/********************************************************************* * Copyright 1993, UCAR/Unidata * See netcdf/COPYRIGHT filey for copying and redistribution conditions. *********************************************************************/ #include "dapincludes.h" #include "dceparselex.h" #include "dceconstraints.h" #include "dapdump.h" static void completesegments(NClist* fullpath, NClist* segments); static NCerror qualifyprojectionnames(DCEprojection* proj); static NCerror qualifyprojectionsizes(DCEprojection* proj); static NCerror qualifyprojectionnames(DCEprojection* proj); static NCerror matchpartialname(NClist* nodes, NClist* segments, CDFnode** nodep); static int matchsuffix(NClist* matchpath, NClist* segments); static int iscontainer(CDFnode* node); static DCEprojection* projectify(CDFnode* field, DCEprojection* container); static int slicematch(NClist* seglist1, NClist* seglist2); /* Parse incoming url constraints, if any, to check for syntactic correctness */ NCerror dapparsedapconstraints(NCDAPCOMMON* dapcomm, char* constraints, DCEconstraint* dceconstraint) { NCerror ncstat = NC_NOERR; char* errmsg = NULL; ASSERT(dceconstraint != NULL); nclistclear(dceconstraint->projections); nclistclear(dceconstraint->selections); ncstat = dapceparse(constraints,dceconstraint,&errmsg); if(ncstat) { nclog(NCLOGWARN,"DCE constraint parse failure: %s",errmsg); nclistclear(dceconstraint->projections); nclistclear(dceconstraint->selections); } /* errmsg is freed whether ncstat or not. */ nullfree(errmsg); return ncstat; } /* Map constraint paths to CDFnode paths in specified tree and fill in the declsizes. Two things to watch out for: 1. suffix paths are legal (i.e. incomplete paths) 2. nc_virtual nodes (via restruct) */ NCerror dapmapconstraints(DCEconstraint* constraint, CDFnode* root) { int i; NCerror ncstat = NC_NOERR; NClist* nodes = root->tree->nodes; NClist* dceprojections = constraint->projections; /* Convert the projection paths to leaves in the dds tree */ for(i=0;idiscrim != CES_VAR) continue; /* ignore functions */ ncstat = matchpartialname(nodes,proj->var->segments,&cdfmatch); if(ncstat) goto done; /* Cross links */ assert(cdfmatch != NULL); proj->var->annotation = (void*)cdfmatch; } done: return THROW(ncstat); } /* Fill in: 1. projection segments 2. projection segment slices declsize 3. selection path */ NCerror dapqualifyconstraints(DCEconstraint* constraint) { NCerror ncstat = NC_NOERR; int i; #ifdef DEBUG fprintf(stderr,"ncqualifyconstraints.before: %s\n", dumpconstraint(constraint)); #endif if(constraint != NULL) { for(i=0;iprojections);i++) { DCEprojection* p = (DCEprojection*)nclistget(constraint->projections,i); ncstat = qualifyprojectionnames(p); ncstat = qualifyprojectionsizes(p); } } #ifdef DEBUG fprintf(stderr,"ncqualifyconstraints.after: %s\n", dumpconstraint(constraint)); #endif return ncstat; } /* convert all names in projections in paths to be fully qualified by adding prefix segment objects. */ static NCerror qualifyprojectionnames(DCEprojection* proj) { NCerror ncstat = NC_NOERR; NClist* fullpath = nclistnew(); ASSERT((proj->discrim == CES_VAR && proj->var->annotation != NULL && ((CDFnode*)proj->var->annotation)->ocnode != NULL)); collectnodepath((CDFnode*)proj->var->annotation,fullpath,!WITHDATASET); #ifdef DEBUG fprintf(stderr,"qualify: %s -> ", dumpprojection(proj)); #endif /* Now add path nodes to create full path */ completesegments(fullpath,proj->var->segments); #ifdef DEBUG fprintf(stderr,"%s\n", dumpprojection(proj)); #endif nclistfree(fullpath); return ncstat; } /* Make sure that the slice declsizes are all defined for this projection */ static NCerror qualifyprojectionsizes(DCEprojection* proj) { int i,j; ASSERT(proj->discrim == CES_VAR); #ifdef DEBUG fprintf(stderr,"qualifyprojectionsizes.before: %s\n", dumpprojection(proj)); #endif for(i=0;ivar->segments);i++) { DCEsegment* seg = (DCEsegment*)nclistget(proj->var->segments,i); NClist* dimset = NULL; CDFnode* cdfnode = (CDFnode*)seg->annotation; ASSERT(cdfnode != NULL); dimset = cdfnode->array.dimsetplus; seg->rank = nclistlength(dimset); /* For this, we do not want any string dimensions */ if(cdfnode->array.stringdim != NULL) seg->rank--; for(j=0;jrank;j++) { CDFnode* dim = (CDFnode*)nclistget(dimset,j); if(dim->dim.basedim != NULL) dim = dim->dim.basedim; ASSERT(dim != null); if(seg->slicesdefined) seg->slices[j].declsize = dim->dim.declsize; else dcemakewholeslice(seg->slices+j,dim->dim.declsize); } seg->slicesdefined = 1; seg->slicesdeclized = 1; } #ifdef DEBUG fprintf(stderr,"qualifyprojectionsizes.after: %s\n", dumpprojection(proj)); #endif return NC_NOERR; } static void completesegments(NClist* fullpath, NClist* segments) { int i,delta; /* add path nodes to segments to create full path */ delta = (nclistlength(fullpath) - nclistlength(segments)); ASSERT((delta >= 0)); for(i=0;iname = nulldup(node->ocname); seg->annotation = (void*)node; seg->rank = nclistlength(node->array.dimset0); nclistinsert(segments,i,(void*)seg); } /* Now modify the segments to point to the appropriate node and fill in the slices. */ for(i=delta;iannotation = (void*)node; } } /* We are given a set of segments (in path) representing a partial path for a CDFnode variable. Our goal is to locate all matching variables for which the path of that variable has a suffix matching the given partial path. If one node matches exactly, then use that one; otherwise there had better be exactly one match else ambiguous. Additional constraints (4/12/2010): 1. if a segment is dimensioned, then use that info to distinguish e.g a grid node from a possible grid array within it of the same name. Treat sequences as of rank 1. 2. if there are two matches, and one is the grid and the other is the grid array within that grid, then choose the grid array. 3. If there are multiple matches choose the one with the shortest path 4. otherwise complain about ambiguity */ /** * Given a path as segments, * try to locate the CDFnode * instance (from a given set) * that corresponds to the path. * The key difficulty is that the * path may only be a suffix of the * complete path. */ static NCerror matchpartialname(NClist* nodes, NClist* segments, CDFnode** nodep) { int i,nsegs; NCerror ncstat = NC_NOERR; DCEsegment* lastseg = NULL; NClist* namematches = nclistnew(); NClist* matches = nclistnew(); NClist* matchpath = nclistnew(); /* Locate all nodes with the same name as the last element in the segment path */ nsegs = nclistlength(segments); lastseg = (DCEsegment*)nclistget(segments,nsegs-1); for(i=0;iocname == null) continue; /* Path names come from oc space */ if(strcmp(node->ocname,lastseg->name) != 0) continue; /* Only look at selected kinds of nodes */ if(node->nctype != NC_Sequence && node->nctype != NC_Structure && node->nctype != NC_Grid && node->nctype != NC_Atomic ) continue; nclistpush(namematches,(void*)node); } if(nclistlength(namematches)==0) { nclog(NCLOGERR,"No match for projection name: %s",lastseg->name); ncstat = NC_EDDS; goto done; } /* Now, collect and compare paths of the matching nodes */ for(i=0;incfullname,dumpsegments(segments)); #endif } } /* |matches|==0 => no match; |matches|>1 => ambiguity */ switch (nclistlength(matches)) { case 0: nclog(NCLOGERR,"No match for projection name: %s",lastseg->name); ncstat = NC_EDDS; break; case 1: if(nodep) *nodep = (CDFnode*)nclistget(matches,0); break; default: { CDFnode* minnode = NULL; int minpath = 0; int nmin = 0; /* to catch multiple ones with same short path */ /* ok, see if one of the matches has a path that is shorter then all the others */ for(i=0;i 1) { nclog(NCLOGERR,"Ambiguous match for projection name: %s", lastseg->name); ncstat = NC_EDDS; } else if(nodep) *nodep = minnode; } break; } #ifdef DEBUG fprintf(stderr,"matchpartialname: choice: %s %s for %s\n", (nclistlength(matches) > 1?"":"forced"), (*nodep)->ncfullname,dumpsegments(segments)); #endif done: nclistfree(namematches); nclistfree(matches); nclistfree(matchpath); return THROW(ncstat); } static int matchsuffix(NClist* matchpath, NClist* segments) { int