netcdf-c/ncgen/data.c

944 lines
19 KiB
C
Raw Normal View History

2010-06-03 21:24:43 +08:00
/*********************************************************************
2018-12-07 06:40:43 +08:00
* Copyright 2018, UCAR/Unidata
2010-06-03 21:24:43 +08:00
* See netcdf/COPYRIGHT file for copying and redistribution conditions.
*********************************************************************/
/* $Id: data.c,v 1.7 2010/05/24 19:59:56 dmh Exp $ */
/* $Header: /upc/share/CVS/netcdf-3/ncgen/data.c,v 1.7 2010/05/24 19:59:56 dmh Exp $ */
#include "includes.h"
Primary change: add dap4 support Specific changes: 1. Add dap4 code: libdap4 and dap4_test. Note that until the d4ts server problem is solved, dap4 is turned off. 2. Modify various files to support dap4 flags: configure.ac, Makefile.am, CMakeLists.txt, etc. 3. Add nc_test/test_common.sh. This centralizes the handling of the locations of various things in the build tree: e.g. where is ncgen.exe located. See nc_test/test_common.sh for details. 4. Modify .sh files to use test_common.sh 5. Obsolete separate oc2 by moving it to be part of netcdf-c. This means replacing code with netcdf-c equivalents. 5. Add --with-testserver to configure.ac to allow override of the servers to be used for --enable-dap-remote-tests. 6. There were multiple versions of nctypealignment code. Try to centralize in libdispatch/doffset.c and include/ncoffsets.h 7. Add a unit test for the ncuri code because of its complexity. 8. Move the findserver code out of libdispatch and into a separate, self contained program in ncdap_test and dap4_test. 9. Move the dispatch header files (nc{3,4}dispatch.h) to .../include because they are now shared by modules. 10. Revamp the handling of TOPSRCDIR and TOPBUILDDIR for shell scripts. 11. Make use of MREMAP if available 12. Misc. minor changes e.g. - #include <config.h> -> #include "config.h" - Add some no-install headers to /include - extern -> EXTERNL and vice versa as needed - misc header cleanup - clean up checking for misc. unix vs microsoft functions 13. Change copyright decls in some files to point to LICENSE file. 14. Add notes to RELEASENOTES.md
2017-03-09 08:01:10 +08:00
#include "ncoffsets.h"
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
#include "netcdf_aux.h"
2010-06-03 21:24:43 +08:00
#include "dump.h"
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
#undef VERIFY
2010-06-03 21:24:43 +08:00
#define XVSNPRINTF vsnprintf
/*
#define XVSNPRINTF lvsnprintf
extern int lvsnprintf(char*, size_t, const char*, va_list);
*/
#define DATALISTINIT 32
/* Track all known datalist*/
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
List* alldatalists = NULL;
NCConstant nullconstant;
NCConstant fillconstant;
2010-06-03 21:24:43 +08:00
Datalist nildatalist; /* to support NIL keyword */
2010-06-03 21:24:43 +08:00
Bytebuffer* codebuffer;
Bytebuffer* codetmp;
Bytebuffer* stmt;
/* Forward */
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
static void setconstlist(NCConstant* con, Datalist* dl);
#ifdef VERIFY
/* index of match */
static int
verify(List* all, Datalist* dl)
{
int i;
for(i=0;i<listlength(all);i++) {
void* pi = listget(all,i);
if(pi == dl)
return i;
}
return -1;
}
#endif
2010-06-03 21:24:43 +08:00
/**************************************************/
/**************************************************/
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
NCConstant*
nullconst(void)
2010-06-03 21:24:43 +08:00
{
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
NCConstant* n = ecalloc(sizeof(NCConstant));
return n;
2010-06-03 21:24:43 +08:00
}
int
isstringable(nc_type nctype)
{
switch (nctype) {
case NC_CHAR: case NC_STRING:
case NC_BYTE: case NC_UBYTE:
case NC_FILLVALUE:
return 1;
default: break;
}
return 0;
}
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
NCConstant*
2010-06-03 21:24:43 +08:00
list2const(Datalist* list)
{
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
NCConstant* con = nullconst();
2010-06-03 21:24:43 +08:00
ASSERT(list != NULL);
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
con->nctype = NC_COMPOUND;
con->lineno = list->data[0]->lineno;
setconstlist(con,list);
con->filled = 0;
2010-06-03 21:24:43 +08:00
return con;
}
Datalist*
const2list(NCConstant* con)
{
Datalist* list;
ASSERT(con != NULL);
list = builddatalist(1);
if(list != NULL) {
dlappend(list,con);
}
