re: Discussion https://github.com/Unidata/netcdf-c/discussions/2214
The primary change is to support so-called "standard filters".
A standard filter is one that is defined by the following
netcdf-c API:
````
int nc_def_var_XXX(int ncid, int varid, size_t nparams, unsigned* params);
int nc_inq_var_XXXX(int ncid, int varid, int* usefilterp, unsigned* params);
````
So for example, zstandard would be a standard filter by defining
the functions *nc_def_var_zstandard* and *nc_inq_var_zstandard*.
In order to define these functions, we need a new dispatch function:
````
int nc_inq_filter_avail(int ncid, unsigned filterid);
````
This function, combined with the existing filter API can be used
to implement arbitrary standard filters using a simple code pattern.
Note that I would have preferred that this function return a list
of all available filters, but HDF5 does not support that functionality.
So this PR implements the dispatch function and implements
the following standard functions:
+ bzip2
+ zstandard
+ blosc
Specific test cases are also provided for HDF5 and NCZarr.
Over time, other specific standard filters will be defined.
## Primary Changes
* Add nc_inq_filter_avail() to netcdf-c API.
* Add standard filter implementations to test use of *nc_inq_filter_avail*.
* Bump the dispatch table version number and add to all the relevant
dispatch tables (libsrc, libsrcp, etc).
* Create a program to invoke nc_inq_filter_avail so that it is accessible
to shell scripts.
* Cleanup szip support to properly support szip
when HDF5 is disabled. This involves detecting
libsz separately from testing if HDF5 supports szip.
* Integrate shuffle and fletcher32 into the existing
filter API. This means that, for example, nc_def_var_fletcher32
is now a wrapper around nc_def_var_filter.
* Extend the Codec defaulting to allow multiple default shared libraries.
## Misc. Changes
* Modify configure.ac/CMakeLists.txt to look for the relevant
libraries implementing standard filters.
* Modify libnetcdf.settings to list available standard filters
(including deflate and szip).
* Add CMake test modules to locate libbz2 and libzstd.
* Cleanup the HDF5 memory manager function use in the plugins.
* remove unused file include//ncfilter.h
* remove tests for the HDF5 memory operations e.g. H5allocate_memory.
* Add flag to ncdump to force use of _Filter instead of _Deflate
or _Shuffle or _Fletcher32. Used for testing.
re: https://github.com/Unidata/netcdf-c/issues/541
re: https://github.com/Unidata/netcdf-c/issues/1208
re: https://github.com/Unidata/netcdf-c/issues/2078
re: https://github.com/Unidata/netcdf-c/issues/2041
re: https://github.com/Unidata/netcdf-c/issues/2143
For a long time, there have been known problems with the
management of complex types containing VLENs. This also
involves the string type because it is stored as a VLEN of
chars.
This PR (mostly) fixes this problem. But note that it adds new
functions to netcdf.h (see below) and this may require bumping
the .so number. These new functions can be removed, if desired,
in favor of functions in netcdf_aux.h, but netcdf.h seems the
better place for them because they are intended as alternatives
to the nc_free_vlen and nc_free_string functions already in
netcdf.h.
The term complex type refers to any type that directly or
transitively references a VLEN type. So an array of VLENS, a
compound with a VLEN field, and so on.
In order to properly handle instances of these complex types, it
is necessary to have function that can recursively walk
instances of such types to perform various actions on them. The
term "deep" is also used to mean recursive.
At the moment, the two operations needed by the netcdf library are:
* free'ing an instance of the complex type
* copying an instance of the complex type.
The current library does only shallow free and shallow copy of
complex types. This means that only the top level is properly
free'd or copied, but deep internal blocks in the instance are
not touched.
Note that the term "vector" will be used to mean a contiguous (in
memory) sequence of instances of some type. Given an array with,
say, dimensions 2 X 3 X 4, this will be stored in memory as a
vector of length 2*3*4=24 instances.
