netcdf-c/libnczarr/SimpleBinStream.h
Dennis Heimbigner 59e04ae071 This PR adds EXPERIMENTAL support for accessing data in the
cloud using a variant of the Zarr protocol and storage
format. This enhancement is generically referred to as "NCZarr".

The data model supported by NCZarr is netcdf-4 minus the user-defined
types and the String type. In this sense it is similar to the CDF-5
data model.

More detailed information about enabling and using NCZarr is
described in the document NUG/nczarr.md and in a
[Unidata Developer's blog entry](https://www.unidata.ucar.edu/blogs/developer/en/entry/overview-of-zarr-support-in).

WARNING: this code has had limited testing, so do use this version
for production work. Also, performance improvements are ongoing.
Note especially the following platform matrix of successful tests:

Platform | Build System | S3 support
------------------------------------
Linux+gcc      | Automake     | yes
Linux+gcc      | CMake        | yes
Visual Studio  | CMake        | no

Additionally, and as a consequence of the addition of NCZarr,
major changes have been made to the Filter API. NOTE: NCZarr
does not yet support filters, but these changes are enablers for
that support in the future.  Note that it is possible
(probable?) that there will be some accidental reversions if the
changes here did not correctly mimic the existing filter testing.

In any case, previously filter ids and parameters were of type
unsigned int. In order to support the more general zarr filter
model, this was all converted to char*.  The old HDF5-specific,
unsigned int operations are still supported but they are
wrappers around the new, char* based nc_filterx_XXX functions.
This entailed at least the following changes:
1. Added the files libdispatch/dfilterx.c and include/ncfilter.h
2. Some filterx utilities have been moved to libdispatch/daux.c
3. A new entry, "filter_actions" was added to the NCDispatch table
   and the version bumped.
4. An overly complex set of structs was created to support funnelling
   all of the filterx operations thru a single dispatch
   "filter_actions" entry.
5. Move common code to from libhdf5 to libsrc4 so that it is accessible
   to nczarr.

Changes directly related to Zarr:
1. Modified CMakeList.txt and configure.ac to support both C and C++
   -- this is in support of S3 support via the awd-sdk libraries.
2. Define a size64_t type to support nczarr.
3. More reworking of libdispatch/dinfermodel.c to
   support zarr and to regularize the structure of the fragments
   section of a URL.

Changes not directly related to Zarr:
1. Make client-side filter registration be conditional, with default off.
2. Hack include/nc4internal.h to make some flags added by Ed be unique:
   e.g. NC_CREAT, NC_INDEF, etc.
3. cleanup include/nchttp.h and libdispatch/dhttp.c.
4. Misc. changes to support compiling under Visual Studio including:
   * Better testing under windows for dirent.h and opendir and closedir.
5. Misc. changes to the oc2 code to support various libcurl CURLOPT flags
   and to centralize error reporting.
6. By default, suppress the vlen tests that have unfixed memory leaks; add option to enable them.
7. Make part of the nc_test/test_byterange.sh test be contingent on remotetest.unidata.ucar.edu being accessible.

Changes Left TO-DO:
1. fix provenance code, it is too HDF5 specific.
2020-06-28 18:02:47 -06:00

1108 lines
22 KiB
C++

// The MIT License (MIT)
// Simplistic Binary Streams 1.0.3
// Copyright (C) 2014 - 2019, by Wong Shao Voon (shaovoon@yahoo.com)
//
// http://opensource.org/licenses/MIT
//
// version 0.9.2 : Optimize mem_istream constructor for const char*
// version 0.9.3 : Optimize mem_ostream vector insert
// version 0.9.4 : New ptr_istream class
// version 0.9.5 : Add Endianness Swap with compile time check
// version 0.9.6 : Using C File APIs, instead of STL file streams
// version 0.9.7 : Add memfile_istream
// version 0.9.8 : Fix GCC and Clang template errors
// version 0.9.9 : Fix bug of getting previous value when reading empty string
// version 1.0.0 : Fix buffer overrun bug when reading string (reported by imtrobin)
// version 1.0.1 : Fix memfile_istream tellg and seekg bug reported by macxfadz,
// use is_arithmetic instead of is_integral to determine swapping
// version 1.0.2 : Add overloaded open functions that take in file parameter in
// wide char type.(only available on win32)
// version 1.0.3 : Remove <iostream> header
// version 1.0.4 : Fixed file_istream's seekg() and added writeat() to mem_ostream and memfile_ostream. Thanks Festering from CodeProject.
