be distinguished from index values. ID numbers begin at 0 regardless
|
||
of the index origin. Negative values are relative to the end, which is represented
|
||
by <tt><b>-1</b></tt>.</p>
|
||
<p>There are some situations where ID numbers are more convenient than names.
|
||
For example, one might adopt the convention that coordinate variables should
|
||
be defined first, after which there should be only a single other (main) variable
|
||
in each file. A shell-script to process such files can refer to the main variable
|
||
as <tt><b>-1</b></tt>. The following shows the use of such a variable ID number:</p>
|
||
<pre>
|
||
<strong>$ nc2text geog.nc -1
|
||
11 12 13 14
|
||
21 22 23 24
|
||
31 32 33 34
|
||
</strong>
|
||
</pre>
|
||
<p>The following prints the first attribute of the second variable:</p>
|
||
<pre>
|
||
<strong>$ nc2text geog.nc '1:0'
|
||
degrees_east
|
||
</strong>
|
||
</pre>
|
||
<p>The following Korn shell script <tt><b>pratts</b></tt> prints all the non-global
|
||
attributes in the files specified by its arguments.</p>
|
||
<pre>
|
||
<strong>$ cat pratts
|
||
#!/bin/ksh
|
||
for FILE
|
||
do
|
||
integer VARID=0
|
||
# Following true if variable VARID exists
|
||
while VARNAME="$(ncmeta -s -w v $FILE $VARID)"; test -n "$VARNAME"
|
||
do
|
||
integer ATTID=0
|
||
# Following true if attribute ATTID exists
|
||
while ATTNAME="$(ncmeta -s -w a $FILE $VARID:$ATTID)"; test -n "$ATTNAME"
|
||
do
|
||
print -n "$FILE $VARNAME:$ATTNAME "
|
||
nc2text $FILE "$VARNAME:$ATTNAME"
|
||
(( ATTID += 1 ))
|
||
done
|
||
(( VARID += 1 ))
|
||
done
|
||
done
|
||
</strong>
|
||
</pre>
|
||
<p>We can use <tt><b>pratts</b></tt> on file <tt><b>geog.nc</b></tt> as follows:</p>
|
||
<pre>
|
||
<strong>$ pratts geog.nc
|
||
geog.nc lat:units degrees_north
|
||
geog.nc lat:valid_range -90 90
|
||
geog.nc lon:units degrees_east
|
||
</strong>
|
||
</pre>
|
||
<h1>FAN Utilities</h1>
|
||
<h2>Introduction to Utilities</h2>
|
||
<p>This section provides a more detailed description of the four FAN utilities,
|
||
<tt><b>nc2text</b></tt>, <tt><b>text2nc</b></tt>, <tt><b>ncmeta</b></tt> and
|
||
<tt><b>ncrob</b></tt>, commencing with some features common to several utilities.
|
||
The usage summaries in Sections <a href="#nc2text_Usage"><em>nc2text Usage</em></a>,
|
||
<a
|
||
href="#text2nc_Usage"><em>text2nc Usage</em></a>, <a
|
||
href="#ncmeta_Usage"><em>ncmeta Usage</em></a> and <a
|
||
href="#ncrob_Usage"><em>ncrob Usage</em></a> can be printed by entering the command
|
||
name without any arguments.</p>
|
||
<p>All netCDF types (<tt><b>char, byte, short, long, float</b></tt> and <tt><b>double</b></tt>)
|
||
can be read and written. During input/output there is automatic conversion to
|
||
or from type <tt><b>double</b></tt>, which is used for internal storage and
|
||
processing.</p>
|
||
<h3>Options Common to several Utilities</h3>
|
||
<p>The two flags <tt><b>-h</b></tt> and <tt><b>-H</b></tt> specify what is to
|
||
be written to the global attribute <tt><b>history</b></tt>. The <tt><b>-h</b></tt>
|
||
flag means `<em>Do not write any history</em>'. The <tt><b>-H</b></tt> flag
|
||
means `<em>Exclude time-stamp and user-name</em> (<tt><b>LOGNAME</b></tt>) <em>from
|
||
history</em>'. This flag is useful in program testing, since it causes the
|
||
same values to be written to <tt><b>history</b></tt> each time, thus facilitating
|
||
comparison of actual output with that expected.</p>
|
||
<p>Section 4.5 of <a
|
||
href="/software/netcdf/guide_toc.html"> NetCDF
|
||
User's Guide</a> explains the two aspects of error-handling: suppression
|
||
of error messages and fatality of errors. The default mode is <em>verbose</em>
|
||
and <em>fatal</em>. <em>Non-verbose (silent)</em> mode is set by flag <tt><b>-s</b></tt>.