The use cases are primarily these.
## nc_get_vars
Suppose one is reading a vector of instances using nc_get_vars
(or nc_get_vara or nc_get_var, etc.). These functions will
return the vector in the top-level memory provided. All
interior blocks (form nested VLEN or strings) will have been
dynamically allocated.
After using this vector of instances, it is necessary to free
(aka reclaim) the dynamically allocated memory, otherwise a
memory leak occurs. So, the recursive reclaim function is used
to walk the returned instance vector and do a deep reclaim of
the data.
Currently functions are defined in netcdf.h that are supposed to
handle this: nc_free_vlen(), nc_free_vlens(), and
nc_free_string(). Unfortunately, these functions only do a
shallow free, so deeply nested instances are not properly
handled by them.
Note that internally, the provided data is immediately written so
there is no need to copy it. But the caller may need to reclaim the
data it passed into the function.
## nc_put_att
Suppose one is writing a vector of instances as the data of an attribute
using, say, nc_put_att.
Internally, the incoming attribute data must be copied and stored
so that changes/reclamation of the input data will not affect
the attribute.
Again, the code inside the netcdf library does only shallow copying
rather than deep copy. As a result, one sees effects such as described
in Github Issue https://github.com/Unidata/netcdf-c/issues/2143.
Also, after defining the attribute, it may be necessary for the user
to free the data that was provided as input to nc_put_att().
## nc_get_att
Suppose one is reading a vector of instances as the data of an attribute
using, say, nc_get_att.
Internally, the existing attribute data must be copied and returned
to the caller, and the caller is responsible for reclaiming
the returned data.
Again, the code inside the netcdf library does only shallow copying
rather than deep copy. So this can lead to memory leaks and errors
because the deep data is shared between the library and the user.
# Solution
The solution is to build properly recursive reclaim and copy
functions and use those as needed.
These recursive functions are defined in libdispatch/dinstance.c
and their signatures are defined in include/netcdf.h.
For back compatibility, corresponding "ncaux_XXX" functions
are defined in include/netcdf_aux.h.
````
int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count);
int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count);
int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy);
int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp);
````
There are two variants. The first two, nc_reclaim_data() and
nc_copy_data(), assume the top-level vector is managed by the
caller. For reclaim, this is so the user can use, for example, a
statically allocated vector. For copy, it assumes the user
provides the space into which the copy is stored.
The second two, nc_reclaim_data_all() and
nc_copy_data_all(), allows the functions to manage the
top-level. So for nc_reclaim_data_all, the top level is
assumed to be dynamically allocated and will be free'd by
nc_reclaim_data_all(). The nc_copy_data_all() function
will allocate the top level and return a pointer to it to the
user. The user can later pass that pointer to
nc_reclaim_data_all() to reclaim the instance(s).
# Internal Changes
The netcdf-c library internals are changed to use the proper
reclaim and copy functions. It turns out that the places where
these functions are needed is quite pervasive in the netcdf-c
library code. Using these functions also allows some
simplification of the code since the stdata and vldata fields of
NC_ATT_INFO are no longer needed. Currently this is commented
out using the SEPDATA \#define macro. When any bugs are largely
fixed, all this code will be removed.
# Known Bugs
1. There is still one known failure that has not been solved.
All the failures revolve around some variant of this .cdl file.
The proximate cause of failure is the use of a VLEN FillValue.
````
netcdf x {
types:
float(*) row_of_floats ;
dimensions:
m = 5 ;
variables:
row_of_floats ragged_array(m) ;
row_of_floats ragged_array:_FillValue = {-999} ;
data:
ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32},
{40, 41}, _ ;
}
````
When a solution is found, I will either add it to this PR or post a new PR.
# Related Changes
* Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data.
* Remove the --enable-unfixed-memory-leaks option.
* Remove the NC_VLENS_NOTEST code that suppresses some vlen tests.
