2
0
mirror of https://github.com/Unidata/netcdf-c.git synced 2025-01-24 16:04:40 +08:00
netcdf-c/nc_test/test_byterange.sh

59 lines
1.8 KiB
Bash
Raw Normal View History

Provide byte-range reading of remote datasets re: issue https://github.com/Unidata/netcdf-c/issues/1251 Assume that you have the URL to a remote dataset which is a normal netcdf-3 or netcdf-4 file. This PR allows the netcdf-c to read that dataset's contents as a netcdf file using HTTP byte ranges if the remote server supports byte-range access. Originally, this PR was set up to access Amazon S3 objects, but it can also access other remote datasets such as those provided by a Thredds server via the HTTPServer access protocol. It may also work for other kinds of servers. Note that this is not intended as a true production capability because, as is known, this kind of access to can be quite slow. In addition, the byte-range IO drivers do not currently do any sort of optimization or caching. An additional goal here is to gain some experience with the Amazon S3 REST protocol. This architecture and its use documented in the file docs/byterange.dox. There are currently two test cases: 1. nc_test/tst_s3raw.c - this does a simple open, check format, close cycle for a remote netcdf-3 file and a remote netcdf-4 file. 2. nc_test/test_s3raw.sh - this uses ncdump to investigate some remote datasets. This PR also incorporates significantly changed model inference code (see the superceded PR https://github.com/Unidata/netcdf-c/pull/1259). 1. It centralizes the code that infers the dispatcher. 2. It adds support for byte-range URLs Other changes: 1. NC_HDF5_finalize was not being properly called by nc_finalize(). 2. Fix minor bug in ncgen3.l 3. fix memory leak in nc4info.c 4. add code to walk the .daprc triples and to replace protocol= fragment tag with a more general mode= tag. Final Note: Th inference code is still way too complicated. We need to move to the validfile() model used by netcdf Java, where each dispatcher is asked if it can process the file. This decentralizes the inference code. This will be done after all the major new dispatchers (PIO, Zarr, etc) have been implemented.
2019-01-02 09:27:36 +08:00
#!/bin/sh
if test "x$srcdir" = x ; then srcdir=`pwd`; fi
. ../test_common.sh
set -e
Mostly revert the filter code to reduce its complexity of use. re: https://github.com/Unidata/netcdf-c/issues/1836 Revert the internal filter code to simplify it. From the user's point of view, the only visible changes should be: 1. The functions that convert text to filter specs have had their signature reverted and have been moved to netcdf_aux.h 2. Some filter API functions now return NC_ENOFILTER when inquiry is made about some filter. Internally,the dispatch table has been modified to get rid of the filter_actions entry and associated complex structures. It has been replaced with inq_var_filter_ids and inq_var_filter_info entries and the dispatch table version has been bumped to 3. Corresponding NOOP and NOTNC4 functions were added to libdispatch/dnotnc4.c. Also, the filter_action entries in dispatch tables were replaced for all dispatch code bases (HDF5, DAP2, etc). This should only impact UDF users. In the process, it became clear that the form of the filters field in NC_VAR_INFO_T was format dependent, so I converted it to be of type void* and pushed its management into the various dispatch code bases. Specifically libhdf5 and libnczarr now manage the filters field in their own way. The auxilliary functions for parsing textual filter specifications were moved to netcdf_aux.h and were renamed to the following: * ncaux_h5filterspec_parse * ncaux_h5filterspec_parselist * ncaux_h5filterspec_free * ncaux_h5filter_fix8 Misc. Other Changes: 1. Document NUG/filters.md updated to reflect the changes above. 2. All the old data types (structs and enums) used by filter_actions actions were deleted. The exception is the NC_H5_Filterspec because it is needed by ncaux_h5filterspec_parselist. 3. Clientside filters were removed -- another enhancement for which no-one ever asked. 4. The ability to remove filters was itself removed. 5. Some functionality needed by nczarr was moved from libhdf5 to libsrc4 e.g. nc4_find_default_chunksizes 6. All the filterx code was removed 7. ncfilter.h and nc4filter.c no longer used Misc. Unrelated Changes: 1. The nczarr_test makefile clean was leaving some directories; so add clean-local to take care of them.