|
||
<em>Non-fatal (persevere)</em> mode is set by flag <tt><b>-p</b></tt>.</p>
|
||
<p>The <tt><b>-e</b></tt> flag means `<em>Write error messages to</em> <tt><b>stdout</b></tt>
|
||
<em>not</em> <tt><b>stderr</b></tt>'.</p>
|
||
<p>The option `<tt><b>-t</b></tt> <em>type</em>' sets the data-type for new
|
||
variables or attributes. Valid values are <tt><b>char, byte, short, long, float</b></tt>
|
||
and <tt><b>double</b></tt>. These can be abbreviated to their first letter.</p>
|
||
<p>The option `<tt><b>-u</b></tt> <em>unit</em>' sets the unit of measure
|
||
for ASCII text data, providing conversion to or from those defined by netCDF
|
||
<tt><b>units</b></tt> attributes.</p>
|
||
<p><a id="Scaling" name="Scaling"></a></p>
|
||
<h3>Scaling and Unit Conversion</h3>
|
||
<p>All netCDF input and output values are transformed by a linear equation defined
|
||
by the attributes <tt><b>add_offset</b></tt>, <tt><b>scale_factor</b></tt> and
|
||
<tt><b>units</b></tt>; together with any unit defined by the <tt><b>-u</b></tt>
|
||
option mentioned above. The output <tt><b>units</b></tt> attribute is defined
|
||
or modified in some situations such as when it is undefined but the corresponding
|
||
input attribute is defined.</p>
|
||
<p>All unit conversion is done using the <em>Units Library</em> documented in
|
||
Appendix C of <a
|
||
href="/software/netcdf/guide_toc.html"> NetCDF
|
||
User's Guide</a>. The environment variable <tt><b>UDUNITS_PATH</b></tt>
|
||
can be used to specify a non-standard units file. (See <tt><b>man</b></tt> document
|
||
<tt><b>udunits(3)</b></tt>.)</p>
|
||
<h3>Missing Values</h3>
|
||
<p>Values read from a netCDF file are considered missing if outside the <em>valid
|
||
range</em> defined by the attribute <tt><b>valid_range</b></tt> or the attributes
|
||
<tt><b>valid_min</b></tt>, and <tt><b>valid_max</b></tt>. If these do not define
|
||
either the minimum or the maximum then an attempt is made to define it based
|
||
on the principle that the <em>missing value</em> must be outside the valid range.
|
||
The <em>missing value</em> is defined by the attribute <tt><b>missing_value</b></tt>,
|
||
or if this is undefined then the <em>fill value</em> (defined by attribute <tt><b>_FillValue</b></tt>
|
||
if defined, otherwise the default fill value for the data type).</p>
|
||
<h3>Environment Variables</h3>
|
||
<p>The environment variable <tt><b>UDUNITS_PATH</b></tt> was mentioned in Section
|
||
<a href="#Scaling"><em>Scaling</em></a>. The environment variable <tt><b>COLUMNS</b></tt>
|
||
(default: 80) defines the page width and is used to print data of type <tt><b>character</b></tt>.</p>
|
||
<h2>nc2text</h2>
|
||
<p>This utility prints variable and attribute values from netCDF files.</p>
|
||
<p><a id="nc2text_Usage" name="nc2text_Usage"></a></p>
|
||
<h3>Usage</h3>
|
||
<pre>
|
||
<strong>Usage: nc2text [-eps] [-f %s] [-m %s] [-n %d] [-u %s] <FANI>
|
||
<FANI> netCDF FAN specification for input
|
||
-e Write error messages to stdout not stderr
|
||
-p Persevere after errors
|
||
-s Silent mode: Suppress warning messages
|
||
-f <string>: Format for output (default: C_format attribute ("%G" if none))
|
||
-m <string>: Missing value for output (default: _ )
|
||
-n <integer>: Number of fields per line of output (default: 10 if numeric)
|
||
(Environment variable COLUMNS defines default for characters)
|
||
-u <string>: Unit of measure for output (default: unit in file)
|
||
</strong>
|
||
</pre>
|
||
<h3>Examples</h3>
|
||
<p>The following prints the first three elements of variable <tt><b>v</b></tt>
|
||
of file <tt><b>vec.nc</b></tt>:</p>
|
||
<pre>
|
||
<strong>$ nc2text 'vec.nc v[0 1 2]'
|
||
10 20.3 30.2
|
||
</strong>
|
||
</pre>
|
||
<p>The following uses <tt><b>text2nc</b></tt> to</p>
|
||
<ul>
|
||
<li>set attribute <tt><b>v:units</b></tt> to `<tt><b>degF</b></tt>'</li>
|
||
<li>set attribute <tt><b>v:valid_min</b></tt> to -460<36>F (just below 0<>K)</li>
|
||
<li>modify <tt><b>v[2]</b></tt> so it is less than this valid minimum i.e. missing.</li>
|
||
</ul>
|
||
<pre>
|
||
<strong>$ echo degF | text2nc vec.nc 'v:units'
|
||
