netcdf-c/nc_test/testnc3perf.c
Sean McBride dfc2ac7296 Replaced trivial uses of sprintf with snprintf
In all these cases the size of the buffer can be computed with sizeof.
2023-12-08 13:30:38 -05:00

498 lines
13 KiB
C

/*********************************************************************
* Copyright 2018, University Corporation for Atmospheric Research
* See netcdf/README file for copying and redistribution conditions.
* $Header: /upc/share/CVS/netcdf-3/nctest/nctime.c,v 1.12 1996/04/30 17:56:58 davis Exp $
*********************************************************************/
/*
* This is a standalone benchmark program for timing netCDF hyperslab accesses.
* Once it is built, the benchmarks are run by invoking it with the shape of a
* four-dimensional netCDF variable, e.g.
*
* nctime 10 20 30 40
*
* which will run timing benchmarks accessing 1-, 2-, 3-, and 4-dimensional
* slabs from 10 by 20 by 30 by 40 variables of each type. The first dimension
* varies most slowly and is an unlimited (record) dimension.
*
* This program is especially useful for testing the effect of various compiler
* optimization levels or platform-specific optimizations on the performance of
* netCDF I/O.
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/param.h> /* for HZ */
#include <sys/times.h>
#include <assert.h>
#include <time.h>
#ifndef HZ
#ifdef CLK_TCK
#define HZ CLK_TCK
#else
#define HZ 60
#endif
#endif
#include "netcdf.h"
struct ncdim { /* dimension */
char *name;
long size;
};
struct ncvar { /* variable */
char *name;
nc_type type;
int ndims;
int *dims;
int natts;
};
#define LEN_OF(array) ((sizeof array) / (sizeof array[0]))
/* Number of dimensions. Changing this requires other changes as well. */
#define NDIMS 4
#define NVARS 6 /* number of variables, one for each type */
/* Any function that maps dimension values 1-1 to values is OK here */
#define VF(w) 1000*w[0]+100*w[1]+10*w[2]+w[3]
static int DEFAULTDIMS[NDIMS] = {10, 20, 30, 40};
/*
* Fill typed array element with specified value, that is
*
* v[ii] = val;
*/
static void
val_stuff(type, v, ii, val) /* v[ii] = val */
nc_type type; /* netcdf type of v, NC_BYTE, ..., NC_DOUBLE */
void *v; /* array of specified type */
int ii; /* it's v[ii] we want to store into */
long val; /* value to store */
{
union gp {
char cp[1];
short sp[1];
nclong lp[1];
float fp[1];
double dp[1];
} *gp;
gp = (union gp *) v;
switch (type) {
case NC_BYTE:
case NC_CHAR:
gp->cp[ii] = (char) val;
break;
case NC_SHORT:
gp->sp[ii] = (short) val;
break;
case NC_LONG:
gp->lp[ii] = (nclong) val;
break;
case NC_FLOAT:
gp->fp[ii] = (float) val;
break;
case NC_DOUBLE:
gp->dp[ii] = (double) val;
break;
}
}
/*
* Compare typed array element with specified value, that is return
*
* (v[ii] != val)
*
* returns 0 if equal, 1 if not equal
*/
static int
val_diff(type, v, ii, val) /* v[ii] != val */
nc_type type; /* netcdf type of v, NC_BYTE, ..., NC_DOUBLE */
void *v; /* array of specified type */
int ii; /* it's v[ii] we want to compare */
long val; /* value to compare with */
{
union gp {
char cp[1];
short sp[1];
nclong lp[1];
float fp[1];
double dp[1];
} *gp;
gp = (union gp *) v;
switch (type) {
case NC_BYTE:
case NC_CHAR:
return (gp->cp[ii] != (char) val);
case NC_SHORT:
return (gp->sp[ii] != (short) val);
case NC_LONG:
return (gp->lp[ii] != (nclong) val);
case NC_FLOAT:
return (gp->fp[ii] != (float) val);
case NC_DOUBLE:
return (gp->dp[ii] != (double) val);
}
/* NOTREACHED */
return 0;
}
/*
* The following timing macros can be used by including the necessary
* declarations with
*
* TIMING_DECLS ;
*
* and surrounding sections of code to be timed with the "statements"
*
* TIMING_START ;
* [code to be timed goes here]
* TIMING_END ;
*
* (The terminating semicolon is required for TIMING_DECLS and TIMING_END.)