* Document this change in docs/internal.md
* Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh.
* Mark types as fixed size or not (transitively) to optimize the reclaim
and copy functions.
# Misc. Changes
* Make Doxygen process libdispatch/daux.c
* Make sure the NC_ATT_INFO_T.container field is set.
re:
The current netcdf-c release has some problems with the mingw platform
on windows. Mostly they are path issues.
Changes to support mingw+msys2:
-------------------------------
* Enable option of looking into the windows registry to find
the mingw root path. In aid of proper path handling.
* Add mingw+msys as a specific platform in configure.ac and move testing
of the platform to the front so it is available early.
* Handle mingw X libncpoco (dynamic loader) properly even though
mingw does not yet support it.
* Handle mingw X plugins properly even though mingw does not yet support it.
* Alias pwd='pwd -W' to better handle paths in shell scripts.
* Plus a number of other minor compile irritations.
* Disallow the use of multiple nc_open's on the same file for windows
(and mingw) because windows does not seem to handle these properly.
Not sure why we did not catch this earlier.
* Add mountpoint info to dpathmgr.c to help support mingw.
* Cleanup dpathmgr conversions.
Known problems:
---------------
* I have not been able to get shared libraries to work, so
plugins/filters must be disabled.
* There is some kind of problem with libcurl that I have not solved,
so all uses of libcurl (currently DAP+Byterange) must be disabled.
Misc. other fixes:
------------------
* Cleanup the relationship between ENABLE_PLUGINS and various other flags
in CMakeLists.txt and configure.ac.
* Re-arrange the TESTDIRS order in Makefile.am.
* Add pseudo-breakpoint to nclog.[ch] for debugging.
* Improve the documentation of the path manager code in ncpathmgr.h
* Add better support for relative paths in dpathmgr.c
* Default the mode args to NCfopen to include "b" (binary) for windows.
* Add optional debugging output in various places.
* Make sure that everything builds with plugins disabled.
* Fix numerous (s)printf inconsistencies betweenb the format spec
and the arguments.
re: https://github.com/Unidata/netcdf-c/issues/2119
H/T to [Egbert Eich](https://github.com/e4t) and [Bas Couwenberg](https://github.com/sebastic) for this PR.
It is undesirable to make netcdf be dependent on the availability
of libxml2, but it is desirable to allow its use if available.
In order to do this, a wrapper API (include/ncxml.h) was constructed
that supports either ezxml or libxml2 as the implementation.
Additionally, the xml support code was moved to a new directory
netcdf-c/libncxml.
Primary changes:
* Create a new sub-directory named netcdf-c/libncxml to hold all the xml implementation code.
* Move ezxml.c and ezxml.h to libncxml
* Create a wrapper API -- include/ncxml.h
* Create an implementation, ncxml_ezxml.c to support use of ezxml.
* Create an implementation, ncxml_xml2.c to support use of libxml2.
* Add a check for libxml2 in configure.ac and CMakeLists.txt
* Modify libdap to use the wrapper API instead of ezxml directly.
Misc. Other Changes:
* Change include/netcdf_json.h from built source to be part of the distribution.
re: https://github.com/Unidata/netcdf-c/issues/2117
re: https://github.com/Unidata/netcdf-c/issues/2119
* Modify libsrc to allow byte-range reading of netcdf-3 files in private S3 buckets; this required using the aws sdk. Also add a test case.
* The aws sdk can sometimes cause problems if the Awd::ShutdownAPI function is not called. So at optional atexit() support to ensure it is called. This is disabled for Windows.
* Add documentation to nczarr.md on how to build and use the aws sdk under windows. Currently it builds, but testing fails.
* Switch testing from stratus to the Unidata bucket on S3.
* Improve support for the s3: url protocol.
* Add a s3 specific utility code file: ds3util.c
* Modify NC_infermodel to attempt to read the magic number of byte-ranged files in S3.