2020-09-28 02:43:46 +08:00
# Uncomment to run big test
#BIGTEST=1
2020-10-13 06:16:02 +08:00
# Test Urls (S3 URLS must be in path format)
URL3="https://thredds-test.unidata.ucar.edu/thredds/fileServer/pointData/cf_dsg/example/point.nc#mode=bytes"
#URL3="https://remotetest.unidata.ucar.edu/thredds/fileServer/testdata/2004050300_eta_211.nc#bytes"
2020-10-13 06:16:02 +08:00
URL4a="https://s3.us-east-1.amazonaws.com/noaa-goes16/ABI-L1b-RadC/2017/059/03/OR_ABI-L1b-RadC-M3C13_G16_s20170590337505_e20170590340289_c20170590340316.nc#mode=bytes"
Mostly revert the filter code to reduce its complexity of use. re: https://github.com/Unidata/netcdf-c/issues/1836 Revert the internal filter code to simplify it. From the user's point of view, the only visible changes should be: 1. The functions that convert text to filter specs have had their signature reverted and have been moved to netcdf_aux.h 2. Some filter API functions now return NC_ENOFILTER when inquiry is made about some filter. Internally,the dispatch table has been modified to get rid of the filter_actions entry and associated complex structures. It has been replaced with inq_var_filter_ids and inq_var_filter_info entries and the dispatch table version has been bumped to 3. Corresponding NOOP and NOTNC4 functions were added to libdispatch/dnotnc4.c. Also, the filter_action entries in dispatch tables were replaced for all dispatch code bases (HDF5, DAP2, etc). This should only impact UDF users. In the process, it became clear that the form of the filters field in NC_VAR_INFO_T was format dependent, so I converted it to be of type void* and pushed its management into the various dispatch code bases. Specifically libhdf5 and libnczarr now manage the filters field in their own way. The auxilliary functions for parsing textual filter specifications were moved to netcdf_aux.h and were renamed to the following: * ncaux_h5filterspec_parse * ncaux_h5filterspec_parselist * ncaux_h5filterspec_free * ncaux_h5filter_fix8 Misc. Other Changes: 1. Document NUG/filters.md updated to reflect the changes above. 2. All the old data types (structs and enums) used by filter_actions actions were deleted. The exception is the NC_H5_Filterspec because it is needed by ncaux_h5filterspec_parselist. 3. Clientside filters were removed -- another enhancement for which no-one ever asked. 4. The ability to remove filters was itself removed. 5. Some functionality needed by nczarr was moved from libhdf5 to libsrc4 e.g. nc4_find_default_chunksizes 6. All the filterx code was removed 7. ncfilter.h and nc4filter.c no longer used Misc. Unrelated Changes: 1. The nczarr_test makefile clean was leaving some directories; so add clean-local to take care of them.
2020-09-28 02:43:46 +08:00
URL4b="https://thredds-test.unidata.ucar.edu/thredds/fileServer/irma/metar/files/METAR_20170910_0000.nc#bytes"
# Do not use unless we know it has some permanence (note the segment 'testing' in the URL);
if test "x$BIGTEST" = x1 ; then
2020-10-13 06:16:02 +08:00
URL4c="https://s3.us-west-2.amazonaws.com/coawst-public/testing/HadCRUT.4.6.0.0.median.nc#mode=bytes"
Mostly revert the filter code to reduce its complexity of use. re: https://github.com/Unidata/netcdf-c/issues/1836 Revert the internal filter code to simplify it. From the user's point of view, the only visible changes should be: 1. The functions that convert text to filter specs have had their signature reverted and have been moved to netcdf_aux.h 2. Some filter API functions now return NC_ENOFILTER when inquiry is made about some filter. Internally,the dispatch table has been modified to get rid of the filter_actions entry and associated complex structures. It has been replaced with inq_var_filter_ids and inq_var_filter_info entries and the dispatch table version has been bumped to 3. Corresponding NOOP and NOTNC4 functions were added to libdispatch/dnotnc4.c. Also, the filter_action entries in dispatch tables were replaced for all dispatch code bases (HDF5, DAP2, etc). This should only impact UDF users. In the process, it became clear that the form of the filters field in NC_VAR_INFO_T was format dependent, so I converted it to be of type void* and pushed its management into the various dispatch code bases. Specifically libhdf5 and libnczarr now manage the filters field in their own way. The auxilliary functions for parsing textual filter specifications were moved to netcdf_aux.h and were renamed to the following: * ncaux_h5filterspec_parse * ncaux_h5filterspec_parselist * ncaux_h5filterspec_free * ncaux_h5filter_fix8 Misc. Other Changes: 1. Document NUG/filters.md updated to reflect the changes above. 2. All the old data types (structs and enums) used by filter_actions actions were deleted. The exception is the NC_H5_Filterspec because it is needed by ncaux_h5filterspec_parselist. 3. Clientside filters were removed -- another enhancement for which no-one ever asked. 4. The ability to remove filters was itself removed. 5. Some functionality needed by nczarr was moved from libhdf5 to libsrc4 e.g. nc4_find_default_chunksizes 6. All the filterx code was removed 7. ncfilter.h and nc4filter.c no longer used Misc. Unrelated Changes: 1. The nczarr_test makefile clean was leaving some directories; so add clean-local to take care of them.
