cloud using a variant of the Zarr protocol and storage
format. This enhancement is generically referred to as "NCZarr".
The data model supported by NCZarr is netcdf-4 minus the user-defined
types and the String type. In this sense it is similar to the CDF-5
data model.
More detailed information about enabling and using NCZarr is
described in the document NUG/nczarr.md and in a
[Unidata Developer's blog entry](https://www.unidata.ucar.edu/blogs/developer/en/entry/overview-of-zarr-support-in).
WARNING: this code has had limited testing, so do use this version
for production work. Also, performance improvements are ongoing.
Note especially the following platform matrix of successful tests:
Platform | Build System | S3 support
------------------------------------
Linux+gcc | Automake | yes
Linux+gcc | CMake | yes
Visual Studio | CMake | no
Additionally, and as a consequence of the addition of NCZarr,
major changes have been made to the Filter API. NOTE: NCZarr
does not yet support filters, but these changes are enablers for
that support in the future. Note that it is possible
(probable?) that there will be some accidental reversions if the
changes here did not correctly mimic the existing filter testing.
In any case, previously filter ids and parameters were of type
unsigned int. In order to support the more general zarr filter
model, this was all converted to char*. The old HDF5-specific,
unsigned int operations are still supported but they are
wrappers around the new, char* based nc_filterx_XXX functions.
This entailed at least the following changes:
1. Added the files libdispatch/dfilterx.c and include/ncfilter.h
2. Some filterx utilities have been moved to libdispatch/daux.c
3. A new entry, "filter_actions" was added to the NCDispatch table
and the version bumped.
4. An overly complex set of structs was created to support funnelling
all of the filterx operations thru a single dispatch
"filter_actions" entry.
5. Move common code to from libhdf5 to libsrc4 so that it is accessible
to nczarr.
Changes directly related to Zarr:
1. Modified CMakeList.txt and configure.ac to support both C and C++
-- this is in support of S3 support via the awd-sdk libraries.
2. Define a size64_t type to support nczarr.
3. More reworking of libdispatch/dinfermodel.c to
support zarr and to regularize the structure of the fragments
section of a URL.
Changes not directly related to Zarr:
1. Make client-side filter registration be conditional, with default off.
2. Hack include/nc4internal.h to make some flags added by Ed be unique:
e.g. NC_CREAT, NC_INDEF, etc.
3. cleanup include/nchttp.h and libdispatch/dhttp.c.
4. Misc. changes to support compiling under Visual Studio including:
* Better testing under windows for dirent.h and opendir and closedir.
5. Misc. changes to the oc2 code to support various libcurl CURLOPT flags
and to centralize error reporting.
6. By default, suppress the vlen tests that have unfixed memory leaks; add option to enable them.
7. Make part of the nc_test/test_byterange.sh test be contingent on remotetest.unidata.ucar.edu being accessible.
Changes Left TO-DO:
1. fix provenance code, it is too HDF5 specific.
re: issue https://github.com/Unidata/netcdf-c/issues/1251
Assume that you have the URL to a remote dataset
which is a normal netcdf-3 or netcdf-4 file.
This PR allows the netcdf-c to read that dataset's
contents as a netcdf file using HTTP byte ranges
if the remote server supports byte-range access.
Originally, this PR was set up to access Amazon S3 objects,
but it can also access other remote datasets such as those
provided by a Thredds server via the HTTPServer access protocol.
It may also work for other kinds of servers.
Note that this is not intended as a true production
capability because, as is known, this kind of access to
can be quite slow. In addition, the byte-range IO drivers
do not currently do any sort of optimization or caching.
An additional goal here is to gain some experience with
the Amazon S3 REST protocol.
This architecture and its use documented in
the file docs/byterange.dox.
There are currently two test cases:
1. nc_test/tst_s3raw.c - this does a simple open, check format, close cycle
for a remote netcdf-3 file and a remote netcdf-4 file.