i,pathstart; int nsegs = nclistlength(segments); int pathlen = nclistlength(matchpath); int segmatch; /* try to match the segment list as a suffix of the path list */ /* Find the maximal point in the path s.t. |suffix of path| == |segments| */ pathstart = (pathlen - nsegs); if(pathstart < 0) return 0; /* pathlen no match possible */ /* Walk the suffix of the path and the segments and matching as we go */ for(i=0;irank; segmatch = 1; /* until proven otherwise */ /* Do the names match (in oc name space) */ if(strcmp(seg->name,node->ocname) != 0) { segmatch = 0; } else { /* Do the ranks match (watch out for sequences) */ if(node->nctype == NC_Sequence) rank--; /* remove sequence pseudo-rank */ if(rank > 0 && rank != nclistlength(node->array.dimset0)) segmatch = 0; /* rank mismatch */ } if(!segmatch) return 0; } return 1; /* all segs matched */ } /* Given the arguments to vara construct a corresponding projection with any pseudo dimensions removed */ NCerror dapbuildvaraprojection(CDFnode* var, const size_t* startp, const size_t* countp, const ptrdiff_t* stridep, DCEprojection** projectionp) { int i,j; NCerror ncstat = NC_NOERR; DCEprojection* projection = NULL; NClist* path = nclistnew(); NClist* segments = NULL; int dimindex; /* Build a skeleton projection that has 1 segment for every cdfnode from root to the variable of interest. Each segment has the slices from its corresponding node in the path, including pseudo-dims */ ncstat = dapvar2projection(var,&projection); #ifdef DEBUG fprintf(stderr,"buildvaraprojection: skeleton: %s\n",dumpprojection(projection)); #endif /* Now, modify the projection to reflect the corresponding start/count/stride from the nc_get_vara arguments. */ segments = projection->var->segments; dimindex = 0; for(i=0;irank;j++) { size_t count = 0; DCEslice* slice = &segment->slices[j]; /* make each slice represent the corresponding start/count/stride */ slice->first = startp[dimindex+j]; slice->stride = stridep[dimindex+j]; count = countp[dimindex+j]; slice->count = count; slice->length = count * slice->stride; slice->last = (slice->first + slice->length) - 1; if(slice->last >= slice->declsize) { slice->last = slice->declsize - 1; /* reverse compute the new length */ slice->length = (slice->last - slice->first) + 1; } } dimindex += segment->rank; } #ifdef DEBUG fprintf(stderr,"buildvaraprojection.final: %s\n",dumpprojection(projection)); #endif #ifdef DEBUG fprintf(stderr,"buildvaraprojection3: final: projection=%s\n", dumpprojection(projection)); #endif if(projectionp) *projectionp = projection; nclistfree(path); if(ncstat) dcefree((DCEnode*)projection); return ncstat; } int dapiswholeslice(DCEslice* slice, CDFnode* dim) { if(slice->first != 0 || slice->stride != 1) return 0; if(dim != NULL) { if(slice->length != dim->dim.declsize) return 0; } else if(dim == NULL) { size_t count = slice->count; if(slice->declsize == 0 || count != slice->declsize) return 0; } return 1; } int dapiswholesegment(DCEsegment* seg) { int i,whole; NClist* dimset = NULL; unsigned int rank; if(seg->rank == 0) return 1; if(!seg->slicesdefined) return 0; if(seg->annotation == NULL) return 0; dimset = ((CDFnode*)seg->annotation)->array.dimset0; rank = nclistlength(dimset); whole = 1; /* assume so */ for(i=0;islices[i],dim)) {whole = 0; break;} } return whole; } int dapiswholeprojection(DCEprojection* proj) { int i,whole; ASSERT((proj->discrim == CES_VAR)); whole = 1; /* assume so */ for(i=0;ivar->segments);i++) { DCEsegment* segment = (DCEsegment*)nclistget(proj->var->segments,i); if(!dapiswholesegment(segment)) {whole = 0; break;} } return whole; } int dapiswholeconstraint(DCEconstraint* con) { int i; if(con == NULL) return 1; if(con->projections != NULL) { for(i=0;iprojections);i++) { if(!dapiswholeprojection((DCEprojection*)nclistget(con->projections,i))) return 0; } } if(con->selections != NULL) return 0; return 1; } /* Given a set of projections, we need to produce an expanded, correct, and equivalent set of projections. The term "correct" means we must fix the following cases: 1. Multiple occurrences of the same leaf variable with differing projection slices. Fix is to complain. 