2020-09-28 02:43:46 +08:00
fi
Provide byte-range reading of remote datasets re: issue https://github.com/Unidata/netcdf-c/issues/1251 Assume that you have the URL to a remote dataset which is a normal netcdf-3 or netcdf-4 file. This PR allows the netcdf-c to read that dataset's contents as a netcdf file using HTTP byte ranges if the remote server supports byte-range access. Originally, this PR was set up to access Amazon S3 objects, but it can also access other remote datasets such as those provided by a Thredds server via the HTTPServer access protocol. It may also work for other kinds of servers. Note that this is not intended as a true production capability because, as is known, this kind of access to can be quite slow. In addition, the byte-range IO drivers do not currently do any sort of optimization or caching. An additional goal here is to gain some experience with the Amazon S3 REST protocol. This architecture and its use documented in the file docs/byterange.dox. There are currently two test cases: 1. nc_test/tst_s3raw.c - this does a simple open, check format, close cycle for a remote netcdf-3 file and a remote netcdf-4 file. 2. nc_test/test_s3raw.sh - this uses ncdump to investigate some remote datasets. This PR also incorporates significantly changed model inference code (see the superceded PR https://github.com/Unidata/netcdf-c/pull/1259). 1. It centralizes the code that infers the dispatcher. 2. It adds support for byte-range URLs Other changes: 1. NC_HDF5_finalize was not being properly called by nc_finalize(). 2. Fix minor bug in ncgen3.l 3. fix memory leak in nc4info.c 4. add code to walk the .daprc triples and to replace protocol= fragment tag with a more general mode= tag. Final Note: Th inference code is still way too complicated. We need to move to the validfile() model used by netcdf Java, where each dispatcher is asked if it can process the file. This decentralizes the inference code. This will be done after all the major new dispatchers (PIO, Zarr, etc) have been implemented.
2019-01-02 09:27:36 +08:00
echo ""
rm -f tst_http_nc3.cdl tst_http_nc4?.cdl
testbytes() {
TAG="$1"
EXPECTED="$2"
U="$3"
K=`${NCDUMP} -k "$U" | tr -d '\r'`
Provide byte-range reading of remote datasets re: issue https://github.com/Unidata/netcdf-c/issues/1251 Assume that you have the URL to a remote dataset which is a normal netcdf-3 or netcdf-4 file. This PR allows the netcdf-c to read that dataset's contents as a netcdf file using HTTP byte ranges if the remote server supports byte-range access. Originally, this PR was set up to access Amazon S3 objects, but it can also access other remote datasets such as those provided by a Thredds server via the HTTPServer access protocol. It may also work for other kinds of servers. Note that this is not intended as a true production capability because, as is known, this kind of access to can be quite slow. In addition, the byte-range IO drivers do not currently do any sort of optimization or caching. An additional goal here is to gain some experience with the Amazon S3 REST protocol. This architecture and its use documented in the file docs/byterange.dox. There are currently two test cases: 1. nc_test/tst_s3raw.c - this does a simple open, check format, close cycle for a remote netcdf-3 file and a remote netcdf-4 file. 2. nc_test/test_s3raw.sh - this uses ncdump to investigate some remote datasets. This PR also incorporates significantly changed model inference code (see the superceded PR https://github.com/Unidata/netcdf-c/pull/1259). 1. It centralizes the code that infers the dispatcher. 2. It adds support for byte-range URLs Other changes: 1. NC_HDF5_finalize was not being properly called by nc_finalize(). 2. Fix minor bug in ncgen3.l 3. fix memory leak in nc4info.c 4. add code to walk the .daprc triples and to replace protocol= fragment tag with a more general mode= tag. Final Note: Th inference code is still way too complicated. We need to move to the validfile() model used by netcdf Java, where each dispatcher is asked if it can process the file. This decentralizes the inference code. This will be done after all the major new dispatchers (PIO, Zarr, etc) have been implemented.
