cloud using a variant of the Zarr protocol and storage
format. This enhancement is generically referred to as "NCZarr".
The data model supported by NCZarr is netcdf-4 minus the user-defined
types and the String type. In this sense it is similar to the CDF-5
data model.
More detailed information about enabling and using NCZarr is
described in the document NUG/nczarr.md and in a
[Unidata Developer's blog entry](https://www.unidata.ucar.edu/blogs/developer/en/entry/overview-of-zarr-support-in).
WARNING: this code has had limited testing, so do use this version
for production work. Also, performance improvements are ongoing.
Note especially the following platform matrix of successful tests:
Platform | Build System | S3 support
------------------------------------
Linux+gcc | Automake | yes
Linux+gcc | CMake | yes
Visual Studio | CMake | no
Additionally, and as a consequence of the addition of NCZarr,
major changes have been made to the Filter API. NOTE: NCZarr
does not yet support filters, but these changes are enablers for
that support in the future. Note that it is possible
(probable?) that there will be some accidental reversions if the
changes here did not correctly mimic the existing filter testing.
In any case, previously filter ids and parameters were of type
unsigned int. In order to support the more general zarr filter
model, this was all converted to char*. The old HDF5-specific,
unsigned int operations are still supported but they are
wrappers around the new, char* based nc_filterx_XXX functions.
This entailed at least the following changes:
1. Added the files libdispatch/dfilterx.c and include/ncfilter.h
2. Some filterx utilities have been moved to libdispatch/daux.c
3. A new entry, "filter_actions" was added to the NCDispatch table
and the version bumped.
4. An overly complex set of structs was created to support funnelling
all of the filterx operations thru a single dispatch
"filter_actions" entry.
5. Move common code to from libhdf5 to libsrc4 so that it is accessible
to nczarr.
Changes directly related to Zarr:
1. Modified CMakeList.txt and configure.ac to support both C and C++
-- this is in support of S3 support via the awd-sdk libraries.
2. Define a size64_t type to support nczarr.
3. More reworking of libdispatch/dinfermodel.c to
support zarr and to regularize the structure of the fragments
section of a URL.
Changes not directly related to Zarr:
1. Make client-side filter registration be conditional, with default off.
2. Hack include/nc4internal.h to make some flags added by Ed be unique:
e.g. NC_CREAT, NC_INDEF, etc.
3. cleanup include/nchttp.h and libdispatch/dhttp.c.
4. Misc. changes to support compiling under Visual Studio including:
* Better testing under windows for dirent.h and opendir and closedir.
5. Misc. changes to the oc2 code to support various libcurl CURLOPT flags
and to centralize error reporting.
6. By default, suppress the vlen tests that have unfixed memory leaks; add option to enable them.
7. Make part of the nc_test/test_byterange.sh test be contingent on remotetest.unidata.ucar.edu being accessible.
Changes Left TO-DO:
1. fix provenance code, it is too HDF5 specific.
This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173
Sorry that it is so big, but leak suppression can be complex.
This PR fixes all remaining memory leaks -- as determined by
-fsanitize=address, and with the exceptions noted below.
Unfortunately. there remains a significant leak that I cannot
solve. It involves vlens, and it is unclear if the leak is
occurring in the netcdf-c library or the HDF5 library.
I have added a check_PROGRAM to the ncdump directory to show the
problem. The program is called tst_vlen_demo.c To exercise it,
build the netcdf library with -fsanitize=address enabled. Then
go into ncdump and do a "make clean check". This should build
tst_vlen_demo without actually executing it. Then do the
command "./tst_vlen_demo" to see the output of the memory
checker. Note the the lost malloc is deep in the HDF5 library
(in H5Tvlen.c).
I am temporarily working around this error in the following way.
1. I modified several test scripts to not execute known vlen tests
that fail as described above.
2. Added an environment variable called NC_VLEN_NOTEST.
If set, then those specific tests are suppressed.
This should mean that the --disable-utilities option to
./configure should not need to be set to get a memory leak clean
build. This should allow for detection of any new leaks.
Note: I used an environment variable rather than a ./configure
option to control the vlen tests. This is because it is
temporary (I hope) and because it is a bit tricky for shell
scripts to access ./configure options.
Finally, as before, this only been tested with netcdf-4 and hdf5 support.
(I hope) metadata mechanism. This mostly just adds new pieces of
code (e.g. nclistmap) and does some minor fixes.
It should be transparent to everything else.