## Misc.
* Move and rename the core S3 SDK wrapper code (libnczarr/zs3sdk.cpp) to libdispatch since it now used in libsrc as well as libnczarr.
* Add calls to nc_finalize in the utilities in case atexit is disabled.
* Add header only json parser to the distribution rather than as a built source.
## Examine and fix ezxml errors
re: Issue https://github.com/Unidata/netcdf-c/issues/2119
Multiple security issues were found in ezxml (see above Issue).
* CVE-2021-31598
* CVE-2021-31348 / CVE-2021-31347
* CVE-2021-31229
* CVE-2021-30485
* CVE-2021-26222
* CVE-2021-26221
* CVE-2021-26220
* CVE-2019-20202
* CVE-2019-20201
* CVE-2019-20200
* CVE-2019-20199
* CVE-2019-20198
* CVE-2019-20007
* CVE-2019-20006
* CVE-2019-20005
In addition, moved ezxml to libdispatch.
## Examine and fix selected oss-fuzz detected errors
Note that most of these errors are in the libsrc .m4 generated
code so fixing them is difficult. It would nice if we could tell
oss-fuzz to skip those files. They are old and crufty and
probably need a complete refactor.
Issue|Status
-----|------
35382|Fixed; old bug
35398|Closed by OSS-Fuzz
35442|Guarantee alloc > 0 or error; Old bug
35721|Assert failure; ok
35992|Fixed; old bug
36038|Fixed; old bug
36129|Unfixed; old bug
36229|Fixed by adding assert; old bug
37476|Unfixed; old bug
37824|Assert Failure; ok
38300|Closed by OSS-Fuzz
38537|Unfixed; old bug
38658|Unfixed; old bug
38699|Fixed maybe; old bug
38772|Nature of error is unclear, suspect that it results from using too large a type.
39248|Need more information
39394|Unfixed; old bug
re: https://github.com/zarr-developers/zarr-specs/issues/41
After discussions with the Zarr community, it was decided to
convert to a new representation of the NCZarr meta-data extensions: version 2.
These extensions store information necessary to mapping the Zarr data model
to the netcdf-4 data model.
The basic change is to remove the NCZarr specific objects: .nczarr, .nczgroup, .nczarray, and .nczattr.
The contents of these objects is moved into the corresponding existing Zarr objects as special keys. The mapping is as follows:
* ''.nczarr'' => ''/.zgroup/_NCZARR_SUPERBLOCK_''
* ''.nczgroup => ''.zgroup/_NCZARR_GROUP_''
* ''.nczarray => ''.zarray/_NCZARR_ARRAY_''
* ''.nczattr => ''.zattr/_NCZARR_ATTR_''
Backward compatibility is maintained by looking for the object ''/.nczarr''
and if found, then assuming that the dataset is in the older version 1 format.
This compatibility only supports reading of such version 1 datasets.
Documentation and test cases are also added.
Misc. Other Changes:
1. The json parsing code was added to the general library instead of nczarr only (ncjson.c, ncjson.h).
2. Improved support for different platform paths by allowing conversion
to a single common path representation.
3. Add some new error codes.
4. Modify nccopy usage to mention the new chunking specification.
Primary changes:
* Add an improved cache system to speed up performance.
* Fix NCZarr to properly handle scalar variables.
Misc. Related Changes:
* Added unit tests for extendible hash and for the generic cache.
* Add config parameter to set size of the NCZarr cache.
* Add initial performance tests but leave them unused.
* Add CRC64 support.
* Move location of ncdumpchunks utility from /ncgen to /ncdump.
* Refactor auth support.
Misc. Unrelated Changes:
* More cleanup of the S3 support
* Add support for S3 authentication in .rc files: HTTP.S3.ACCESSID and HTTP.S3.SECRETKEY.