2019-01-02 09:27:36 +08:00
if test "x$K" != "x$EXPECTED" ; then
echo "test_http: -k flag mismatch: expected=$EXPECTED have=$K"
exit 1
fi
rm -f tst_http_$TAG.cdl
Provide byte-range reading of remote datasets re: issue https://github.com/Unidata/netcdf-c/issues/1251 Assume that you have the URL to a remote dataset which is a normal netcdf-3 or netcdf-4 file. This PR allows the netcdf-c to read that dataset's contents as a netcdf file using HTTP byte ranges if the remote server supports byte-range access. Originally, this PR was set up to access Amazon S3 objects, but it can also access other remote datasets such as those provided by a Thredds server via the HTTPServer access protocol. It may also work for other kinds of servers. Note that this is not intended as a true production capability because, as is known, this kind of access to can be quite slow. In addition, the byte-range IO drivers do not currently do any sort of optimization or caching. An additional goal here is to gain some experience with the Amazon S3 REST protocol. This architecture and its use documented in the file docs/byterange.dox. There are currently two test cases: 1. nc_test/tst_s3raw.c - this does a simple open, check format, close cycle for a remote netcdf-3 file and a remote netcdf-4 file. 2. nc_test/test_s3raw.sh - this uses ncdump to investigate some remote datasets. This PR also incorporates significantly changed model inference code (see the superceded PR https://github.com/Unidata/netcdf-c/pull/1259). 1. It centralizes the code that infers the dispatcher. 2. It adds support for byte-range URLs Other changes: 1. NC_HDF5_finalize was not being properly called by nc_finalize(). 2. Fix minor bug in ncgen3.l 3. fix memory leak in nc4info.c 4. add code to walk the .daprc triples and to replace protocol= fragment tag with a more general mode= tag. Final Note: Th inference code is still way too complicated. We need to move to the validfile() model used by netcdf Java, where each dispatcher is asked if it can process the file. This decentralizes the inference code. This will be done after all the major new dispatchers (PIO, Zarr, etc) have been implemented.
2019-01-02 09:27:36 +08:00
# Now test the reading of at least the metadata
${NCDUMP} -h "$U" >tst_http_$TAG.cdl
Provide byte-range reading of remote datasets re: issue https://github.com/Unidata/netcdf-c/issues/1251 Assume that you have the URL to a remote dataset which is a normal netcdf-3 or netcdf-4 file. This PR allows the netcdf-c to read that dataset's contents as a netcdf file using HTTP byte ranges if the remote server supports byte-range access. Originally, this PR was set up to access Amazon S3 objects, but it can also access other remote datasets such as those provided by a Thredds server via the HTTPServer access protocol. It may also work for other kinds of servers. Note that this is not intended as a true production capability because, as is known, this kind of access to can be quite slow. In addition, the byte-range IO drivers do not currently do any sort of optimization or caching. An additional goal here is to gain some experience with the Amazon S3 REST protocol. This architecture and its use documented in the file docs/byterange.dox. There are currently two test cases: 1. nc_test/tst_s3raw.c - this does a simple open, check format, close cycle for a remote netcdf-3 file and a remote netcdf-4 file. 2. nc_test/test_s3raw.sh - this uses ncdump to investigate some remote datasets. This PR also incorporates significantly changed model inference code (see the superceded PR https://github.com/Unidata/netcdf-c/pull/1259). 1. It centralizes the code that infers the dispatcher. 2. It adds support for byte-range URLs Other changes: 1. NC_HDF5_finalize was not being properly called by nc_finalize(). 2. Fix minor bug in ncgen3.l 3. fix memory leak in nc4info.c 4. add code to walk the .daprc triples and to replace protocol= fragment tag with a more general mode= tag. Final Note: Th inference code is still way too complicated. We need to move to the validfile() model used by netcdf Java, where each dispatcher is asked if it can process the file. This decentralizes the inference code. This will be done after all the major new dispatchers (PIO, Zarr, etc) have been implemented.