$ echo -460 | text2nc -t float vec.nc 'v:valid_min'
|
||
$ echo -999 | text2nc vec.nc 'v[2]'
|
||
</strong>
|
||
</pre>
|
||
<p>Then we print four Celsius temperatures per line. The text `<tt><b>MISSING</b></tt>'
|
||
is printed for missing values. Normal values are printed using the C format
|
||
<tt><b>%8.4f</b></tt> (equivalent to the Fortran format <tt><b>F8.4</b></tt>
|
||
i.e 4 decimal places with a total field width of 8 characters).</p>
|
||
<pre>
|
||
<strong>$ nc2text -f '%8.4f' -m ' MISSING' -n 4 -u degC vec.nc 'v[:4]'
|
||
-12.2222 -6.5000 MISSING 4.9444
|
||
10.0000
|
||
</strong>
|
||
</pre>
|
||
<h2>ncmeta</h2>
|
||
<p>This utility prints metadata from netCDF files. This metadata can include rank,
|
||
shape, file names, variable names, dimension names and attribute names.</p>
|
||
<p><a id="ncmeta_Usage" name="ncmeta_Usage"></a></p>
|
||
<h3>Usage</h3>
|
||
<pre>
|
||
<strong>Usage: ncmeta [-eps] [-w <LETTERS>] <FANI>
|
||
<FANI> netCDF FAN specification for input
|
||
-e Write error messages to stdout not stderr
|
||
-p Persevere after errors
|
||
-s Silent mode: Suppress warning messages
|
||
-w <LETTERS>: What to print using following (default: s)
|
||
a: attribute names
|
||
d: dimension names
|
||
f: file names
|
||
r: rank (number of dimensions)
|
||
s: shape (dimension sizes)
|
||
v: variable names
|
||
|
||
Example: ncmeta -w fvs abc.nc var1 var2
|
||
</strong>
|
||
</pre>
|
||
<p><a id="ncmeta_Examples" name="ncmeta_Examples"></a></p>
|
||
<h3>Examples</h3>
|
||
<p>The following examples print the shape of the specified variables:</p>
|
||
<pre>
|
||
<strong>$ ncmeta vec.nc v
|
||
5
|
||
$ ncmeta geog.nc tsur
|
||
3 4
|
||
</strong>
|
||
</pre>
|
||
<p>The following example prints the filename, variable name, rank, dimensions
|
||
and shape of the specified variables:</p>
|
||
<pre>
|
||
<strong>$ ncmeta -w fvrds vec.nc v 'geog.nc tsur' lat lon
|
||
vec.nc v 1 n 5
|
||
geog.nc tsur 2 lat lon 3 4
|
||
geog.nc lat 1 lat 3
|
||
geog.nc lon 1 lon 4
|
||
</strong>
|
||
</pre>
|
||
<p>The following example prints the variable name and attribute name of the first
|
||
(0) attribute of the first (0) variable:</p>
|
||
<pre>
|
||
<strong>$ ncmeta -w va geog.nc '0:0'
|
||
lat units
|
||
</strong>
|
||
</pre>
|
||
<h2>ncrob</h2>
|
||
<p>This utility reads data from one or more netCDF variables, performs some process
|
||
on it and then either prints the result or writes it to one or more netCDF variables.
|
||
The type of process is defined by option `<tt><b>-r</b></tt> <em>string</em>',
|
||
where <em>string</em> is one of the following:</p>
|
||
<center>
|
||
<table border="1" summary="option meanings">
|
||
<tr>
|
||
<td><tt><b>am</b></tt> </td>
|
||
<td>arithmetic mean</td>
|
||
</tr>
|
||
<tr>
|
||
<td><tt><b>broadcast</b></tt> </td>
|
||
<td>cyclic copy</td>
|
||
</tr>
|
||
<tr>
|
||
<td><tt><b>count</b></tt> </td>
|
||
<td>number of non-missing values</td>
|
||
</tr>
|
||
<tr>
|
||
<td><tt><b>fill</b></tt> </td>
|
||
<td>fill with missing values</td>
|
||
</tr>
|
||
<tr>
|
||
<td><tt><b>gm</b></tt> </td>
|
||
<td>geometric mean</td>
|
||
</tr>
|
||
<tr>
|
||
<td><tt><b>max</b></tt> </td>
|
||
<td>maximum</td>
|
||
</tr>
|
||
<tr>
|
||
<td><tt><b>min</b></tt> </td>
|
||
<td>minimum</td>
|
||
</tr>
|
||
<tr>
|
||
<td><tt><b>prod</b></tt> </td>
|
||
<td>product</td>
|
||
</tr>
|
||
<tr>
|
||
<td><tt><b>sd</b></tt> </td>
|
||
<td>unadjusted standard deviation (divisor is <var>n</var> )</td>
|
||
</tr>
|
||
<tr>
|
||
<td><tt><b>sd1</b></tt> </td>
|
||
<td>adjusted standard deviation (divisor is <var>n</var>-1 )</td>
|
||
</tr>
|
||
<tr>
|
||
<td><tt><b>sum</b></tt> </td>
|
||
<td>sum</td>
|
||
</tr>
|
||
<tr>
|
||
<td><tt><b>sum2</b></tt> </td>
|
||
<td>sum of squares of values</td>
|
||
</tr>
|
||
</table>
|
||
</center>
|
||
<p>A <tt><b>broadcast</b></tt> copies successive elements from input to output.
|
||
Whenever the end of input is reached, reading begins again at the start of input.
|
||
The whole process continues until reaching the end of output.</p>
|
||
<p>A <tt><b>fill</b></tt> simply fills the output variable with missing values.