return list;
}
2010-06-03 21:24:43 +08:00
/**************************************************/
2013-11-15 06:13:20 +08:00
#ifdef GENDEBUG
2010-06-03 21:24:43 +08:00
void
report(char* lead, Datalist* list)
{
extern void bufdump(Datalist*,Bytebuffer*);
Bytebuffer* buf = bbNew();
bufdump(list,buf);
fprintf(stderr,"\n%s::%s\n",lead,bbContents(buf));
fflush(stderr);
bbFree(buf);
}
#endif
/**************************************************/
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
static void
setconstlist(NCConstant* con, Datalist* dl)
{
#ifdef VERIFY
int pos = verify(alldatalists,dl);
if(pos >= 0) {
dumpdatalist(listget(alldatalists,pos),"XXX");
}
#endif
con->value.compoundv = dl;
}
/* Deep constant cloning; return struct not pointer to struct*/
NCConstant*
cloneconstant(NCConstant* con)
2010-06-03 21:24:43 +08:00
{
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
NCConstant* newcon = NULL;
Datalist* newdl = NULL;
char* s = NULL;
newcon = nullconst();
if(newcon == NULL) return newcon;
*newcon = *con;
switch (newcon->nctype) {
2010-06-03 21:24:43 +08:00
case NC_STRING:
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
if(newcon->value.stringv.len == 0)
s = NULL;
else {
s = (char*)ecalloc(newcon->value.stringv.len+1);
if(newcon->value.stringv.len > 0)
memcpy(s,newcon->value.stringv.stringv,newcon->value.stringv.len);
s[newcon->value.stringv.len] = '\0';
}
newcon->value.stringv.stringv = s;
2010-06-03 21:24:43 +08:00
break;
case NC_OPAQUE:
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
s = (char*)ecalloc(newcon->value.opaquev.len+1);
if(newcon->value.opaquev.len > 0)
memcpy(s,newcon->value.opaquev.stringv,newcon->value.opaquev.len);
s[newcon->value.opaquev.len] = '\0';
newcon->value.opaquev.stringv = s;
break;
case NC_COMPOUND:
newdl = clonedatalist(con->value.compoundv);
setconstlist(newcon,newdl);
2010-06-03 21:24:43 +08:00
break;
default: break;
}
return newcon;
}
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
/* Deep constant clear*/
void
clearconstant(NCConstant* con)
{
if(con == NULL) return;
switch (con->nctype) {
case NC_STRING:
if(con->value.stringv.stringv != NULL)
efree(con->value.stringv.stringv);
break;
case NC_OPAQUE:
if(con->value.opaquev.stringv != NULL)
efree(con->value.opaquev.stringv);
break;
case NC_COMPOUND:
con->value.compoundv = NULL;
break;
default: break;
}
memset((void*)con,0,sizeof(NCConstant));
}
void
freeconstant(NCConstant* con, int shallow)
{
if(!shallow) clearconstant(con);
nullfree(con);
}
2010-06-03 21:24:43 +08:00
/**************************************************/
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
#if 0
2010-06-03 21:24:43 +08:00
Datalist*
datalistclone(Datalist* dl)
{
int i;
Datalist* clone = builddatalist(dl->length);
for(i=0;i<dl->length;i++) {
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
clone->data[i] = cloneconstant(dl->data[i]);
2010-06-03 21:24:43 +08:00
}
return clone;
}
Datalist*
datalistappend(Datalist* dl, NCConstant* con)
2010-06-03 21:24:43 +08:00
{
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
NCConstant** vector;
2010-06-03 21:24:43 +08:00
ASSERT(dl != NULL);
if(con == NULL) return dl;
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
vector = (NCConstant**)erealloc(dl->data,sizeof(NCConstant*)*(dl->length+1));
2010-06-03 21:24:43 +08:00
if(vector == NULL) return NULL;
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
vector[dl->length] = cloneconstant(con);
2010-06-03 21:24:43 +08:00
dl->length++;
dl->data = vector;
return dl;
}
Datalist*
datalistreplace(Datalist* dl, unsigned int index, NCConstant* con)
2010-06-03 21:24:43 +08:00
{
ASSERT(dl != NULL);
ASSERT(index < dl->length);
ASSERT(con != NULL);
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
dl->data[index] = cloneconstant(con);
2010-06-03 21:24:43 +08:00
return dl;
}
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
#endif
2010-06-03 21:24:43 +08:00
int
datalistline(Datalist* ds)
{
if(ds == NULL || ds->length == 0) return 0;
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
return ds->data[0]->lineno;
}
2010-06-03 21:24:43 +08:00
/* Go thru a databuf of possibly nested constants
and insert commas as needed; ideally, this
operation should be idempotent so that
the caller need not worry about it having already
been applied. Also, handle situation where there may be missing
matching right braces.