2. Occurrences of container and one or more of its fields. Fix is to suppress the container. The term "expanded" means 1. Expand all occurrences of only a container by replacing it with all of its fields. */ NCerror dapfixprojections(NClist* list) { int i,j,k; NCerror ncstat = NC_NOERR; NClist* tmp = nclistnew(); /* misc. uses */ #ifdef DEBUG fprintf(stderr,"fixprojection: list = %s\n",dumpprojections(list)); #endif if(nclistlength(list) == 0) goto done; /* Step 1: remove duplicates and complain about slice mismatches */ for(i=0;idiscrim != CES_VAR) continue; /* dont try to unify functions */ for(j=i;jdiscrim != CES_VAR) continue; if(p1->var->annotation != p2->var->annotation) continue; /* check for slice mismatches */ if(!slicematch(p1->var->segments,p2->var->segments)) { /* complain */ nclog(NCLOGWARN,"Malformed projection: same variable with different slicing"); } /* remove p32 */ nclistset(list,j,(void*)NULL); dcefree((DCEnode*)p2); } } /* Step 2: remove containers when a field is also present */ for(i=0;idiscrim != CES_VAR) continue; /* dont try to unify functions */ if(!iscontainer((CDFnode*)p1->var->annotation)) continue; for(j=i;jdiscrim != CES_VAR) continue; nclistclear(tmp); collectnodepath((CDFnode*)p2->var->annotation,tmp,WITHDATASET); for(k=0;kvar->annotation) { nclistset(list,i,(void*)NULL); dcefree((DCEnode*)p1); goto next; } } } next: continue; } /* Step 3: expand all containers recursively down to the leaf nodes */ for(;;) { nclistclear(tmp); for(i=0;idiscrim != CES_VAR) continue; /* dont try to unify functions */ leaf = (CDFnode*)target->var->annotation; ASSERT(leaf != NULL); if(iscontainer(leaf)) {/* capture container */ if(!nclistcontains(tmp,(void*)target)) nclistpush(tmp,(void*)target); nclistset(list,i,(void*)NULL); } } if(nclistlength(tmp) == 0) break; /*done*/ /* Now explode the containers */ for(i=0;ivar->annotation; for(j=0;isubnodes);j++) { CDFnode* field = (CDFnode*)nclistget(leaf->subnodes,j); /* Convert field node to a proper constraint */ DCEprojection* proj = projectify(field,container); nclistpush(list,(void*)proj); } /* reclaim the container */ dcefree((DCEnode*)container); } } /*for(;;)*/ /* remove all NULL elements */ for(i=nclistlength(list)-1;i>=0;i--) { DCEprojection* target = (DCEprojection*)nclistget(list,i); if(target == NULL) nclistremove(list,i); } done: #ifdef DEBUG fprintf(stderr,"fixprojection: exploded = %s\n",dumpprojections(list)); #endif nclistfree(tmp); return ncstat; } static int iscontainer(CDFnode* node) { return (node->nctype == NC_Dataset || node->nctype == NC_Sequence || node->nctype == NC_Structure || node->nctype == NC_Grid); } static DCEprojection* projectify(CDFnode* field, DCEprojection* container) { DCEprojection* proj = (DCEprojection*)dcecreate(CES_PROJECT); DCEvar* var = (DCEvar*)dcecreate(CES_VAR); DCEsegment* seg = (DCEsegment*)dcecreate(CES_SEGMENT); proj->discrim = CES_VAR; proj->var = var; var->annotation = (void*)field; /* Dup the segment list */ var->segments = dceclonelist(container->var->segments); seg->rank = 0; nclistpush(var->segments,(void*)seg); return proj; } static int slicematch(NClist* seglist1, NClist* seglist2) { int i,j; if((seglist1 == NULL || seglist2 == NULL) && seglist1 != seglist2) return 0; if(nclistlength(seglist1) != nclistlength(seglist2)) return 0; for(i=0;irank != seg2->rank) return 0; for(j=0;jrank;j++) { DCEslice* slice1 = &seg1->slices[j]; DCEslice* slice2 = &seg2->slices[j]; size_t count1 = slice1->count; size_t count2 = slice2->count; if(slice1->first != slice2->first || count1 != count2 || slice1->stride != slice2->stride) return 0; } } return 1; } /* Convert a CDFnode var to a projection; include pseudodimensions; always whole variable. */ int dapvar2projection(CDFnode* var, DCEprojection** projectionp) { int i,j; int ncstat = NC_NOERR; NClist* path = nclistnew(); NClist* segments; DCEprojection* projection = NULL; int dimindex; /* Collect the