* Remove the hashkey from the struct OBJHDR since it is never used.
re: https://github.com/Unidata/netcdf-c/issues/1836
Revert the internal filter code to simplify it. From the user's
point of view, the only visible changes should be:
1. The functions that convert text to filter specs have had their signature reverted and have been moved to netcdf_aux.h
2. Some filter API functions now return NC_ENOFILTER when inquiry is made about some filter.
Internally,the dispatch table has been modified to get rid of the filter_actions
entry and associated complex structures. It has been replaced with
inq_var_filter_ids and inq_var_filter_info entries and the dispatch table
version has been bumped to 3. Corresponding NOOP and NOTNC4 functions
were added to libdispatch/dnotnc4.c. Also, the filter_action entries
in dispatch tables were replaced for all dispatch code bases (HDF5, DAP2,
etc). This should only impact UDF users.
In the process, it became clear that the form of the filters
field in NC_VAR_INFO_T was format dependent, so I converted it to
be of type void* and pushed its management into the various dispatch
code bases. Specifically libhdf5 and libnczarr now manage the filters
field in their own way.
The auxilliary functions for parsing textual filter specifications
were moved to netcdf_aux.h and were renamed to the following:
* ncaux_h5filterspec_parse
* ncaux_h5filterspec_parselist
* ncaux_h5filterspec_free
* ncaux_h5filter_fix8
Misc. Other Changes:
1. Document NUG/filters.md updated to reflect the changes above.
2. All the old data types (structs and enums)
used by filter_actions actions were deleted.
The exception is the NC_H5_Filterspec because it is needed
by ncaux_h5filterspec_parselist.
3. Clientside filters were removed -- another enhancement
for which no-one ever asked.
4. The ability to remove filters was itself removed.
5. Some functionality needed by nczarr was moved from libhdf5
to libsrc4 e.g. nc4_find_default_chunksizes
6. All the filterx code was removed
7. ncfilter.h and nc4filter.c no longer used
Misc. Unrelated Changes:
1. The nczarr_test makefile clean was leaving some directories; so
add clean-local to take care of them.
cloud using a variant of the Zarr protocol and storage
format. This enhancement is generically referred to as "NCZarr".
The data model supported by NCZarr is netcdf-4 minus the user-defined
types and the String type. In this sense it is similar to the CDF-5
data model.
More detailed information about enabling and using NCZarr is
described in the document NUG/nczarr.md and in a
[Unidata Developer's blog entry](https://www.unidata.ucar.edu/blogs/developer/en/entry/overview-of-zarr-support-in).
WARNING: this code has had limited testing, so do use this version
for production work. Also, performance improvements are ongoing.
Note especially the following platform matrix of successful tests:
Platform | Build System | S3 support
------------------------------------
Linux+gcc | Automake | yes
Linux+gcc | CMake | yes
Visual Studio | CMake | no
Additionally, and as a consequence of the addition of NCZarr,
major changes have been made to the Filter API. NOTE: NCZarr
does not yet support filters, but these changes are enablers for
that support in the future. Note that it is possible
(probable?) that there will be some accidental reversions if the
changes here did not correctly mimic the existing filter testing.
In any case, previously filter ids and parameters were of type
unsigned int. In order to support the more general zarr filter
model, this was all converted to char*. The old HDF5-specific,
unsigned int operations are still supported but they are
wrappers around the new, char* based nc_filterx_XXX functions.
This entailed at least the following changes:
1. Added the files libdispatch/dfilterx.c and include/ncfilter.h
2. Some filterx utilities have been moved to libdispatch/daux.c
3. A new entry, "filter_actions" was added to the NCDispatch table
and the version bumped.
4. An overly complex set of structs was created to support funnelling
all of the filterx operations thru a single dispatch
"filter_actions" entry.
5. Move common code to from libhdf5 to libsrc4 so that it is accessible
to nczarr.
Changes directly related to Zarr:
1. Modified CMakeList.txt and configure.ac to support both C and C++
-- this is in support of S3 support via the awd-sdk libraries.