#ifndef SimpleBinStream_H
#define SimpleBinStream_H
#include <fstream>
#include <vector>
#include <string>
#include <cstring>
#include <stdexcept>
#include <stdint.h>
#include <cstdio>
namespace nczarr
{
enum class Endian
{
Big,
Little
};
using BigEndian = std::integral_constant<Endian, Endian::Big>;
using LittleEndian = std::integral_constant<Endian, Endian::Little>;
struct SizeOf1 { };
struct SizeOf2 { };
struct SizeOf4 { };
struct SizeOf8 { };
struct UnknownSize { };
template<typename T>
void swap_endian(T& ui, UnknownSize)
{
}
template<typename T>
void swap_endian(T& ui, SizeOf1)
{
}
template<typename T>
void swap_endian(T& ui, SizeOf8)
{
union EightBytes
{
T ui;
uint8_t arr[8];
};
EightBytes fb;
fb.ui = ui;
// swap the endian
std::swap(fb.arr[0], fb.arr[7]);
std::swap(fb.arr[1], fb.arr[6]);
std::swap(fb.arr[2], fb.arr[5]);
std::swap(fb.arr[3], fb.arr[4]);
ui = fb.ui;
}
template<typename T>
void swap_endian(T& ui, SizeOf4)
{
union FourBytes
{
T ui;
uint8_t arr[4];
};
FourBytes fb;
fb.ui = ui;
// swap the endian
std::swap(fb.arr[0], fb.arr[3]);
std::swap(fb.arr[1], fb.arr[2]);
ui = fb.ui;
}
template<typename T>
void swap_endian(T& ui, SizeOf2)
{
union TwoBytes
{
T ui;
uint8_t arr[2];
};
TwoBytes fb;
fb.ui = ui;
// swap the endian
std::swap(fb.arr[0], fb.arr[1]);
ui = fb.ui;
}
template <class T>
using number_type =
typename std::conditional<
sizeof(T) == 1,
SizeOf1,
typename std::conditional<
sizeof(T) == 2,
SizeOf2,
typename std::conditional<
sizeof(T) == 4,
SizeOf4,
typename std::conditional<
sizeof(T) == 8,
SizeOf8,
UnknownSize
>::type
>::type
>::type
>::type;
template<typename T>
void swap_if_arithmetic(T& val, std::true_type)
{
swap_endian(val, number_type<T>());
}
template<typename T>
void swap_if_arithmetic(T& val, std::false_type)
{
// T is not arithmetic so do nothing
}
template<typename T>
void swap_endian_if_same_endian_is_false(T& val, std::false_type)
{
std::is_arithmetic<T> is_integral_type;
swap_if_arithmetic(val, is_integral_type);
}
template<typename T>
void swap_endian_if_same_endian_is_false(T& val, std::true_type)
{
// same endian so do nothing.
}
template<typename same_endian_type>
class file_istream
{
public:
file_istream() : input_file_ptr(nullptr), file_size(0L), read_length(0L) {}
file_istream(const char * file) : input_file_ptr(nullptr), file_size(0L), read_length(0L)
{
open(file);
}
#ifdef _MSC_VER
file_istream(const wchar_t * file) : input_file_ptr(nullptr), file_size(0L), read_length(0L)
{
open(file);
}
#endif
~file_istream()
{
close();
}
void open(const char * file)
{
close();
#ifdef _MSC_VER
input_file_ptr = nullptr;
fopen_s(&input_file_ptr, file, "rb");
#else
input_file_ptr = std::fopen(file, "rb");
#endif
compute_length();
}
#ifdef _MSC_VER
void open(const wchar_t * file)
{
close();
input_file_ptr = nullptr;
_wfopen_s(&input_file_ptr, file, L"rb");
compute_length();
}
#endif
void close()
{
if (input_file_ptr)
{
fclose(input_file_ptr);
input_file_ptr = nullptr;
}
}
bool is_open()
{
return (input_file_ptr != nullptr);
}
long file_length() const
{
return file_size;
}
// http://www.cplusplus.com/reference/cstdio/feof/
// stream's internal position indicator may point to the end-of-file for the
// next operation, but still, the end-of-file indicator may not be set until
// an operation attempts to read at that point.
