This PR started as an attempt to add unlimited dimensions to NCZarr.
It did that, but this exposed significant problems with test interference.
So this PR is mostly about fixing -- well mitigating anyway -- test
interference.
The problem of test interference is now documented in the document docs/internal.md.
The solutions implemented here are also describe in that document.
The solution is somewhat fragile but multiple cleanup mechanisms
are provided. Note that this feature requires that the
AWS command line utility must be installed.
## Unlimited Dimensions.
The existing NCZarr extensions to Zarr are modified to support unlimited dimensions.
NCzarr extends the Zarr meta-data for the ".zgroup" object to include netcdf-4 model extensions. This information is stored in ".zgroup" as dictionary named "_nczarr_group".
Inside "_nczarr_group", there is a key named "dims" that stores information about netcdf-4 named dimensions. The value of "dims" is a dictionary whose keys are the named dimensions. The value associated with each dimension name has one of two forms
Form 1 is a special case of form 2, and is kept for backward compatibility. Whenever a new file is written, it uses format 1 if possible, otherwise format 2.
* Form 1: An integer representing the size of the dimension, which is used for simple named dimensions.
* Form 2: A dictionary with the following keys and values"
- "size" with an integer value representing the (current) size of the dimension.
- "unlimited" with a value of either "1" or "0" to indicate if this dimension is an unlimited dimension.
For Unlimited dimensions, the size is initially zero, and as variables extend the length of that dimension, the size value for the dimension increases.
That dimension size is shared by all arrays referencing that dimension, so if one array extends an unlimited dimension, it is implicitly extended for all other arrays that reference that dimension.
This is the standard semantics for unlimited dimensions.
Adding unlimited dimensions required a number of other changes to the NCZarr code-base. These included the following.
* Did a partial refactor of the slice handling code in zwalk.c to clean it up.
* Added a number of tests for unlimited dimensions derived from the same test in nc_test4.
* Added several NCZarr specific unlimited tests; more are needed.
* Add test of endianness.
## Misc. Other Changes
* Modify libdispatch/ncs3sdk_aws.cpp to optionally support use of the
AWS Transfer Utility mechanism. This is controlled by the
```#define TRANSFER```` command in that file. It defaults to being disabled.
* Parameterize both the standard Unidata S3 bucket (S3TESTBUCKET) and the netcdf-c test data prefix (S3TESTSUBTREE).
* Fixed an obscure memory leak in ncdump.
* Removed some obsolete unit testing code and test cases.
* Uncovered a bug in the netcdf-c handling of big-endian floats and doubles. Have not fixed yet. See tst_h5_endians.c.
* Renamed some nczarr_tests testcases to avoid name conflicts with nc_test4.
* Modify the semantics of zmap\#ncsmap_write to only allow total rewrite of objects.
* Modify the semantics of zodom to properly handle stride > 1.
* Add a truncate operation to the libnczarr zmap code.
re: PR https://github.com/Unidata/netcdf-c/pull/2710
Apparently (see above PR) tinyxml2 now works under OS/X.
So this PR is a follow on to the above PR. It modifies
our OS/X github action to test tinyxml2 under OS/X.
Add the option "--disable-network-access" (automake)
or "-DENABLE_NETWORK_ACCESS=OFF" (cmake).
When disabled, this option transitively disables all
network access capabilities and testing.
If set, this option implies the following:
* --disable-dap
* --disable-byterange
* --disable-s3
This PR answers a request for a feature from Ed Hartnett.
## Misc. Other changes
* Take the opportunity to clean up some old, unused options;
e.g. --enable-multifilters.
* Fix bug in using S3 urls.
It turns out that attempting to test S3 using a github action secret is a very complex process. So, this was disabled for github actions. However, a new *run_tests_s3.yml* action file was added that will eventually encapsulate S3 testing.
## Improvements to S3 Documentation
* Create a new document *quickstart_paths.md* that give a summary of the legal path formats used by netcdf-c. This includes both file paths and URL paths.
* Modify *nczarr.md* to remove most of the S3 related text.
* Move the S3 text from *nczarr.md* to a new document *cloud.md*.
* Add some S3-related text to the *byterange.md* document.
Hopefully, this will make it easier for users to find the information they want.