2010-06-03 21:24:43 +08:00
*/
static char* commifyr(char* p, Bytebuffer* buf);
static char* wordstring(char* p, Bytebuffer* buf, int quote);
void
commify(Bytebuffer* buf)
{
char* list,*p;
if(bbLength(buf) == 0) return;
list = bbDup(buf);
p = list;
bbClear(buf);
commifyr(p,buf);
bbNull(buf);
efree(list);
}
/* Requires that the string be balanced
WRT to braces
*/
2010-06-03 21:24:43 +08:00
static char*
commifyr(char* p, Bytebuffer* buf)
{
int comma = 0;
int c;
while((c=*p++)) {
if(c == ' ') continue;
if(c == ',') continue;
else if(c == '}') {
break;
}
2010-06-03 21:24:43 +08:00
if(comma) bbCat(buf,", "); else comma=1;
if(c == '{') {
bbAppend(buf,'{');
p = commifyr(p,buf);
bbAppend(buf,'}');
} else if(c == '\'' || c == '\"') {
p = wordstring(p,buf,c);
} else {
bbAppend(buf,c);
p=word(p,buf);
}
}
return p;
}
char*
word(char* p, Bytebuffer* buf)
{
int c;
while((c=*p++)) {
if(c == '}' || c == ' ' || c == ',') break;
if(c == '\\') {
bbAppend(buf,c);
c=*p++;
if(!c) break;
}
bbAppend(buf,(char)c);
}
p--; /* leave terminator for parent */
return p;
}
static char*
wordstring(char* p, Bytebuffer* buf, int quote)
{
int c;
bbAppend(buf,quote);
while((c=*p++)) {
if(c == '\\') {
bbAppend(buf,c);
c = *p++;
if(c == '\0') return --p;
} else if(c == quote) {
bbAppend(buf,c);
return p;
}
bbAppend(buf,c);
}
return p;
}
static const char zeros[] =
"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
2010-06-03 21:24:43 +08:00
void
alignbuffer(NCConstant* prim, Bytebuffer* buf)
2010-06-03 21:24:43 +08:00
{
int alignment,pad,offset;
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
ASSERT(prim->nctype != NC_COMPOUND);
2010-06-03 21:24:43 +08:00
if(prim->nctype == NC_ECONST)
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
alignment = ncaux_class_alignment(prim->value.enumv->typ.typecode);
2010-06-03 21:24:43 +08:00
else if(usingclassic && prim->nctype == NC_STRING)
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
alignment = ncaux_class_alignment(NC_CHAR);
2010-06-03 21:24:43 +08:00
else if(prim->nctype == NC_CHAR)
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
alignment = ncaux_class_alignment(NC_CHAR);
2010-06-03 21:24:43 +08:00
else
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
alignment = ncaux_class_alignment(prim->nctype);
2010-06-03 21:24:43 +08:00
offset = bbLength(buf);
pad = getpadding(offset,alignment);
if(pad > 0) {
bbAppendn(buf,(void*)zeros,pad);
}
}
/*
Following routines are in support of language-oriented output
*/
void
codedump(Bytebuffer* buf)
{
bbCatbuf(codebuffer,buf);
bbClear(buf);
2010-06-03 21:24:43 +08:00
}
void
codepartial(const char* txt)
{
bbCat(codebuffer,txt);
}
void
codeline(const char* line)
{
codepartial(line);
codepartial("\n");
}
void
codelined(int n, const char* txt)
{
bbindent(codebuffer,n);
bbCat(codebuffer,txt);
codepartial("\n");
}
void
codeflush(void)
{
if(bbLength(codebuffer) > 0) {
bbNull(codebuffer);
fputs(bbContents(codebuffer),stdout);
fflush(stdout);
bbClear(codebuffer);
}
}
void
bbindent(Bytebuffer* buf, const int n)
{
bbCat(buf,indented(n));
}
/* Provide an restrict snprintf that writes to an expandable buffer */
/* Simulates a simple snprintf because apparently
the IRIX one is broken wrt return value.
Supports only %u %d %f %s and %% specifiers
with optional leading hh or ll.