bool eof() const // not using feof(), see above
{
return read_length >= file_size;
}
long tellg() const
{
return std::ftell(input_file_ptr);
}
void seekg (long pos)
{
std::fseek(input_file_ptr, pos, SEEK_SET);
read_length = pos;
}
void seekg (long offset, int way)
{
std::fseek(input_file_ptr, offset, way);
if (way == SEEK_END)
read_length = file_size - offset;
else if (way == SEEK_CUR)
read_length += offset;
else
read_length = offset;
}
template<typename T>
void read(T& t)
{
if(std::fread(reinterpret_cast<void*>(&t), sizeof(T), 1, input_file_ptr) != 1)
{
throw std::runtime_error("Read Error!");
}
read_length += sizeof(T);
nczarr::swap_endian_if_same_endian_is_false(t, m_same_type);
}
void read(typename std::vector<char>& vec)
{
if (std::fread(reinterpret_cast<void*>(&vec[0]), vec.size(), 1, input_file_ptr) != 1)
{
throw std::runtime_error("Read Error!");
}
read_length += vec.size();
}
void read(char* p, size_t size)
{
if (std::fread(reinterpret_cast<void*>(p), size, 1, input_file_ptr) != 1)
{
throw std::runtime_error("Read Error!");
}
read_length += size;
}
private:
void compute_length()
{
seekg(0, SEEK_END);
file_size = tellg();
seekg(0, SEEK_SET);
}
std::FILE* input_file_ptr;
long file_size;
long read_length;
same_endian_type m_same_type;
};
template<typename same_endian_type, typename T>
file_istream<same_endian_type>& operator >> ( file_istream<same_endian_type>& istm, T& val)
{
istm.read(val);
return istm;
}
template<typename same_endian_type>
file_istream<same_endian_type>& operator >> ( file_istream<same_endian_type>& istm, std::string& val)
{
val.clear();
int size = 0;
istm.read(size);
if(size<=0)
return istm;
std::vector<char> vec((size_t)size);
istm.read(vec);
val.assign(&vec[0], (size_t)size);
return istm;
}
template<typename same_endian_type>
class mem_istream
{
public:
mem_istream() : m_index(0) {}
mem_istream(const char * mem, size_t size)
{
open(mem, size);
}
mem_istream(const std::vector<char>& vec)
{
m_index = 0;
m_vec.reserve(vec.size());
m_vec.assign(vec.begin(), vec.end());
}
void open(const char * mem, size_t size)
{
m_index = 0;
m_vec.clear();
m_vec.reserve(size);
m_vec.assign(mem, mem + size);
}
void close()
{
m_vec.clear();
}
bool eof() const
{
return m_index >= m_vec.size();
}
std::ifstream::pos_type tellg() const
{
return m_index;
}
bool seekg (size_t pos)
{
if(pos<m_vec.size())
m_index = pos;
else
return false;
return true;
}
bool seekg (std::streamoff offset, std::ios_base::seekdir way)
{
if(way==std::ios_base::beg && offset < m_vec.size())
m_index = offset;
else if(way==std::ios_base::cur && (m_index + offset) < m_vec.size())
m_index += offset;
else if(way==std::ios_base::end && (m_vec.size() + offset) < m_vec.size())
m_index = m_vec.size() + offset;
else
return false;
return true;
}
const std::vector<char>& get_internal_vec()
{
return m_vec;
}
template<typename T>
void read(T& t)
{
if(eof())
throw std::runtime_error("Premature end of array!");
if((m_index + sizeof(T)) > m_vec.size())
throw std::runtime_error("Premature end of array!");
std::memcpy(reinterpret_cast<void*>(&t), &m_vec[m_index], sizeof(T));
nczarr::swap_endian_if_same_endian_is_false(t, m_same_type);
m_index += sizeof(T);
}
void read(typename std::vector<char>& vec)
{
if (eof())
throw std::runtime_error("Premature end of array!");
if ((m_index + vec.size()) > m_vec.size())
throw std::runtime_error("Premature end of array!");
std::memcpy(reinterpret_cast<void*>(&vec[0]), &m_vec[m_index], vec.size());