* The macros assume the user has stored a description of what is being timed
* in the user-declared string time_mess, and has included <sys/times.h>
*/
#define TIMING_DECLS \
long TMreps; /* counts repetitions of timed code */ \
long TMrepeats; /* repetitions needed to exceed a second */ \
clock_t TMus, TMsy; /* user and system time in clock ticks */ \
float TMelapsed; /* elapsed time in seconds */ \
struct tms TMru;
#define TIMING_START \
TMrepeats = 1; \
do { /* loop enough times for at least 0.1 second elapsed time */ \
TMrepeats *= 2; \
times(&TMru); \
TMus = TMru.tms_utime; \
TMsy = TMru.tms_stime; \
for(TMreps=0;TMreps < TMrepeats;TMreps++) {
#define TIMING_END \
} \
times(&TMru); \
TMus = TMru.tms_utime - TMus; \
TMsy = TMru.tms_stime - TMsy; \
TMelapsed= (float) (TMus+TMsy) / (float) HZ; \
if (TMreps < TMrepeats) break; \
} while (TMelapsed < 0.1 ); \
printf("time for %-20.20s %10.3f msec\n", \
time_mess, TMelapsed*1000./(TMreps+1))
/*
* For each type of variable, put a four-dimensional hypercube of values
* with a single call to ncvarput. Then use ncvarget to retrieve a single
* value, a vector of values along each of the four dimensions, a plane of
* values along each of the six pairs of dimensions, a cube of values along
* each of the four triples of dimensions, and all the values.
*/
void
test_slabs(ncid, sizes)
int ncid; /* handle of netcdf open and in data mode */
int *sizes; /* dimension sizes */
{
char time_mess[100];
struct ncdim dims[NDIMS];
int dimids[NDIMS]; /* dimension ids */
long corner[NDIMS], edge[NDIMS], point[NDIMS];
static struct ncvar va[NVARS] = { /* variables of all types */
{"byte_var", NC_BYTE, NDIMS, 0, 0},
{"char_var", NC_CHAR, NDIMS, 0, 0},
{"short_var", NC_SHORT, NDIMS, 0, 0},
{"long_var", NC_LONG, NDIMS, 0, 0},
{"float_var", NC_FLOAT, NDIMS, 0, 0},
{"double_var", NC_DOUBLE, NDIMS, 0, 0},
};
void *v;
int varid[NVARS], iv; /* variable id */
int idim, jdim, kdim, ldim;
int iw, ix, iy, iz, ii, jj, kk;
static char* dnames[] = {"w", "x", "y", "z", "u", "v", "a", "b", "c", "d"};
assert(NDIMS <= LEN_OF(dnames));
for (idim = 0; idim < NDIMS; idim++) {
dims[idim].size = sizes[idim];
dims[idim].name = dnames[idim];
}
/* back in define mode OK, now add dimensions */
dimids[0] = ncdimdef(ncid, dims[0].name, NC_UNLIMITED);
if (dimids[0] == -1) {
ncclose(ncid);
return;
}
for (idim = 1; idim < NDIMS; idim++) {
dimids[idim] = ncdimdef(ncid, dims[idim].name, dims[idim].size);
if (dimids[idim] == -1) {
ncclose(ncid);
return;
}
}
/* define a multi-dimensional variable of each type */
for (iv = 0; iv < NVARS; iv++) {
va[iv].dims = (int *) malloc(sizeof(int) * (unsigned)va[iv].ndims);