nodes needed to construct the projection segments */ collectnodepath(var,path,!WITHDATASET); segments = nclistnew(); dimindex = 0; /* point to next subset of slices */ nclistsetalloc(segments,nclistlength(path)); for(i=0;iannotation = (void*)n; segment->name = nulldup(n->ocname); /* We need to assign whole slices to each segment */ localrank = nclistlength(n->array.dimsetplus); segment->rank = localrank; dimset = n->array.dimsetplus; for(j=0;jslices[j]; dim = (CDFnode*)nclistget(dimset,j); ASSERT(dim->dim.declsize0 > 0); dcemakewholeslice(slice,dim->dim.declsize0); } segment->slicesdefined = 1; segment->slicesdeclized = 1; dimindex += localrank; nclistpush(segments,(void*)segment); } projection = (DCEprojection*)dcecreate(CES_PROJECT); projection->discrim = CES_VAR; projection->var = (DCEvar*)dcecreate(CES_VAR); projection->var->annotation = (void*)var; projection->var->segments = segments; #ifdef DEBUG1 fprintf(stderr,"dapvar2projection: projection=%s\n", dumpprojection(projection)); #endif nclistfree(path); if(ncstat) dcefree((DCEnode*)projection); else if(projectionp) *projectionp = projection; return ncstat; } /* Given a set of projections and a projection representing a variable (from, say vara or prefetch) construct a single projection for fetching that variable with the proper constraints. */ int daprestrictprojection(NClist* projections, DCEprojection* var, DCEprojection** resultp) { int ncstat = NC_NOERR; int i; DCEprojection* result = NULL; #ifdef DEBUG1 fprintf(stderr,"restrictprojection.before: constraints=|%s| vara=|%s|\n", dumpprojections(projections), dumpprojection(var)); #endif ASSERT(var != NULL); /* the projection list will contain at most 1 match for the var by construction */ for(result=null,i=0;idiscrim != CES_VAR) continue; if(p1->var->annotation == var->var->annotation) { result = p1; break; } } if(result == NULL) { result = (DCEprojection*)dceclone((DCEnode*)var); /* use only the var projection */ goto done; } result = (DCEprojection*)dceclone((DCEnode*)result); /* so we can modify */ #ifdef DEBUG1 fprintf(stderr,"restrictprojection.choice: base=|%s| add=|%s|\n", dumpprojection(result),dumpprojection(var)); #endif /* We need to merge the projection from the projection list with the var projection */ ncstat = dcemergeprojections(result,var); /* result will be modified */ done: if(resultp) *resultp = result; #ifdef DEBUG fprintf(stderr,"restrictprojection.after=|%s|\n", dumpprojection(result)); #endif return ncstat; } /* Shift the slice so it runs from 0..count by step 1 */ static void dapshiftslice(DCEslice* slice) { size_t first = slice->first; size_t stride = slice->stride; if(first == 0 && stride == 1) return; /* no need to do anything */ slice->first = 0; slice->stride = 1; slice->length = slice->count; slice->last = slice->length - 1; } int dapshiftprojection(DCEprojection* projection) { int ncstat = NC_NOERR; int i,j; NClist* segments; #ifdef DEBUG1 fprintf(stderr,"dapshiftprojection.before: %s\n",dumpprojection(projection)); #endif ASSERT(projection->discrim == CES_VAR); segments = projection->var->segments; for(i=0;irank;j++) { DCEslice* slice = seg->slices+j; dapshiftslice(slice); } } #ifdef DEBUG1 fprintf(stderr,"dapshiftprojection.after: %s\n",dumpprojection(projection)); #endif return ncstat; } /* Compute the set of variables referenced in the projections of the input constraint. */ NCerror dapcomputeprojectedvars(NCDAPCOMMON* dapcomm, DCEconstraint* constraint) { NCerror ncstat = NC_NOERR; NClist* vars = NULL; int i; vars = nclistnew(); if(dapcomm->cdf.projectedvars != NULL) nclistfree(dapcomm->cdf.projectedvars); dapcomm->cdf.projectedvars = vars; if(constraint == NULL || constraint->projections == NULL) goto done; for(i=0;iprojections);i++) { CDFnode* node; DCEprojection* proj = (DCEprojection*)nclistget(constraint->projections,i); if(proj->discrim == CES_FCN) continue; /* ignore these */ node = (CDFnode*)proj->var->annotation; if(!nclistcontains(vars,(void*)node)) { nclistpush(vars,(void*)node); } } done: return ncstat; }