m_index += vec.size();
}
void read(char* p, size_t size)
{
if(eof())
throw std::runtime_error("Premature end of array!");
if((m_index + size) > m_vec.size())
throw std::runtime_error("Premature end of array!");
std::memcpy(reinterpret_cast<void*>(p), &m_vec[m_index], size);
m_index += size;
}
void read(std::string& str, const unsigned int size)
{
if (eof())
throw std::runtime_error("Premature end of array!");
if ((m_index + size) > m_vec.size())
throw std::runtime_error("Premature end of array!");
str.assign(&m_vec[m_index], size);
m_index += str.size();
}
private:
std::vector<char> m_vec;
size_t m_index;
same_endian_type m_same_type;
};
template<typename same_endian_type, typename T>
mem_istream<same_endian_type>& operator >> ( mem_istream<same_endian_type>& istm, T& val)
{
istm.read(val);
return istm;
}
template<typename same_endian_type>
mem_istream<same_endian_type>& operator >> (mem_istream<same_endian_type>& istm, std::string& val)
{
val.clear();
int size = 0;
istm.read(size);
if(size<=0)
return istm;
istm.read(val, size);
return istm;
}
template<typename same_endian_type>
class ptr_istream
{
public:
ptr_istream() : m_arr(nullptr), m_size(0), m_index(0) {}
ptr_istream(const char * mem, size_t size) : m_arr(nullptr), m_size(0), m_index(0)
{
open(mem, size);
}
ptr_istream(const std::vector<char>& vec)
{
m_index = 0;
m_arr = vec.data();
m_size = vec.size();
}
void open(const char * mem, size_t size)
{
m_index = 0;
m_arr = mem;
m_size = size;
}
void close()
{
m_arr = nullptr; m_size = 0; m_index = 0;
}
bool eof() const
{
return m_index >= m_size;
}
std::ifstream::pos_type tellg() const
{
return m_index;
}
bool seekg(size_t pos)
{
if (pos<m_size)
m_index = pos;
else
return false;
return true;
}
bool seekg(std::streamoff offset, std::ios_base::seekdir way)
{
if (way == std::ios_base::beg && offset < m_size)
m_index = offset;
else if (way == std::ios_base::cur && (m_index + offset) < m_size)
m_index += offset;
else if (way == std::ios_base::end && (m_size + offset) < m_size)
m_index = m_size + offset;
else
return false;
return true;
}
template<typename T>
void read(T& t)
{
if (eof())
throw std::runtime_error("Premature end of array!");
if ((m_index + sizeof(T)) > m_size)
throw std::runtime_error("Premature end of array!");
std::memcpy(reinterpret_cast<void*>(&t), &m_arr[m_index], sizeof(T));
nczarr::swap_endian_if_same_endian_is_false(t, m_same_type);
m_index += sizeof(T);
}
void read(typename std::vector<char>& vec)
{
if (eof())
throw std::runtime_error("Premature end of array!");
if ((m_index + vec.size()) > m_size)
throw std::runtime_error("Premature end of array!");
std::memcpy(reinterpret_cast<void*>(&vec[0]), &m_arr[m_index], vec.size());
m_index += vec.size();
}
void read(char* p, size_t size)
{
if (eof())
throw std::runtime_error("Premature end of array!");
if ((m_index + size) > m_size)
throw std::runtime_error("Premature end of array!");
std::memcpy(reinterpret_cast<void*>(p), &m_arr[m_index], size);
m_index += size;
}
void read(std::string& str, const unsigned int size)
{
if (eof())
throw std::runtime_error("Premature end of array!");
if ((m_index + size) > m_size)
throw std::runtime_error("Premature end of array!");
str.assign(&m_arr[m_index], size);
m_index += str.size();
}
private:
const char* m_arr;
size_t m_size;
size_t m_index;
same_endian_type m_same_type;
};
template<typename same_endian_type, typename T>