for (idim = 0; idim < va[iv].ndims; idim++)
va[iv].dims[idim] = dimids[idim];
varid[iv] = ncvardef(ncid, va[iv].name, va[iv].type, va[iv].ndims,
va[iv].dims);
if (varid[iv] == -1) {
ncclose(ncid); return;
}
}
if (ncendef (ncid) == -1) {
ncclose(ncid); return;
}
printf("Note: first ncvarput writes fill values for all variables.\n");
for (iv = 0; iv < NVARS; iv++) { /* test each type of variable */
TIMING_DECLS ;
printf("\n----- %s(%d,%d,%d,%d)\n",
va[iv].name, sizes[0], sizes[1], sizes[2], sizes[3]);
v = (void *) malloc((unsigned)sizes[0]*sizes[1]*sizes[2]*sizes[3]
* nctypelen(va[iv].type));
/* fill it with values using a function of dimension indices */
ii = 0;
for (iw=0; iw < sizes[0]; iw++) {
corner[0] = iw;
for (ix=0; ix < sizes[1]; ix++) {
corner[1] = ix;
for (iy=0; iy < sizes[2]; iy++) {
corner[2] = iy;
for (iz=0; iz < sizes[3]; iz++) {
corner[3] = iz;
/* v[ii++] = VF(corner); */
val_stuff(va[iv].type, v, ii, VF(corner));
ii++;
}
}
}
}
for (idim = 0; idim < NDIMS; idim++) {
corner[idim] = 0;
edge[idim] = dims[idim].size;
}
snprintf(time_mess, sizeof(time_mess),"ncvarput %ldx%ldx%ldx%ld",
edge[0], edge[1], edge[2], edge[3]);
TIMING_START ;
/* ncvarput the whole variable */
if (ncvarput(ncid, varid[iv], corner, edge, (void *) v) == -1) {
ncclose(ncid);
return;
}
TIMING_END ;
/*
* For several combinations of fixed dimensions, get a slab and compare
* values to function values.
*/
/* get an interior point */
for (idim=0; idim < NDIMS; idim++) {
corner[idim] = dims[idim].size/2;
edge[idim] = 1;
point[idim] = corner[idim];
}
snprintf(time_mess, sizeof(time_mess),"ncvarget %ldx%ldx%ldx%ld"
,edge[0],edge[1],edge[2],edge[3]);
TIMING_START ;
if (ncvarget(ncid, varid[iv], corner, edge, (void *) v) == -1)
return;
TIMING_END ;
/* if (v[0] != VF(point)) */
if (val_diff(va[iv].type, v, 0, VF(point)))
fprintf(stderr,"ncvarget got wrong value for point");
/* get a vector in each direction */
for (idim=0; idim < NDIMS; idim++) {
for (jdim=0; jdim < NDIMS; jdim++) {
corner[jdim] = 0;
edge[jdim] = 1;
point[jdim] = corner[jdim];
}
corner[idim] = 0; /* get vector along dimension idim */
edge[idim] = dims[idim].size;
snprintf(time_mess, sizeof(time_mess),"ncvarget %ldx%ldx%ldx%ld"
,edge[0],edge[1],edge[2],edge[3]);
TIMING_START ;
if (ncvarget(ncid, varid[iv], corner, edge, (void *) v) == -1)
return;
TIMING_END ;
for (ii=corner[idim]; ii < edge[idim]; ii++) {
point[idim] = ii;
/* if (v[ii] != VF(point)) */
if (val_diff(va[iv].type, v, ii, VF(point)))
fprintf(stderr,"ncvarget got wrong value for vector");
}
}
/* get a plane in each direction */
for (idim=0; idim < NDIMS; idim++) {
for (jdim=idim+1; jdim < NDIMS; jdim++) {