## Rebuild NCZarr Testing
In order to avoid problems with running make check in parallel, two changes were made:
1. The *nczarr_test* test system was rebuilt. Now, for each test.
any generated files are kept in a test-specific directory, isolated
from all other test executions.
2. Similarly, since the S3 test bucket is shared, any generated S3 objects
are isolated using a test-specific key path.
## Other S3 Related Changes
* Add code to ensure that files created on S3 are reclaimed at end of testing.
* Used the bash "trap" command to ensure S3 cleanup even if the test fails.
* Cleanup the S3 related configure.ac flag set since S3 is used in several places. So now one should use the option *--enable-s3* instead of *--enable-nczarr-s3*, although the latter is still kept as a deprecated alias for the former.
* Get some of the github actions yml to work with S3; required fixing various test scripts adding a secret to access the Unidata S3 bucket.
* Cleanup S3 portion of libnetcdf.settings.in and netcdf_meta.h.in and test_common.in.
* Merge partial S3 support into dhttp.c.
* Create an experimental s3 access library especially for use with Windows. It is enabled by using the options *--enable-s3-internal* (automake) or *-DENABLE_S3_INTERNAL=ON* (CMake). Also add a unit-test for it.
* Move some definitions from ncrc.h to ncs3sdk.h
## Other Changes
* Provide a default implementation of strlcpy and move this and similar defaults into *dmissing.c*.
re: Issue https://github.com/Unidata/netcdf-c/issues/2656
Charlie Zender notes that *nc_open()* does not immediately detect that the given path refers to a file not in zarr format. Rather it fails later when trying to read the (meta-)data.
The reason is that the Zarr format is highly decentralized. There is no easily testable magic number or superblock to look for. In effect the only way to see if a directory is Zarr is to successfully read it.
It is possible to heuristically detect that a path refers to an NCZarr/Zarr file by doing a breadth-first search of the file tree starting at the given path. If the search encounters a file whose name starts with ".z", then assume it is a legitimate NCZarr/Zarr file. Of course, this test could be costly. One hopes that in practice that it is not.
In addition to this fix, a corresponding test case was added.
## Other Changes
re: PR https://github.com/Unidata/netcdf-c/pull/2529
There was an error under Cygwin for this PR that is fixed in this PR. The fix was to convert all *noinst_* references to *check_*.
Instead of a clone of the repository, have the nc-autotools job work from a source distribution prepared by a previous autotools CI job.
This should catch most of the "files not included in EXTRA_DIST" or similar issues I remember, and probably most of the "netcdf-c does not pass make distcheck" errors.
This is a reference to an issue with how most distribution packagers
run autotools (source in one directory, compile in another, install
to a third.
There was a PR to catch errors in that kind of build by running
make distcheck; this should do the relevant bits of that PR,
taking into account the preference for separate build and compile
steps.
re: Issue https://github.com/Unidata/netcdf-c/issues/2573
The file type inferencer in libdispatch/dinference.c has a simple
forward inference mechanism so that the occurrence of certain mode
values in a URL fragment implies inclusion of additional mode values.
This kind of inference is notorious for leading to cycles if not
careful. Unfortunately, this occurred in the one in dinference.c.
This was fixed by providing a more complicated, but more reliable inference
mechanism.
## Misc. Other Changes
* Found and fixed a couple of memory leaks.
* There is a recent problem in building HDF4 support on github actions. Fixed by using the internal HDF4 xdr capability.
* Some filter-related code was not being properly ifdef'd with ENABLE_NCZARRA_FILTERS.
re: PR https://github.com/Unidata/netcdf-c/pull/2492
re: Issue https://github.com/Unidata/netcdf-c/issues/2494
This PR fixes some problems with the pull request https://github.com/Unidata/netcdf-c/pull/2492 in response to Issue https://github.com/Unidata/netcdf-c/issues/2494.
* Found and fixed more scalar handling problems and add a test case for scalars.
* Cleanup nczarr_test/run_string.sh test
* Document *_nczarr_default_maxstrlen* and *_nczarr_maxstrlen*.
* Support both "Nan" and *Nan* as being floating point constants
for attributes. It is unclear from the Zarr V2 spec if
unquoted *Nan* is legal or not, but support for reading.