ptr_istream<same_endian_type>& operator >> ( ptr_istream<same_endian_type>& istm, T& val)
{
istm.read(val);
return istm;
}
template<typename same_endian_type>
ptr_istream<same_endian_type>& operator >> ( ptr_istream<same_endian_type>& istm, std::string& val)
{
val.clear();
int size = 0;
istm.read(size);
if (size <= 0)
return istm;
istm.read(val, size);
return istm;
}
template<typename same_endian_type>
class memfile_istream
{
public:
memfile_istream() : m_arr(nullptr), m_size(0), m_index(0) {}
memfile_istream(const char * file) : m_arr(nullptr), m_size(0), m_index(0)
{
open(file);
}
#ifdef _MSC_VER
memfile_istream(const wchar_t * file) : m_arr(nullptr), m_size(0), m_index(0)
{
open(file);
}
#endif
~memfile_istream()
{
close();
}
void open(const char * file)
{
close();
#ifdef _MSC_VER
std::FILE* input_file_ptr = nullptr;
fopen_s(&input_file_ptr, file, "rb");
#else
std::FILE* input_file_ptr = std::fopen(file, "rb");
#endif
compute_length(input_file_ptr);
m_arr = new char[m_size];
std::fread(m_arr, m_size, 1, input_file_ptr);
fclose(input_file_ptr);
}
#ifdef _MSC_VER
void open(const wchar_t * file)
{
close();
std::FILE* input_file_ptr = nullptr;
_wfopen_s(&input_file_ptr, file, L"rb");
compute_length(input_file_ptr);
m_arr = new char[m_size];
std::fread(m_arr, m_size, 1, input_file_ptr);
fclose(input_file_ptr);
}
#endif
void close()
{
if (m_arr)
{
delete[] m_arr;
m_arr = nullptr; m_size = 0; m_index = 0;
}
}
bool is_open()
{
return (m_arr != nullptr);
}
long file_length() const
{
return m_size;
}
bool eof() const
{
return m_index >= m_size;
}
std::ifstream::pos_type tellg() const
{
return m_index;
}
bool seekg(size_t pos)
{
if (pos < m_size)
m_index = pos;
else
return false;
return true;
}
bool seekg(std::streamoff offset, std::ios_base::seekdir way)
{
if (way == std::ios_base::beg && offset < m_size)
m_index = offset;
else if (way == std::ios_base::cur && (m_index + offset) < m_size)
m_index += offset;
else if (way == std::ios_base::end && (m_size + offset) < m_size)
m_index = m_size + offset;
else
return false;
return true;
}
template<typename T>
void read(T& t)
{
if (eof())
throw std::runtime_error("Premature end of array!");
if ((m_index + sizeof(T)) > m_size)
throw std::runtime_error("Premature end of array!");
std::memcpy(reinterpret_cast<void*>(&t), &m_arr[m_index], sizeof(T));
nczarr::swap_endian_if_same_endian_is_false(t, m_same_type);
m_index += sizeof(T);
}
void read(typename std::vector<char>& vec)
{
if (eof())
throw std::runtime_error("Premature end of array!");
if ((m_index + vec.size()) > m_size)
throw std::runtime_error("Premature end of array!");
std::memcpy(reinterpret_cast<void*>(&vec[0]), &m_arr[m_index], vec.size());
m_index += vec.size();
}
void read(char* p, size_t size)
{
if (eof())
throw std::runtime_error("Premature end of array!");
if ((m_index + size) > m_size)
throw std::runtime_error("Premature end of array!");
std::memcpy(reinterpret_cast<void*>(p), &m_arr[m_index], size);
m_index += size;
}
void read(std::string& str, const unsigned int size)
{
if (eof())
throw std::runtime_error("Premature end of array!");
if ((m_index + size) > m_size)
throw std::runtime_error("Premature end of array!");
str.assign(&m_arr[m_index], size);
m_index += str.size();
}
private:
void compute_length(std::FILE* input_file_ptr)
{
std::fseek(input_file_ptr, 0, SEEK_END);
m_size = std::ftell(input_file_ptr);
std::fseek(input_file_ptr, 0, SEEK_SET);
}