2. Define a size64_t type to support nczarr.
3. More reworking of libdispatch/dinfermodel.c to
support zarr and to regularize the structure of the fragments
section of a URL.
Changes not directly related to Zarr:
1. Make client-side filter registration be conditional, with default off.
2. Hack include/nc4internal.h to make some flags added by Ed be unique:
e.g. NC_CREAT, NC_INDEF, etc.
3. cleanup include/nchttp.h and libdispatch/dhttp.c.
4. Misc. changes to support compiling under Visual Studio including:
* Better testing under windows for dirent.h and opendir and closedir.
5. Misc. changes to the oc2 code to support various libcurl CURLOPT flags
and to centralize error reporting.
6. By default, suppress the vlen tests that have unfixed memory leaks; add option to enable them.
7. Make part of the nc_test/test_byterange.sh test be contingent on remotetest.unidata.ucar.edu being accessible.
Changes Left TO-DO:
1. fix provenance code, it is too HDF5 specific.
Partially address: https://github.com/Unidata/netcdf-c/issues/1056
Currently, some of the entries in the dispatch table
are conditional'd on USE_NETCDF4.
As a step in upgrading the dispatch table for use
with user-defined tables, we remove that conditional.
This means that all dispatch tables must implement the
netcdf-4 specific functions even if only to make them
return NC_ENOTNC4. To simplify this, a set of default
functions are defined in libdispatch/dnotnc4.c to provide this
behavior. The file libdispatch/dnotnc3.c is also relevant to
this.
The primary fix is to modify the various dispatch tables to
remove the conditional and use the functions in
libdispatch/dnotnc4.c as appropriate. In practice, all of the
existing tables are prepared to handle this, so the only
real change is to remove the conditionals.
Misc. Unrelated fixes
1. Fix some annoying warnings in ncvalidator.
Notes:
1. This has not been tested with either pnetcdf or hdf4 enabled.
When those are enabled, it is possible that there are still
some conditionals that need to be fixed.
re: issue https://github.com/Unidata/netcdf-c/issues/1251
Assume that you have the URL to a remote dataset
which is a normal netcdf-3 or netcdf-4 file.
This PR allows the netcdf-c to read that dataset's
contents as a netcdf file using HTTP byte ranges
if the remote server supports byte-range access.
Originally, this PR was set up to access Amazon S3 objects,
but it can also access other remote datasets such as those
provided by a Thredds server via the HTTPServer access protocol.
It may also work for other kinds of servers.
Note that this is not intended as a true production
capability because, as is known, this kind of access to
can be quite slow. In addition, the byte-range IO drivers
do not currently do any sort of optimization or caching.
An additional goal here is to gain some experience with
the Amazon S3 REST protocol.
This architecture and its use documented in
the file docs/byterange.dox.
There are currently two test cases:
1. nc_test/tst_s3raw.c - this does a simple open, check format, close cycle
for a remote netcdf-3 file and a remote netcdf-4 file.
2. nc_test/test_s3raw.sh - this uses ncdump to investigate some remote
datasets.
This PR also incorporates significantly changed model inference code
(see the superceded PR https://github.com/Unidata/netcdf-c/pull/1259).
1. It centralizes the code that infers the dispatcher.
2. It adds support for byte-range URLs
Other changes:
1. NC_HDF5_finalize was not being properly called by nc_finalize().
2. Fix minor bug in ncgen3.l
3. fix memory leak in nc4info.c
4. add code to walk the .daprc triples and to replace protocol=
fragment tag with a more general mode= tag.
Final Note:
Th inference code is still way too complicated. We need to move
to the validfile() model used by netcdf Java, where each
dispatcher is asked if it can process the file. This decentralizes
the inference code. This will be done after all the major new
dispatchers (PIO, Zarr, etc) have been implemented.
https://github.com/Unidata/netcdf-c/issues/1168https://github.com/Unidata/netcdf-c/issues/1163https://github.com/Unidata/netcdf-c/issues/1162
This PR partially fixes memory leaks in the netcdf-c library,
in the ncdump utility, and in some test cases.