Write the quoted versions when writing an attribute. Similar
for Infinity constants.
So NCZarr supports the following constants for use in Attributes
* *Nan*, "Nan", *-Nan*, "-Nan"
* *Nanf*, "Nanf", *-Nanf*, "-Nanf"
* *Infinity*, "Infinity", *-Infinity*, "-Infinity"
* *Infinityf*, "Infinityf", *-Infinityf*, "-Infinityf"
* re: https://github.com/Unidata/netcdf-c/pull/2278
* re: https://github.com/Unidata/netcdf-c/issues/2485
* re: https://github.com/Unidata/netcdf-c/issues/2474
This PR subsumes PR https://github.com/Unidata/netcdf-c/pull/2278.
Actually is a bit an omnibus covering several issues.
## PR https://github.com/Unidata/netcdf-c/pull/2278
Add support for the Zarr string type.
Zarr strings are restricted currently to be of fixed size.
The primary issue to be addressed is to provide a way for user to
specify the size of the fixed length strings. This is handled by providing
the following new attributes special:
1. **_nczarr_default_maxstrlen** —
This is an attribute of the root group. It specifies the default
maximum string length for string types. If not specified, then
it has the value of 64 characters.
2. **_nczarr_maxstrlen** —
This is a per-variable attribute. It specifies the maximum
string length for the string type associated with the variable.
If not specified, then it is assigned the value of
**_nczarr_default_maxstrlen**.
This PR also requires some hacking to handle the existing netcdf-c NC_CHAR
type, which does not exist in zarr. The goal was to choose numpy types for
both the netcdf-c NC_STRING type and the netcdf-c NC_CHAR type such that
if a pure zarr implementation read them, it would still work and an
NC_CHAR type would be handled by zarr as a string of length 1.
For writing variables and NCZarr attributes, the type mapping is as follows:
* "|S1" for NC_CHAR.
* ">S1" for NC_STRING && MAXSTRLEN==1
* ">Sn" for NC_STRING && MAXSTRLEN==n
Note that it is a bit of a hack to use endianness, but it should be ok since for
string/char, the endianness has no meaning.
For reading attributes with pure zarr (i.e. with no nczarr
atribute types defined), they will always be interpreted as of
type NC_CHAR.
## Issue: https://github.com/Unidata/netcdf-c/issues/2474
This PR partly fixes this issue because it provided more
comprehensive support for Zarr attributes that are JSON valued expressions.
This PR still does not address the problem in that issue where the
_ARRAY_DIMENSION attribute is incorrectly set. Than can only be
fixed by the creator of the datasets.
## Issue: https://github.com/Unidata/netcdf-c/issues/2485
This PR also fixes the scalar failure shown in this issue.
It generally cleans up scalar handling.
It also adds a note to the documentation describing that
NCZarr supports scalars while Zarr does not and also how
scalar interoperability is achieved.
## Misc. Other Changes
1. Convert the nczarr special attributes and keys to be all lower case. So "_NCZARR_ATTR" now used "_nczarr_attr. Support back compatibility for the upper case names.
2. Cleanup my too-clever-by-half handling of scalars in libnczarr.
re: https://github.com/Unidata/netcdf-c/issues/2294
Ed Hartnett suggested that the netcdf library installation process
be extended to install the standard filters into a user specified
location. The user can then set HDF5_PLUGIN_PATH to that location.
This PR provides that capability using:
````
configure option: --with-plugin-dir=<absolute directory path>
cmake option: -DPLUGIN_INSTALL_DIR=<absolute directory path>
````
Currently, the following plugins are always installed, if
available: bzip2, zstd, blosc.
If NCZarr is enabled, then additional plugins are installed:
fletcher32, shuffle, deflate, szip.
Additionally, the necessary codec support is installed
for each of the above filters that is installed.
## Changes:
1. Cleanup handling of built-in bzip2.
2. Add documentation to docs/filters.md
3. Re-factor the NCZarr codec libraries
4. Add a test, although it can only be exercised after
the library is installed, so it cannot be used during
normal testing.
5. Cleanup use of HDF5_PLUGIN_PATH in the filter test cases.
re: Discussion https://github.com/Unidata/netcdf-c/discussions/2214
The primary change is to support so-called "standard filters".