The next set of changes will be the big step.
re pull request https://github.com/Unidata/netcdf-c/pull/405
re pull request https://github.com/Unidata/netcdf-c/pull/446
Notes:
1. This branch is a cleanup of the magic.dmh branch.
2. magic.dmh was originally merged, but caused problems with parallel IO.
It was re-issued as pull request https://github.com/Unidata/netcdf-c/pull/446.
3. This branch + pull request replace any previous pull requests and magic.dmh branch.
Given an otherwise valid netCDF file that has a corrupted header,
the netcdf library currently crashes. Instead, it should return
NC_ENOTNC.
Additionally, the NC_check_file_type code does not do the
forward search required by hdf5 files. It currently only looks
at file position 0 instead of 512, 1024, 2048,... Also, it turns
out that the HDF4 magic number is assumed to always be at the
beginning of the file (unlike HDF5).
The change is localized to libdispatch/dfile.c See
https://support.hdfgroup.org/release4/doc/DSpec_html/DS.pdf
Also, it turns out that the code in NC_check_file_type is duplicated
(mostly) in the function libsrc4/nc4file.c#nc_check_for_hdf.
This branch does the following.
1. Make NC_check_file_type return NC_ENOTNC instead of crashing.
2. Remove nc_check_for_hdf and centralize all file format checking
NC_check_file_type.
3. Add proper forward search for HDF5 files (but not HDF4 files)
to look for the magic number at offsets of 0, 512, 1024...
4. Add test tst_hdf5_offset.sh. This tests that hdf5 files with
an offset are properly recognized. It does so by prefixing
a legal file with some number of zero bytes: 512, 1024, etc.
5. Off-topic: Added -N flag to ncdump to force a specific output dataset name.
Specific changes:
1. Add dap4 code: libdap4 and dap4_test.
Note that until the d4ts server problem is solved, dap4 is turned off.
2. Modify various files to support dap4 flags:
configure.ac, Makefile.am, CMakeLists.txt, etc.
3. Add nc_test/test_common.sh. This centralizes
the handling of the locations of various
things in the build tree: e.g. where is
ncgen.exe located. See nc_test/test_common.sh
for details.
4. Modify .sh files to use test_common.sh
5. Obsolete separate oc2 by moving it to be part of
netcdf-c. This means replacing code with netcdf-c
equivalents.
5. Add --with-testserver to configure.ac to allow
override of the servers to be used for --enable-dap-remote-tests.
6. There were multiple versions of nctypealignment code. Try to
centralize in libdispatch/doffset.c and include/ncoffsets.h
7. Add a unit test for the ncuri code because of its complexity.
8. Move the findserver code out of libdispatch and into
a separate, self contained program in ncdap_test and dap4_test.
9. Move the dispatch header files (nc{3,4}dispatch.h) to
.../include because they are now shared by modules.
10. Revamp the handling of TOPSRCDIR and TOPBUILDDIR for shell scripts.
11. Make use of MREMAP if available
12. Misc. minor changes e.g.
- #include <config.h> -> #include "config.h"
- Add some no-install headers to /include
- extern -> EXTERNL and vice versa as needed
- misc header cleanup
- clean up checking for misc. unix vs microsoft functions
13. Change copyright decls in some files to point to LICENSE file.
14. Add notes to RELEASENOTES.md
many cleanups to fix compiler warnings, streamline iteration over objects
in HDF5 file when opening the file, and generally straightening out the code
to be cleaner and simpler.
Tested on Mac OS/X with gcc 4.8 and OpenMPI (which uses clang).
Added code to verify that enum constants
(and other constants) are consistent
with the type of the variable or
attribute to which they are assigned.
This addresses the ncdump failure.
Ncgen is unable to resolve
ambiguous references to an enum
constant when two different enums
have same econstant name.
Solved by allowing more specific
forms for econstant references.
1. /.../enumname.enumconstname
2. enumname.enumconstname
3. enumconstname
Case 1 is resolved by using the econstant
in the specific enum definition. If none is
found, an error is reported.
Case 2 is resolved by
1. finding an enclosing group with an
enum definition with the specified name
and containing the specified econstant.
If there are more than one, then an error is reported
2. finding all enum definitions in the dataset that have
the specified enum name and contain the specified
econstant. If more than one is found, then an error is reported.
If the above two methods fail, then report an error.
Case 3 is similar to case 2, but all enums, irrespective
of name are used if they contains the specified enum constant.
The ref_tst_econst.cdl test in ncdump is causing ncdump
to fail. So there may be yet some problem.