The netcdf-c library now runs memory clean with the assumption
that the --disable-utilities option is used. The primary remaining
problem is ncgen. Once that is fixed, I believe the netcdf-c library
will run memory clean with no limitations.
Notes
-----------
1. Memory checking was performed using gcc -fsanitize=address.
Valgrind-based testing has yet to be performed.
2. The pnetcdf, hdf4, and examples code has not been tested.
Misc. Non-leak changes
1. Make tst_diskless2 only run when netcdf4 is enabled (issue 1162)
2. Fix CmakeLists.txt to turn off logging if ENABLE_NETCDF_4 is OFF
3. Isolated all my debug scripts into a single top-level directory
called debug
4. Fix some USE_NETCDF4 dependencies in nc_test and nc_test4 Makefile.am
2. Factored out the parameter string parsing for ncgen and nccopy
int libdispatch/dfilter.c + include/ncfilter.h
3. Allow a parameter string to use constant types other than
unsigned int. See docs/filters.md for details.
4. Moved the old content of include/netcdf_filter.h into include/netcdf.h
and removed include/netcdf_filter.h as no longer needed.
5. Force the test filter (bzip2) in nc_test4/filter_test to
be built using BUILT_SOURCES.
Specific changes:
1. Add dap4 code: libdap4 and dap4_test.
Note that until the d4ts server problem is solved, dap4 is turned off.
2. Modify various files to support dap4 flags:
configure.ac, Makefile.am, CMakeLists.txt, etc.
3. Add nc_test/test_common.sh. This centralizes
the handling of the locations of various
things in the build tree: e.g. where is
ncgen.exe located. See nc_test/test_common.sh
for details.
4. Modify .sh files to use test_common.sh
5. Obsolete separate oc2 by moving it to be part of
netcdf-c. This means replacing code with netcdf-c
equivalents.
5. Add --with-testserver to configure.ac to allow
override of the servers to be used for --enable-dap-remote-tests.
6. There were multiple versions of nctypealignment code. Try to
centralize in libdispatch/doffset.c and include/ncoffsets.h
7. Add a unit test for the ncuri code because of its complexity.
8. Move the findserver code out of libdispatch and into
a separate, self contained program in ncdap_test and dap4_test.
9. Move the dispatch header files (nc{3,4}dispatch.h) to
.../include because they are now shared by modules.
10. Revamp the handling of TOPSRCDIR and TOPBUILDDIR for shell scripts.
11. Make use of MREMAP if available
12. Misc. minor changes e.g.
- #include <config.h> -> #include "config.h"
- Add some no-install headers to /include
- extern -> EXTERNL and vice versa as needed
- misc header cleanup
- clean up checking for misc. unix vs microsoft functions
13. Change copyright decls in some files to point to LICENSE file.
14. Add notes to RELEASENOTES.md
Update utf8proc.[ch] to use the version now
maintained by the Julia Language project
(https://github.com/JuliaLang/utf8proc/blob/master/LICENSE.md).
The license for the previous version was
unacceptable for the Debian and Ubuntu release
systems. The new version both updates the code
and addresses the license issue.
It turns out that the utf8proc software we are using
was turned over to the Julia Language developers
and the license terms changed to allow modification.
(https://github.com/JuliaLang/utf8proc/blob/master/LICENSE.md).
So the fix here is as follows:
1. Wrap the library with a fixed interface: libdispatch/dutf8.c
and include/ncutf8.h.
2. Replace the existing utf8proc code with the new version
from https://github.com/JuliaLang/utf8proc.
3. Add a couple more test cases: nc_test/tst_utf8_validate.c
and nc_test_utf8_phrases.c. If/when I can find a usable
normalization test, I will incorporate that later.