|
||
There must be input, although it is used only to define the shape of new variables.</p>
|
||
<p>The other processes are all <em>reductions</em>, in the sense that they reduce
|
||
the <em>rank</em> (number of dimensions). The number of input elements ( <var>I</var> )
|
||
must be a multiple of both the number of output elements ( <var>N</var> )
|
||
and the number of weights ( <var>M</var> ) (if any, as specified by
|
||
option <tt><b>-w</b></tt>).</p>
|
||
<p>If the process is <tt><b>count</b></tt> and there are no weights then the result
|
||
is the number of non-missing values. If there are weights then the result is
|
||
the sum of the weights of the non-missing values.</p>
|
||
<p>Let vector <var>X</var><sub>0</sub>, <var>X</var><sub>1</sub>, ..., <var>
|
||
X</var><sub><var>i</var></sub>, ..., <var>X</var><sub><var> I</var>-1</sub>
|
||
represent the selected input data elements in the specified order. Similarly,
|
||
let vector <var>Y</var><sub>0</sub>, <var>Y</var><sub>1</sub>, ... <var>
|
||
Y</var><sub><var>j</var></sub>, ..., <var>Y</var><sub><var> N</var>-1</sub>
|
||
represent the resultant output data. Let <var>n</var> = <var>I</var> <EFBFBD> <var>N</var>.</p>
|
||
<p>If the process is <tt><b>sum</b></tt> and there are no weights then</p>
|
||
<center>
|
||
<var>Y</var><sub><var>j</var></sub> = <strong> Sum</strong><sub><var>i</var>=0,<var>n</var>-1</sub> <var>X</var><sub>
|
||
<var>Ni</var>+<var>j</var></sub>
|
||
</center>
|
||
<p>If weights <var>W</var><sub>0</sub>, <var>W</var><sub>1</sub>, ..., <var>
|
||
W</var><sub><var>k</var></sub>, ..., <var>W</var><sub><var> M</var>-1</sub>
|
||
are defined and <var>m</var> = <var>I</var> <EFBFBD> <var>M</var>
|
||
then</p>
|
||
<center>
|
||
<var>Y</var><sub><var>j</var></sub> = <strong> Sum</strong><sub><var>i</var>=0,<var>n</var>-1</sub> <var>W</var><sub>
|
||
<strong>floor</strong>((<var>Ni</var>+<var>j</var>)/m)</sub><var>X</var><sub>
|
||
<var>Ni</var>+<var>j</var></sub>
|
||
</center>
|
||
<p>where <strong>floor</strong>( <var>x</var> ) represents
|
||
the floor of <var>x</var> i.e. the greatest integer <= <var>x</var>.</p>
|
||
<p>This is calculated using the following algorithm:</p>
|
||
<p> <var>n</var> <tt><b>:=</b></tt> <var>I</var><EFBFBD><var>N</var>
|
||
<br />
|
||
<var>m</var> <tt><b>:=</b></tt> <var>I</var><EFBFBD><var>M</var>
|
||
<br />
|
||
<b>for</b> <var>j</var> <b>from</b> 0 <b>to</b> <var>N</var>-1
|
||
<br />
|
||
<tt> </tt> <var>Y</var><sub><var>j</var></sub>
|
||
<tt><b>:=</b></tt> 0 <br />
|
||
<b>for</b> <var>i</var> <b>from</b> 0 <b>to</b> <var>I</var>-1
|
||
<br />
|
||
<tt> </tt> <var>j</var> <tt><b>:=</b></tt> <var>i</var> <strong>mod</strong> <var>n</var>
|
||
<br />
|
||
<tt> </tt> <var>k</var> <tt><b>:=</b></tt> <strong>floor</strong>( <var>i</var>/m )
|
||
<br />
|
||
<tt> </tt> <b>if</b> <var>Y</var><sub><var>j</var></sub> <EFBFBD>=
|
||
<tt><b>missing_value</b></tt> <br />
|
||
<tt> </tt> <tt> </tt> <b>if</b> <tt><b>valid_min</b></tt>
|
||
<= <var>X</var><sub><var>i</var></sub> <= <tt><b>valid_max</b></tt>
|
||
<br />
|
||
<tt> </tt> <tt> </tt> <tt> </tt>
|
||
<var>Y</var><sub><var>j</var></sub> <tt><b>:=</b></tt> <var>Y</var><sub><var>j</var></sub> + <var>W</var><sub>
|
||
<var>k</var></sub> <var>X</var><sub><var>i</var></sub> <br />
|
||
<tt> </tt> <tt> </tt> <b>else if</b> <tt><b>suddenDeath</b></tt>
|
||
<br />
|
||
<tt> </tt> <tt> </tt> <tt> </tt>
|
||
<var>Y</var><sub><var>j</var></sub> <tt><b>:=</b></tt> <tt><b>missing_value</b></tt>
|
||
<br />
|
||
</p>
|
||
<p>Note that this definition of <var>k</var> means that the first
|
||
<var>m</var> elements have the first weight <var>W</var><sub>0</sub> ,
|
||
the next <var>m</var> have the second weight <var>W</var><sub>1</sub> ,
|
||
and so on.</p>
|
||
<p>As an example consider an input array which is a matrix <var>A</var>
|
||
with <var>R</var> rows and <var>C</var> columns. Thus
|
||
<var>I</var>=<var>RC</var>. If we want column sums then the output vector
|
||
would be of length <var>C</var> i.e. <var>N</var>=<var>C</var>.