A standard filter is one that is defined by the following
netcdf-c API:
````
int nc_def_var_XXX(int ncid, int varid, size_t nparams, unsigned* params);
int nc_inq_var_XXXX(int ncid, int varid, int* usefilterp, unsigned* params);
````
So for example, zstandard would be a standard filter by defining
the functions *nc_def_var_zstandard* and *nc_inq_var_zstandard*.
In order to define these functions, we need a new dispatch function:
````
int nc_inq_filter_avail(int ncid, unsigned filterid);
````
This function, combined with the existing filter API can be used
to implement arbitrary standard filters using a simple code pattern.
Note that I would have preferred that this function return a list
of all available filters, but HDF5 does not support that functionality.
So this PR implements the dispatch function and implements
the following standard functions:
+ bzip2
+ zstandard
+ blosc
Specific test cases are also provided for HDF5 and NCZarr.
Over time, other specific standard filters will be defined.
## Primary Changes
* Add nc_inq_filter_avail() to netcdf-c API.
* Add standard filter implementations to test use of *nc_inq_filter_avail*.
* Bump the dispatch table version number and add to all the relevant
dispatch tables (libsrc, libsrcp, etc).
* Create a program to invoke nc_inq_filter_avail so that it is accessible
to shell scripts.
* Cleanup szip support to properly support szip
when HDF5 is disabled. This involves detecting
libsz separately from testing if HDF5 supports szip.
* Integrate shuffle and fletcher32 into the existing
filter API. This means that, for example, nc_def_var_fletcher32
is now a wrapper around nc_def_var_filter.
* Extend the Codec defaulting to allow multiple default shared libraries.
## Misc. Changes
* Modify configure.ac/CMakeLists.txt to look for the relevant
libraries implementing standard filters.
* Modify libnetcdf.settings to list available standard filters
(including deflate and szip).
* Add CMake test modules to locate libbz2 and libzstd.
* Cleanup the HDF5 memory manager function use in the plugins.
* remove unused file include//ncfilter.h
* remove tests for the HDF5 memory operations e.g. H5allocate_memory.
* Add flag to ncdump to force use of _Filter instead of _Deflate
or _Shuffle or _Fletcher32. Used for testing.
re: https://github.com/Unidata/netcdf-c/issues/2189
Compression of a variable whose type is variable length
fails for all current filters. This is because at some point,
the compression buffer will contain pointers to data instead
of the actual data. Compression of pointers of course is meaningless.
The PR changes the behavior of nc_def_var_filter so that it will
fail with error NC_EFILTER if an attempt is made to add a filter
to a variable whose type is variable-length.
A variable is variable-length if it is of type string or VLEN
or transitively (via a compound type) contains a string or VLEN.
Also added a test case for this.
## Misc Changes
1. Turn off a number of debugging statements
re: Issue https://github.com/Unidata/netcdf-c/issues/2190
The primary purpose of this PR is to improve the utf8 support
for windows. This is persuant to a change in Windows that
supports utf8 natively (almost). The almost means that it is
still utf16 internally and the set of characters representable
by utf8 is larger than those representable by utf16.
This leaves open the question in the Issue about handling
the Windows 1252 character set.
This required the following changes:
1. Test the Windows build and major version in order to see if
native utf8 is supported.
2. If native utf8 is supported, Modify dpathmgr.c to call the 8-bit
version of the windows fopen() and open() functions.
3. In support of this, programs that use XGetOpt (Windows versions)
need to get the command line as utf8 and then parse to
arc+argv as utf8. This requires using a homegrown command line parser
named XCommandLineToArgvA.
4. Add a utility program called "acpget" that prints out the
current Windows code page and locale.
Additionally, some technical debt was cleaned up as follows:
1. Unify all the places which attempt to read all or a part
of a file into the dutil.c#NC_readfile code.
2. Similary unify all the code that creates temp files into
dutil.c#NC_mktmp code.
3. Convert almost all remaining calls to fopen() and open()
to NCfopen() and NCopen3(). This is to ensure that path management
is used consistently. This touches a number of files.
4. extern->EXTERNL as needed to get it to work under Windows.