2019-01-02 09:27:36 +08:00
# compare
diff -wb tst_http_$TAG.cdl ${srcdir}/ref_tst_http_$TAG.cdl
}
Provide byte-range reading of remote datasets re: issue https://github.com/Unidata/netcdf-c/issues/1251 Assume that you have the URL to a remote dataset which is a normal netcdf-3 or netcdf-4 file. This PR allows the netcdf-c to read that dataset's contents as a netcdf file using HTTP byte ranges if the remote server supports byte-range access. Originally, this PR was set up to access Amazon S3 objects, but it can also access other remote datasets such as those provided by a Thredds server via the HTTPServer access protocol. It may also work for other kinds of servers. Note that this is not intended as a true production capability because, as is known, this kind of access to can be quite slow. In addition, the byte-range IO drivers do not currently do any sort of optimization or caching. An additional goal here is to gain some experience with the Amazon S3 REST protocol. This architecture and its use documented in the file docs/byterange.dox. There are currently two test cases: 1. nc_test/tst_s3raw.c - this does a simple open, check format, close cycle for a remote netcdf-3 file and a remote netcdf-4 file. 2. nc_test/test_s3raw.sh - this uses ncdump to investigate some remote datasets. This PR also incorporates significantly changed model inference code (see the superceded PR https://github.com/Unidata/netcdf-c/pull/1259). 1. It centralizes the code that infers the dispatcher. 2. It adds support for byte-range URLs Other changes: 1. NC_HDF5_finalize was not being properly called by nc_finalize(). 2. Fix minor bug in ncgen3.l 3. fix memory leak in nc4info.c 4. add code to walk the .daprc triples and to replace protocol= fragment tag with a more general mode= tag. Final Note: Th inference code is still way too complicated. We need to move to the validfile() model used by netcdf Java, where each dispatcher is asked if it can process the file. This decentralizes the inference code. This will be done after all the major new dispatchers (PIO, Zarr, etc) have been implemented.
2019-01-02 09:27:36 +08:00
echo "*** Testing reading NetCDF-3 file with http"
echo "***Test remote classic file"
testbytes nc3 classic "$URL3"
if test "x$FEATURE_HDF5" = xyes ; then
echo "***Test remote netdf-4 file: s3"
testbytes nc4a netCDF-4 "$URL4a"
echo "***Test remote netcdf-4 file: non-s3"
Mostly revert the filter code to reduce its complexity of use. re: https://github.com/Unidata/netcdf-c/issues/1836 Revert the internal filter code to simplify it. From the user's point of view, the only visible changes should be: 1. The functions that convert text to filter specs have had their signature reverted and have been moved to netcdf_aux.h 2. Some filter API functions now return NC_ENOFILTER when inquiry is made about some filter. Internally,the dispatch table has been modified to get rid of the filter_actions entry and associated complex structures. It has been replaced with inq_var_filter_ids and inq_var_filter_info entries and the dispatch table version has been bumped to 3. Corresponding NOOP and NOTNC4 functions were added to libdispatch/dnotnc4.c. Also, the filter_action entries in dispatch tables were replaced for all dispatch code bases (HDF5, DAP2, etc). This should only impact UDF users. In the process, it became clear that the form of the filters field in NC_VAR_INFO_T was format dependent, so I converted it to be of type void* and pushed its management into the various dispatch code bases. Specifically libhdf5 and libnczarr now manage the filters field in their own way. The auxilliary functions for parsing textual filter specifications were moved to netcdf_aux.h and were renamed to the following: * ncaux_h5filterspec_parse * ncaux_h5filterspec_parselist * ncaux_h5filterspec_free * ncaux_h5filter_fix8 Misc. Other Changes: 1. Document NUG/filters.md updated to reflect the changes above. 2. All the old data types (structs and enums) used by filter_actions actions were deleted. The exception is the NC_H5_Filterspec because it is needed by ncaux_h5filterspec_parselist. 3. Clientside filters were removed -- another enhancement for which no-one ever asked. 4. The ability to remove filters was itself removed. 5. Some functionality needed by nczarr was moved from libhdf5 to libsrc4 e.g. nc4_find_default_chunksizes 6. All the filterx code was removed 7. ncfilter.h and nc4filter.c no longer used Misc. Unrelated Changes: 1. The nczarr_test makefile clean was leaving some directories; so add clean-local to take care of them.