|
||
Now <var>n</var>= <var>I</var> <EFBFBD> <var>N</var> = <var>
|
||
R</var>. So the unweighted sum is</p>
|
||
<center>
|
||
<var>Y</var><sub><var>j</var></sub> = <strong> Sum</strong><sub><var>i</var>=0,<var>R</var>-1</sub> <var>X</var><sub>
|
||
<var>Ci</var>+<var>j</var></sub> = <strong>Sum</strong><sub> <var>i</var>=0,<var>R</var>-1</sub> <var>A</var><sub><var>ij</var></sub>
|
||
</center>
|
||
<p>and the weighted sum is</p>
|
||
<center>
|
||
<var>Y</var><sub><var>j</var></sub> = <strong> Sum</strong><sub><var>i</var>=0,<var>R</var>-1</sub> <var>W</var><sub>
|
||
<strong>floor</strong>((<var>Ci</var>+<var>j</var>)/C)</sub> <var> X</var><sub><var>Ci</var>+<var>j</var></sub> = <strong>Sum</strong><sub>
|
||
<var>i</var>=0,<var>R</var>-1</sub> <var>W</var><sub><var>i</var></sub> <var>
|
||
A</var><sub><var>ij</var></sub>
|
||
</center>
|
||
<p>If the process is <tt><b>prod</b></tt> and there are no weights then</p>
|
||
<center>
|
||
<var>Y</var><sub><var>j</var></sub> = <strong> Product</strong><sub><var>i</var>=0,<var>n</var>-1</sub> <var>X</var><sub>
|
||
<var>Ni</var>+<var>j</var></sub>
|
||
</center>
|
||
<p>If weights are defined then</p>
|
||
<center>
|
||
<var>Y</var><sub><var>j</var></sub> = <strong> Product</strong><sub><var>i</var>=0,<var>n</var>-1</sub> <var>X</var><sub>
|
||
<var>Ni</var>+<var>j</var></sub> <sup><var>W</var><sub><strong> floor</strong>((<var>Ni</var>+<var>j</var>)/m)</sub></sup>
|
||
</center>
|
||
<p>In general the shape (dimension vector) of the destination should match the
|
||
trailing dimensions of the source. Then the reduction process operates over
|
||
those leading dimensions absent from the destination.</p>
|
||
<p>Note that FAN allows you to transpose dimensions by specifying them in an order
|
||
different from that in the file. Thus the leading source dimensions are those
|
||
specified first. The order of the remaining dimensions must match those of the
|
||
destination.</p>
|
||
<p>The other reduction processes are treated similarly. However <tt><b>min</b></tt>
|
||
and <tt><b>max</b></tt> do not allow weights.</p>
|
||
<p>If the <tt><b>-m</b></tt> flag is specified then the result is missing if any
|
||
of the values it depends on is missing (<em>sudden death mode</em>). Otherwise
|
||
missing values are omitted (<em>filter mode</em>) i.e. essentially treated as
|
||
having a weight of 0.</p>
|
||
<p>The <tt><b>-b</b></tt> option sets the size of the input buffer. This can improve
|
||
efficiency when reading very large variables.</p>
|
||
<p>The <tt><b>-c</b></tt> option creates a new destination variable with the specified
|
||
rank (number of dimensions). If the variable already exists then this option
|
||
is ignored. If the destination file does not exist then it is created. The variable
|
||
is created with the same attributes as the (first if several) source variable,
|
||
and the specified number of its trailing dimensions, together with any associated
|
||
coordinate variables. However a broadcast is slightly different in that a new
|
||
leading dimension is created from the leading source dimensions by taking the
|
||
product of their sizes (so the total number of elements is unchanged) and concatenating
|
||
their names. The data-type of the new variable is specified using option <tt><b>-t</b></tt>
|
||
and defaults to the type of the source variable.</p>
|
||
<p><a id="ncrob_Usage" name="ncrob_Usage"></a></p>
|
||
<h3>Usage</h3>
|
||
<pre>
|
||
<strong>Usage: ncrob [options] <FANI> / <FANO>
|
||
<FANI>: FAN specification for input
|
||
<FANO>: FAN specification for output (default: stdout)
|
||
-e Write error messages to stdout not stderr
|
||
-H Exclude time-stamp & LOGNAME from history
|
||
-h Do not write history
|
||
-m If any value missing then result missing
|
||
-p Persevere after errors
|
||
-s Silent mode: Suppress warning messages
|
||
-b <int>: Max. buffer size (Kbytes) (default: 512)
|
||
-c <int>: Rank (decrement if < 0) of any Created variable including stdout
|
||
(default: input rank for broadcast, else -1)
|
||
-f <string>: Format for stdout (default: C_format attribute ("%G" if none))
|
||
-M <string>: Missing value for stdout (default: _ )
|
||
-n <integer>: Number of fields per line for stdout (default: 10 if numeric)
|
||
(Environment variable COLUMNS defines default for characters)
|
||
-r <string>: Reduction type (am broadcast count fill gm max min prod
|
||
sd sd1 sum sum2) (default: broadcast)
|
||
-t char|byte|short|long|float|double: new variable type (default: input type)
|
||
-u <string>: Unit of measure for stdout (default: unit in file)
|
||
-w <reals>: Weight vector(e.g. -w '3 1.5 .8')
|
||
</strong>
|
||
</pre>
|
||
<p>If the `<tt><b>/</b></tt>' is omitted then the final argument is taken
|
||
as <tt><b><FANO></b></tt>. (This version 1 convention is deprecated.)