for (kdim=0; kdim < NDIMS; kdim++) { /* reset corners and edges */
corner[kdim] = 0;
edge[kdim] = 1;
point[kdim] = corner[kdim];
}
corner[idim] = 0; /* plane along dimensions idim jdim */
corner[jdim] = 0;
edge[idim] = dims[idim].size;
edge[jdim] = dims[jdim].size;
snprintf(time_mess, sizeof(time_mess),"ncvarget %ldx%ldx%ldx%ld"
,edge[0],edge[1],edge[2],edge[3]);
TIMING_START ;
if (ncvarget(ncid, varid[iv], corner, edge, (void *) v) == -1)
return;
TIMING_END ;
for (ii=corner[idim]; ii < edge[idim]; ii++) {
for (jj=corner[jdim]; jj < edge[jdim]; jj++) {
point[idim] = ii;
point[jdim] = jj;
/* if (v[(ii)*edge[jdim]+jj] != VF(point)) { */
if (val_diff(va[iv].type, v,
(ii)*(int)edge[jdim]+jj, VF(point))) {
fprintf(stderr,
"ncvarget got wrong value in plane");
}
}
}
}
}
/* get a cube in each direction */
for (idim=0; idim < NDIMS; idim++) {
for (jdim=idim+1; jdim < NDIMS; jdim++) {
for (kdim=jdim+1; kdim < NDIMS; kdim++) {
for (ldim=0; ldim < NDIMS; ldim++) { /* reset corners, edges */
corner[ldim] = 0;
edge[ldim] = 1;
point[ldim] = corner[ldim];
}
corner[idim] = 0; /* intr. cube along idim jdim kdim */
corner[jdim] = 0;
corner[kdim] = 0;
edge[idim] = dims[idim].size;
edge[jdim] = dims[jdim].size;
edge[kdim] = dims[kdim].size;
snprintf(time_mess, sizeof(time_mess),"ncvarget %ldx%ldx%ldx%ld"
,edge[0],edge[1],edge[2],edge[3]);
TIMING_START ;
if (ncvarget(ncid, varid[iv], corner, edge,
(void *) v) == -1)
return;
TIMING_END ;
for (ii=corner[idim]; ii < edge[idim]; ii++) {
for (jj=corner[jdim]; jj < edge[jdim]; jj++) {
for (kk=corner[kdim]; kk < edge[kdim]; kk++) {
point[idim] = ii;
point[jdim] = jj;
point[kdim] = kk;
/* if (v[((ii)*edge[jdim]+jj)*
edge[kdim]+kk] != VF(point)) { */
if (val_diff(va[iv].type,v,
((ii)*(int)edge[jdim]+jj)*
(int)edge[kdim]+kk,VF(point))) {
fprintf(stderr,
"ncvarget - bad value in cube");
}
}
}
}
}
}
}
/* get one 4-D slab of data */
for(idim = 0; idim < NDIMS; idim++) {
corner[idim] = 0;
edge[idim] = dims[idim].size;
}
snprintf(time_mess, sizeof(time_mess),"ncvarget %ldx%ldx%ldx%ld"
,edge[0],edge[1],edge[2],edge[3]);
TIMING_START ;
if (ncvarget(ncid, varid[iv], corner, edge, (void *) v) == -1)
return;
TIMING_END ;
free(v);
}
}
void
usage(argv)
char **argv;
{
int i;
fprintf(stderr, "usage: %s ", argv[0]);
for (i=0; i < NDIMS; i++)
fprintf(stderr, "dim%d ", i);
fprintf(stderr, "\n");
}
int
main(argc, argv)
int argc;
char **argv;
{
int ncid;
int i;
int w[NDIMS];
if (argc != NDIMS+1) {
for (i = 0; i < NDIMS; i++)
w[i] = DEFAULTDIMS[i];
} else {
for (i = 0; i < NDIMS; i++)
w[i] = atoi(argv[i+1]);
}
ncid = nccreate("benchmark.nc",NC_CLOBBER);
test_slabs(ncid, w);
ncclose(ncid);
return 0;
}