char* m_arr;
size_t m_size;
size_t m_index;
same_endian_type m_same_type;
};
template<typename same_endian_type, typename T>
memfile_istream<same_endian_type>& operator >> ( memfile_istream<same_endian_type>& istm, T& val)
{
istm.read(val);
return istm;
}
template<typename same_endian_type>
memfile_istream<same_endian_type>& operator >> ( memfile_istream<same_endian_type>& istm, std::string& val)
{
val.clear();
int size = 0;
istm.read(size);
if (size <= 0)
return istm;
istm.read(val, size);
return istm;
}
template<typename same_endian_type>
class file_ostream
{
public:
file_ostream() : output_file_ptr(nullptr) {}
file_ostream(const char * file) : output_file_ptr(nullptr)
{
open(file);
}
#ifdef _MSC_VER
file_ostream(const wchar_t * file) : output_file_ptr(nullptr)
{
open(file);
}
#endif
~file_ostream()
{
close();
}
void open(const char * file)
{
close();
#ifdef _MSC_VER
output_file_ptr = nullptr;
fopen_s(&output_file_ptr, file, "wb");
#else
output_file_ptr = std::fopen(file, "wb");
#endif
}
#ifdef _MSC_VER
void open(const wchar_t * file)
{
close();
output_file_ptr = nullptr;
_wfopen_s(&output_file_ptr, file, L"wb");
}
#endif
void flush()
{
std::fflush(output_file_ptr);
}
void close()
{
if (output_file_ptr)
{
std::fclose(output_file_ptr);
output_file_ptr = nullptr;
}
}
bool is_open()
{
return output_file_ptr != nullptr;
}
template<typename T>
void write(const T& t)
{
T t2 = t;
nczarr::swap_endian_if_same_endian_is_false(t2, m_same_type);
std::fwrite(reinterpret_cast<const void*>(&t2), sizeof(T), 1, output_file_ptr);
}
void write(const std::vector<char>& vec)
{
std::fwrite(reinterpret_cast<const void*>(&vec[0]), vec.size(), 1, output_file_ptr);
}
void write(const char* p, size_t size)
{
std::fwrite(reinterpret_cast<const void*>(p), size, 1, output_file_ptr);
}
private:
std::FILE* output_file_ptr;
same_endian_type m_same_type;
};
template<typename same_endian_type, typename T>
file_ostream<same_endian_type>& operator << (file_ostream<same_endian_type>& ostm, const T& val)
{
ostm.write(val);
return ostm;
}
template<typename same_endian_type>
file_ostream<same_endian_type>& operator << ( file_ostream<same_endian_type>& ostm, const std::string& val)
{
int size = val.size();
ostm.write(size);
if(val.size()<=0)
return ostm;
ostm.write(val.c_str(), val.size());
return ostm;
}
template<typename same_endian_type>
file_ostream<same_endian_type>& operator << ( file_ostream<same_endian_type>& ostm, const char* val)
{
int size = std::strlen(val);
ostm.write(size);
if(size<=0)
return ostm;
ostm.write(val, size);
return ostm;
}
template<typename same_endian_type>
class mem_ostream
{
public:
mem_ostream() {}
void close()
{
m_vec.clear();
}
const std::vector<char>& get_internal_vec()
{
return m_vec;
}
template<typename T>
void write(const T& t)
{
std::vector<char> vec(sizeof(T));
T t2 = t;
nczarr::swap_endian_if_same_endian_is_false(t2, m_same_type);
std::memcpy(reinterpret_cast<void*>(&vec[0]), reinterpret_cast<const void*>(&t2), sizeof(T));
write(vec);
}
void write(const std::vector<char>& vec)
{
m_vec.insert(m_vec.end(), vec.begin(), vec.end());
}
void write(const char* p, size_t size)
{
for(size_t i=0; i<size; ++i)
m_vec.push_back(p[i]);
}
template<typename T>
void writeat(size_t pos, const T& t)
{
std::vector<char> vec(sizeof(T));
T t2 = t;
nczarr::swap_endian_if_same_endian_is_false(t2, m_same_type);
std::memcpy(reinterpret_cast<void*>(&vec[0]), reinterpret_cast<const void*>(&t2), sizeof(T));