|
||
If <tt><b><FANO></b></tt> does not specify a filename or variable name
|
||
then the first one in <tt><b><FANI></b></tt> is used.</p>
|
||
<h3>Examples</h3>
|
||
<p>The following prints the variable <tt><b>M</b></tt> in file <tt><b>mat.nc</b></tt>:</p>
|
||
<pre>
|
||
<strong>$ ncrob mat.nc M /
|
||
11 12 13
|
||
21 22 23
|
||
</strong>
|
||
</pre>
|
||
<p>The following prints the column sums, row means and overall product:</p>
|
||
<pre>
|
||
<strong>$ ncrob -r sum mat.nc M / # sum of each column
|
||
32 34 36
|
||
$ ncrob -r am mat.nc 'M[col]' / # arithmetic mean of each row
|
||
12 22
|
||
$ ncrob -r prod -c 0 -f '%.0f' mat.nc M / # overall product
|
||
18234216
|
||
</strong>
|
||
</pre>
|
||
<p>The first two commands have no <tt><b>-c</b></tt> option, so the rank of the
|
||
result is one less than that of the input. The third specifies <tt><b>-c 0</b></tt>,
|
||
so the result has rank 0, i.e. is scalar. The following attempts to put this
|
||
same data into three new variables in the same file:</p>
|
||
<pre>
|
||
<strong>$ ncrob -h -r sum mat.nc M / col_sum
|
||
$ ncrob -h -r am mat.nc 'M[col]' / row_am
|
||
$ ncrob -h -r prod -c 0 mat.nc M / prod
|
||
$ ncdump mat.nc
|
||
netcdf mat {
|
||
dimensions:
|
||
row = 2 ;
|
||
col = 3 ;
|
||
variables:
|
||
short M(row, col) ;
|
||
short col_sum(col) ;
|
||
short row_am(row) ;
|
||
short prod ;
|
||
data:
|
||
M =
|
||
11, 12, 13,
|
||
21, 22, 23 ;
|
||
col_sum = 32, 34, 36 ;
|
||
row_am = 12, 22 ;
|
||
prod = _ ;
|
||
}
|
||
</strong>
|
||
</pre>
|
||
<p>Why is <tt><b>prod</b></tt> dumped as <tt><b>_</b></tt> (i.e. fill) rather
|
||
than 18234216 as before? The problem is that <tt><b>ncrob</b></tt> has created
|
||
a new variable of the same type as the source variable, which in this case is
|
||
<tt><b>short</b></tt> and incapable of storing such a large number. The solution
|
||
is to specify the type using the <tt><b>-t</b></tt> option. Let's also create
|
||
a new file <tt><b>prod.nc</b></tt>. E.g.</p>
|
||
<pre>
|
||
<strong>$ ncrob -h -r prod -c 0 -t long mat.nc M / prod.nc prod
|
||
$ ncdump prod.nc
|
||
netcdf prod {
|
||
variables:
|
||
long prod ;
|
||
data:
|
||
prod = 18234216 ;
|
||
}
|
||
</strong>
|
||
</pre>
|
||
<p>Next let's calculate a weighted mean of each column. Let's give the
|
||
first row twice the weight of the second:</p>
|
||
<pre>
|
||
<strong>$ ncrob -r am -w '2 1' M mat.nc /
|
||
14.3333 15.3333 16.3333
|
||
</strong>
|
||
</pre>
|
||
<p>Thus the mean of the first column is (2 * 11 + 1 * 21)/3 = 14.3333. Negative
|
||
weights can be used to obtain differences. E.g.</p>
|
||
<pre>
|
||
<strong>$ ncrob -r sum -w '1 -1' M mat.nc / # row1 - row2
|
||
-10 -10 -10
|
||
$ ncrob -r sum -w '1 -1' 'M(col=3 1]' mat.nc / # col3 - col1
|
||
</strong>
|
||
</pre>
|
||
<p>Finally we demonstrate broadcasting. Let's first copy the matrix <tt><b>M</b></tt>
|
||
to two variables in a new file called <tt><b>new.nc</b></tt>. One new variable
|
||
has the same name (<tt><b>M</b></tt>) and shape. The other is named <tt><b>V</b></tt>
|
||
and is a vector with the new dimension <tt><b>row_col</b></tt> formed from dimensions
|
||
<tt><b>row</b></tt> and <tt><b>col</b></tt>.</p>
|
||
<pre>
|
||
<strong>$ ncrob -h M mat.nc / new.nc
|
||
$ ncrob -h -c 1 M mat.nc / new.nc V
|
||
$ ncdump new.nc
|
||
netcdf new {
|
||
dimensions:
|
||
row = 2 ;
|
||
col = 3 ;
|
||
row_col = 6 ;
|
||
variables:
|
||
short M(row, col) ;
|
||
short V(row_col) ;
|
||
data:
|
||
M =