2020-09-28 02:43:46 +08:00
testbytes nc4b netCDF-4 "$URL4b"
if test "x$BIGTEST" = x1 ; then
# Following is a non-permanent dataset
echo "***Test remote netdf-4 file: big s3"
testbytes nc4c netCDF-4 "$URL4c"
Mostly revert the filter code to reduce its complexity of use. re: https://github.com/Unidata/netcdf-c/issues/1836 Revert the internal filter code to simplify it. From the user's point of view, the only visible changes should be: 1. The functions that convert text to filter specs have had their signature reverted and have been moved to netcdf_aux.h 2. Some filter API functions now return NC_ENOFILTER when inquiry is made about some filter. Internally,the dispatch table has been modified to get rid of the filter_actions entry and associated complex structures. It has been replaced with inq_var_filter_ids and inq_var_filter_info entries and the dispatch table version has been bumped to 3. Corresponding NOOP and NOTNC4 functions were added to libdispatch/dnotnc4.c. Also, the filter_action entries in dispatch tables were replaced for all dispatch code bases (HDF5, DAP2, etc). This should only impact UDF users. In the process, it became clear that the form of the filters field in NC_VAR_INFO_T was format dependent, so I converted it to be of type void* and pushed its management into the various dispatch code bases. Specifically libhdf5 and libnczarr now manage the filters field in their own way. The auxilliary functions for parsing textual filter specifications were moved to netcdf_aux.h and were renamed to the following: * ncaux_h5filterspec_parse * ncaux_h5filterspec_parselist * ncaux_h5filterspec_free * ncaux_h5filter_fix8 Misc. Other Changes: 1. Document NUG/filters.md updated to reflect the changes above. 2. All the old data types (structs and enums) used by filter_actions actions were deleted. The exception is the NC_H5_Filterspec because it is needed by ncaux_h5filterspec_parselist. 3. Clientside filters were removed -- another enhancement for which no-one ever asked. 4. The ability to remove filters was itself removed. 5. Some functionality needed by nczarr was moved from libhdf5 to libsrc4 e.g. nc4_find_default_chunksizes 6. All the filterx code was removed 7. ncfilter.h and nc4filter.c no longer used Misc. Unrelated Changes: 1. The nczarr_test makefile clean was leaving some directories; so add clean-local to take care of them.
2020-09-28 02:43:46 +08:00
fi #BIGTEST
fi #HDF5
Provide byte-range reading of remote datasets re: issue https://github.com/Unidata/netcdf-c/issues/1251 Assume that you have the URL to a remote dataset which is a normal netcdf-3 or netcdf-4 file. This PR allows the netcdf-c to read that dataset's contents as a netcdf file using HTTP byte ranges if the remote server supports byte-range access. Originally, this PR was set up to access Amazon S3 objects, but it can also access other remote datasets such as those provided by a Thredds server via the HTTPServer access protocol. It may also work for other kinds of servers. Note that this is not intended as a true production capability because, as is known, this kind of access to can be quite slow. In addition, the byte-range IO drivers do not currently do any sort of optimization or caching. An additional goal here is to gain some experience with the Amazon S3 REST protocol. This architecture and its use documented in the file docs/byterange.dox. There are currently two test cases: 1. nc_test/tst_s3raw.c - this does a simple open, check format, close cycle for a remote netcdf-3 file and a remote netcdf-4 file. 2. nc_test/test_s3raw.sh - this uses ncdump to investigate some remote datasets. This PR also incorporates significantly changed model inference code (see the superceded PR https://github.com/Unidata/netcdf-c/pull/1259). 1. It centralizes the code that infers the dispatcher. 2. It adds support for byte-range URLs Other changes: 1. NC_HDF5_finalize was not being properly called by nc_finalize(). 2. Fix minor bug in ncgen3.l 3. fix memory leak in nc4info.c 4. add code to walk the .daprc triples and to replace protocol= fragment tag with a more general mode= tag. Final Note: Th inference code is still way too complicated. We need to move to the validfile() model used by netcdf Java, where each dispatcher is asked if it can process the file. This decentralizes the inference code. This will be done after all the major new dispatchers (PIO, Zarr, etc) have been implemented.
2019-01-02 09:27:36 +08:00
exit