writeat(pos, vec);
}
void writeat(size_t pos, const std::vector<char>& vec)
{
for (size_t n = 0, count = vec.size(); n < count; n++)
m_vec[pos++] = vec[n];
}
private:
std::vector<char> m_vec;
same_endian_type m_same_type;
};
template<typename same_endian_type, typename T>
mem_ostream<same_endian_type>& operator << ( mem_ostream<same_endian_type>& ostm, const T& val)
{
ostm.write(val);
return ostm;
}
template<typename same_endian_type>
mem_ostream<same_endian_type>& operator << ( mem_ostream<same_endian_type>& ostm, const std::string& val)
{
int size = val.size();
ostm.write(size);
if(val.size()<=0)
return ostm;
ostm.write(val.c_str(), val.size());
return ostm;
}
template<typename same_endian_type>
mem_ostream<same_endian_type>& operator << ( mem_ostream<same_endian_type>& ostm, const char* val)
{
int size = std::strlen(val);
ostm.write(size);
if(size<=0)
return ostm;
ostm.write(val, size);
return ostm;
}
template<typename same_endian_type>
class memfile_ostream
{
public:
memfile_ostream() {}
void close()
{
m_vec.clear();
}
const std::vector<char>& get_internal_vec()
{
return m_vec;
}
template<typename T>
void write(const T& t)
{
std::vector<char> vec(sizeof(T));
T t2 = t;
nczarr::swap_endian_if_same_endian_is_false(t2, m_same_type);
std::memcpy(reinterpret_cast<void*>(&vec[0]), reinterpret_cast<const void*>(&t2), sizeof(T));
write(vec);
}
void write(const std::vector<char>& vec)
{
m_vec.insert(m_vec.end(), vec.begin(), vec.end());
}
void write(const char* p, size_t size)
{
for (size_t i = 0; i<size; ++i)
m_vec.push_back(p[i]);
}
template<typename T>
void writeat(size_t pos, const T& t)
{
std::vector<char> vec(sizeof(T));
T t2 = t;
nczarr::swap_endian_if_same_endian_is_false(t2, m_same_type);
std::memcpy(reinterpret_cast<void*>(&vec[0]), reinterpret_cast<const void*>(&t2), sizeof(T));
writeat(pos, vec);
}
void writeat(size_t pos, const std::vector<char>& vec)
{
for (size_t n = 0, count = vec.size(); n < count; n++)
m_vec[pos++] = vec[n];
}
bool write_to_file(const char* file)
{
#ifdef _MSC_VER
std::FILE* fp = nullptr;
fopen_s(&fp, file, "wb");
#else
std::FILE* fp = std::fopen(file, "wb");
#endif
if (fp)
{
size_t size = std::fwrite(m_vec.data(), m_vec.size(), 1, fp);
std::fflush(fp);
std::fclose(fp);
m_vec.clear();
return size == 1u;
}
return false;
}
#ifdef _MSC_VER
bool write_to_file(const wchar_t* file)
{
std::FILE* fp = nullptr;
_wfopen_s(&fp, file, L"wb");
if (fp)
{
size_t size = std::fwrite(m_vec.data(), m_vec.size(), 1, fp);
std::fflush(fp);
std::fclose(fp);
m_vec.clear();
return size == 1u;
}
return false;
}
#endif
private:
std::vector<char> m_vec;
same_endian_type m_same_type;
};
template<typename same_endian_type, typename T>
memfile_ostream<same_endian_type>& operator << ( memfile_ostream<same_endian_type>& ostm, const T& val)
{
ostm.write(val);
return ostm;
}
template<typename same_endian_type>
memfile_ostream<same_endian_type>& operator << ( memfile_ostream<same_endian_type>& ostm, const std::string& val)
{
int size = val.size();
ostm.write(size);
if (val.size() <= 0)
return ostm;
ostm.write(val.c_str(), val.size());
return ostm;
}
template<typename same_endian_type>
memfile_ostream<same_endian_type>& operator << ( memfile_ostream<same_endian_type>& ostm, const char* val)
{
int size = std::strlen(val);
ostm.write(size);
if (size <= 0)
return ostm;
ostm.write(val, size);
return ostm;
}
} // ns simple
#endif // SimpleBinStream_H