|
||
11, 12, 13,
|
||
21, 22, 23 ;
|
||
V = 11, 12, 13, 21, 22, 23 ;
|
||
}
|
||
</strong>
|
||
</pre>
|
||
<p>Now let's broadcast the variable <tt><b>col_sum</b></tt> in file <tt><b>mat.nc</b></tt>
|
||
to these variables <tt><b>M</b></tt> and <tt><b>V</b></tt> in the file <tt><b>new.nc</b></tt>:</p>
|
||
<pre>
|
||
<strong>$ ncrob -h mat.nc col_sum / new.nc M V
|
||
$ ncdump new.nc
|
||
netcdf new {
|
||
dimensions:
|
||
row = 2 ;
|
||
col = 3 ;
|
||
row_col = 6 ;
|
||
variables:
|
||
short M(row, col) ;
|
||
short V(row_col) ;
|
||
data:
|
||
M =
|
||
32, 34, 36,
|
||
32, 34, 36 ;
|
||
V = 32, 34, 36, 32, 34, 36 ;
|
||
}
|
||
</strong>
|
||
</pre>
|
||
<p>Four copies of the input were needed to fill the output.</p>
|
||
<h2>text2nc</h2>
|
||
<p>This utility reads ASCII text data from standard input and writes it to a netCDF
|
||
variable or attribute. The netCDF file and variable must already exist. However,
|
||
as discussed in Section <a
|
||
href="#Attributes"><em>Attributes</em></a>, <tt><b>text2nc</b></tt> can create
|
||
attributes, delete them, and modify their type, size and value. If end-of-input
|
||
occurs before end-of-output then the input values are recycled.</p>
|
||
<p><a id="text2nc_Usage" name="text2nc_Usage"></a></p>
|
||
<h3>Usage</h3>
|
||
<pre>
|
||
<strong>Usage: text2nc [-eHhps] [-m %f] [-u %s] <FANO>
|
||
<FANO>: netCDF FAN specification for output
|
||
-e Write error messages to stdout not stderr
|
||
-H Exclude time-stamp & LOGNAME from history
|
||
-h Do not write history
|
||
-p Persevere after errors
|
||
-s Silent mode: Suppress warning messages
|
||
-m <real>: Missing value for input (default: 1.79769E+308)
|
||
-t char|byte|short|long|float|double: data-type (for attributes only)
|
||
(default: double for numeric input data, else char)
|
||
-u <string>: Unit of measure for input (default: unit in file)
|
||
</strong>
|
||
</pre>
|
||
<p><a id="text2nc_Examples" name="text2nc_Examples"></a></p>
|
||
<h3>Examples</h3>
|
||
<p>Let's start with the following file:</p>
|
||
<pre>
|
||
<strong>$ ncdump vec.nc
|
||
netcdf vec {
|
||
dimensions:
|
||
n = UNLIMITED ; // (5 currently)
|
||
variables:
|
||
float v(n) ;
|
||
data:
|
||
v = 10 , 20.3 , 30.2 , 40.9 , 50 ;
|
||
}
|
||
</strong>
|
||
</pre>
|
||
<p>Let's assume these data are Celsius temperatures, so we define a valid
|
||
minimum by:</p>
|
||
<pre>
|
||
<strong>$ echo -273.2 | text2nc -h vec.nc 'v:valid_min'
|
||
</strong>
|
||
</pre>
|
||
<p>Then we modify two existing values:</p>
|
||
<pre>
|
||
<strong>$ echo 15 17 | text2nc -h -u degC vec.nc 'v[0 3]'
|
||
$ ncdump vec.nc
|
||
netcdf vec {
|
||
dimensions:
|
||
n = UNLIMITED ; // (5 currently)
|
||
variables:
|
||
float v(n) ;
|
||
v:valid_min = -273.2 ;
|
||
v:units = "degC" ;
|
||
data:
|
||
v = 15 , 20.3 , 30.2 , 17 , 50 ;
|
||
}
|
||
</strong>
|
||
</pre>
|
||
<p>Note that the <tt><b>units</b></tt> attribute was created because we specified
|
||
<tt><b>-u degC</b></tt>, but there was no existing <tt><b>units</b></tt>
|
||
attribute. Now let's append three values and print the resulting <tt><b>v</b></tt>:</p>
|
||
<pre>
|
||
<strong>$ echo -999 32 1e9 | text2nc -h -u degF -m 1e9 vec.nc 'v[-1+1:-1+3]'
|
||
$ nc2text -f '%0.1f' vec.nc v
|
||
15.0 20.3 30.2 17.0 50.0 _ 0.0 _
|
||
</strong>
|
||
</pre>
|
||
<p>The first value (<tt><b>-999</b></tt>) is treated as missing because (even
|
||
after conversion to Celsius) it is less than the valid minimum of <tt><b>-273.2</b></tt>.