2. nc_test/test_s3raw.sh - this uses ncdump to investigate some remote
datasets.
This PR also incorporates significantly changed model inference code
(see the superceded PR https://github.com/Unidata/netcdf-c/pull/1259).
1. It centralizes the code that infers the dispatcher.
2. It adds support for byte-range URLs
Other changes:
1. NC_HDF5_finalize was not being properly called by nc_finalize().
2. Fix minor bug in ncgen3.l
3. fix memory leak in nc4info.c
4. add code to walk the .daprc triples and to replace protocol=
fragment tag with a more general mode= tag.
Final Note:
Th inference code is still way too complicated. We need to move
to the validfile() model used by netcdf Java, where each
dispatcher is asked if it can process the file. This decentralizes
the inference code. This will be done after all the major new
dispatchers (PIO, Zarr, etc) have been implemented.
re: github issue https://github.com/Unidata/netcdf-c/issues/1111
One of the less common use cases for the in-memory feature is
apparently failing with HDF5-1.10.x. The fix is complicated and
requires significant changes to libhdf5/nc4memcb.c. The current
setup is detailed in the file docs/inmeminternal.dox.
Additionally, it was discovered that the program
nc_test/tst_inmemory.c, which is invoked by
nc_test/run_inmemory.sh, actually was failing because of the
above problem. But the failure is not detected since the script
does not return non-zero value.
Other Changes:
1. Fix nc_test_tst_inmemory to return errors correctly.
2. Make ncdap_tests/findtestserver.c and dap4_tests/findtestserver4.c
be generated from ncdap_test/findtestserver.c.in.
3. Make LOG() print output to stderr instead of stdout to
avoid contaminating e.g. ncdump output.
4. Modify the handling of NC_INMEMORY and NC_DISKLESS flags
to properly handle that NC_DISKLESS => NC_INMEMORY. This
affects a number of code pieces, especially memio.c.
Specific changes:
1. Add dap4 code: libdap4 and dap4_test.
Note that until the d4ts server problem is solved, dap4 is turned off.
2. Modify various files to support dap4 flags:
configure.ac, Makefile.am, CMakeLists.txt, etc.
3. Add nc_test/test_common.sh. This centralizes
the handling of the locations of various
things in the build tree: e.g. where is
ncgen.exe located. See nc_test/test_common.sh
for details.
4. Modify .sh files to use test_common.sh
5. Obsolete separate oc2 by moving it to be part of
netcdf-c. This means replacing code with netcdf-c
equivalents.
5. Add --with-testserver to configure.ac to allow
override of the servers to be used for --enable-dap-remote-tests.
6. There were multiple versions of nctypealignment code. Try to
centralize in libdispatch/doffset.c and include/ncoffsets.h
7. Add a unit test for the ncuri code because of its complexity.
8. Move the findserver code out of libdispatch and into
a separate, self contained program in ncdap_test and dap4_test.
9. Move the dispatch header files (nc{3,4}dispatch.h) to
.../include because they are now shared by modules.
10. Revamp the handling of TOPSRCDIR and TOPBUILDDIR for shell scripts.
11. Make use of MREMAP if available
12. Misc. minor changes e.g.
- #include <config.h> -> #include "config.h"
- Add some no-install headers to /include
- extern -> EXTERNL and vice versa as needed
- misc header cleanup
- clean up checking for misc. unix vs microsoft functions
13. Change copyright decls in some files to point to LICENSE file.
14. Add notes to RELEASENOTES.md
extract info from libnetcdf.settings
API is below.
I have made this API public yet
by adding it to netcdf.h. I will
do that when everyone is agreed on the
proper API.
extern const char* nc_settings(const char* key); /*get value of a specific key */
extern const char** nc_settings_all(); /*get all settings in envv format */
extern void nc_settings_reclaim(); /* reclaim all space and clean up */
Envv format is
{key,value}*,NULL
Also added test: nc_test/tst_settings.c