|
||
The second value (32<33>F) is converted to 0<>C. The third value (<tt><b>1e9</b></tt>)
|
||
is treated as missing because it matches the input missing value specified by
|
||
<tt><b>-m 1e9</b></tt>.</p>
|
||
<p>Finally, let's change every second value to 0<>K:</p>
|
||
<pre>
|
||
<strong>$ echo 0 | text2nc -h -u degK vec.nc 'v[1::2]'
|
||
$ nc2text -f '%0.1f' vec.nc v
|
||
15.0 -273.1 30.2 -273.1 50.0 -273.1 0.0 -273.1
|
||
</strong>
|
||
</pre>
|
||
<p></p>
|
||
<!-- InstanceEndEditable -->
|
||
</div> <!-- /#container -->
|
||
</div> <!-- /#wrap -->
|
||
|
||
<!-- See footer.css for the styling of this section -->
|
||
<footer>
|
||
<div id="triptych-column-container">
|
||
<div id="triptych-columns">
|
||
<div class="column triptych_left">
|
||
<h2>Follow Unidata</h2>
|
||
<ul class="tabular half follow-icons">
|
||
<li>
|
||
<a href="https://twitter.com/unidata"><img src="/images/twitter.png" alt="Twitter" title="Twitter" /></a>
|
||
</li>
|
||
<li>
|
||
<a href="https://plus.google.com/105982992127916444326/posts"><img src="/images/googleplus.png" alt="Google+" title="Google+" /></a>
|
||
</li>
|
||
<li>
|
||
<a href="https://www.facebook.com/Unidata"><img src="/images/facebook.png" alt="Facebook" title="Facebook"/></a>
|
||
</li>
|
||
<li>
|
||
<a href="http://www.youtube.com/user/unidatanews"><img src="/images/youtube.png" alt="YouTube Channel" title="YouTube Channel"/></a>
|
||
</li>
|
||
<li>
|
||
<a href="https://www.unidata.ucar.edu/blogs/news/feed/entries/atom"><img src="/images/rss.png" alt="News@Unidata blog" title="News@Unidata blog"/></a>
|
||
</li>
|
||
<li>
|
||
<a href="https://www.unidata.ucar.edu/blogs/developer/feed/entries/atom"><img src="/images/blog.png" alt="Developers' Blog" title="Developers' Blog"/></a>
|
||
</li>
|
||
</ul>
|
||
</div> <!-- /.column column_left -->
|
||
|
||
<div class="column triptych_center">
|
||
<h2>Unidata
|
||
<div class="triptych_logos">
|
||
<a class="noicon" href="http://www.nsf.gov/"> <img alt="UCP" src="/images/logos/nsf_logo_transparent.png"/></a>
|
||
</div>
|
||
<div class="triptych_logos" style="padding-right:1em;">
|
||
<a class="noicon" href="http://www.ucp.ucar.edu/"> <img alt="UCP" id="ucp_small" src="/images/logos/ucp-logo2_transparent.png"/></a>
|
||
</div></h2>
|
||
<ul class="tabular full" style="padding-right:0.5em;">
|
||
<li style="text-align: center;">
|
||
Unidata is s a member of the
|
||
<a href="http://www.ucp.ucar.edu/">UCAR Community Programs</a>,
|
||
managed by the
|
||
<a href="http://www.ucar.edu">University Corporation for Atmospheric Research</a>,
|
||
and funded by the
|
||
<a href="http://www.nsf.gov">National Science Foundation</a>.
|
||
</li>
|
||
<li style="text-align: center;">
|
||
Read Unidata's <a href="https://www.unidata.ucar.edu/legal/participation.html">Participation Policy</a>.
|
||
</li>
|
||
<li>
|
||
<table style="width:100%">
|
||
<tr>
|
||
<td style="width:33%;text-align:left;">©
|
||
<script type="text/javascript">
|
||
document.write(new Date().getFullYear());
|
||
</script> UCAR</td>
|
||
<td style="width:33%;text-align:center;"><a href="http://www2.ucar.edu/privacy-policy">Privacy Policy</a></td>
|
||
<td style="width:33%;text-align:right;"><a href="http://www2.ucar.edu/terms-of-use">Terms of Use</a></td>
|
||
</tr>
|
||
</table>
|
||
</li>
|
||
</ul>
|
||
</div> <!-- /.column column_center -->
|
||
|
||
<div class="column triptych_right">
|
||
<h2>Contact Unidata</h2>
|
||
<ul class="tabular full">
|
||
<li>
|
||
For support: <b><a href="mailto:support@unidata.ucar.edu">support@unidata.ucar.edu</a></b>
|
||
</li>
|
||
<li>
|
||
By <b><a href="/about/index.html#visit">postal mail</a></b> or <b><a href="/about/index.html#visit">in person</a></b>
|
||
</li>
|
||
<li>
|
||
About this website: <b><a href="mailto:plaza@unidata.ucar.edu">plaza@unidata.ucar.edu</a></b>
|
||
</li>
|
||
<li>
|
||
By telephone: <b>303.497.8643</b>
|
||
</li>
|
||
</ul>
|
||
</div> <!-- /.column column_right -->
|
||
|
||
<a href="/about/tour/">
|
||
<div class="column column_extra" id="who_are_we">
|
||
<h2>Welcome to Unidata</h2>
|
||
<ul class="tabular full">
|
||
<li>
|
||
Learn more about who we are and what we do...
|
||
</li>
|
||
</ul>
|
||
</div> <!-- /.column column_extra -->
|
||
</a>
|
||
|
||
<span class="stretch"> </span>
|
||
</div> <!-- /#triptych-columns -->
|
||
</div> <!-- /#triptych-column-container -->
|
||
</footer>
|
||
|
||
|
||
|
||
</body>
|
||
|
||
|
||
<!-- InstanceEnd -->
|