*/
static void
vbbprintf(Bytebuffer* buf, const char* fmt, va_list argv)
{
char tmp[128];
const char* p;
int c;
int hcount;
int lcount;
char* text;
for(p=fmt;(c=*p++);) {
hcount = 0; lcount = 0;
switch (c) {
case '%':
retry: switch ((c=*p++)) {
case '\0': bbAppend(buf,'%'); p--; break;
case '%': bbAppend(buf,c); break;
case 'h':
hcount++;
while((c=*p) && (c == 'h')) {hcount++; p++;}
if(hcount > 2) hcount = 2;
goto retry;
case 'l':
lcount++;
while((c=*p) && (c == 'l')) {
lcount++;
p++;
}
if(lcount > 2) lcount = 2;
goto retry;
case 'u':
if(hcount == 2) {
snprintf(tmp,sizeof(tmp),"%hhu",
(unsigned char)va_arg(argv,unsigned int));
2010-06-03 21:24:43 +08:00
} else if(hcount == 1) {
snprintf(tmp,sizeof(tmp),"%hu",
(unsigned short)va_arg(argv,unsigned int));
2010-06-03 21:24:43 +08:00
} else if(lcount == 2) {
snprintf(tmp,sizeof(tmp),"%llu",
(unsigned long long)va_arg(argv,unsigned long long));
} else if(lcount == 1) {
snprintf(tmp,sizeof(tmp),"%lu",
(unsigned long)va_arg(argv,unsigned long));
} else {
snprintf(tmp,sizeof(tmp),"%u",
(unsigned int)va_arg(argv,unsigned int));
}
bbCat(buf,tmp);
break;
case 'd':
if(hcount == 2) {
snprintf(tmp,sizeof(tmp),"%hhd",
(signed char)va_arg(argv,signed int));
2010-06-03 21:24:43 +08:00
} else if(hcount == 1) {
snprintf(tmp,sizeof(tmp),"%hd",
(signed short)va_arg(argv,signed int));
2010-06-03 21:24:43 +08:00
} else if(lcount == 2) {
snprintf(tmp,sizeof(tmp),"%lld",
(signed long long)va_arg(argv,signed long long));
} else if(lcount == 1) {
snprintf(tmp,sizeof(tmp),"%ld",
(signed long)va_arg(argv,signed long));
} else {
snprintf(tmp,sizeof(tmp),"%d",
(signed int)va_arg(argv,signed int));
}
bbCat(buf,tmp);
break;
case 'f':
if(lcount > 0) {
snprintf(tmp,sizeof(tmp),"((double)%.16g)",
2010-06-03 21:24:43 +08:00
(double)va_arg(argv,double));
} else {
snprintf(tmp,sizeof(tmp),"((float)%.8g)",
2010-06-03 21:24:43 +08:00
(double)va_arg(argv,double));
}
bbCat(buf,tmp);
break;
case 's':
text = va_arg(argv,char*);
bbCat(buf,text);
break;
case 'c':
c = va_arg(argv,int);
bbAppend(buf,(char)c);
break;
2010-06-03 21:24:43 +08:00
default:
PANIC1("vbbprintf: unknown specifier: %c",(char)c);
}
break;
default:
bbAppend(buf,c);
}
}
}
void
bbprintf(Bytebuffer* buf, const char *fmt, ...)
{
va_list argv;
va_start(argv,fmt);
vbbprintf(buf,fmt,argv);
va_end(argv);
2010-06-03 21:24:43 +08:00
}
void
bbprintf0(Bytebuffer* buf, const char *fmt, ...)
{
va_list argv;
va_start(argv,fmt);
bbClear(buf);
vbbprintf(buf,fmt,argv);
va_end(argv);
2010-06-03 21:24:43 +08:00
}
void
codeprintf(const char *fmt, ...)
{
va_list argv;
va_start(argv,fmt);
vbbprintf(codebuffer,fmt,argv);
va_end(argv);
2010-06-03 21:24:43 +08:00
}
NCConstant*
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
emptycompoundconst(int lineno)
{
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
NCConstant* c = nullconst();
c->lineno = lineno;
c->nctype = NC_COMPOUND;
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
setconstlist(c,builddatalist(0));
2013-04-02 07:05:45 +08:00
c->filled = 0;
return c;
}
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
/* Make an empty string constant*/
NCConstant*
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
emptystringconst(int lineno)
{
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
NCConstant* c = nullconst();
ASSERT(c != NULL);
c->lineno = lineno;
c->nctype = NC_STRING;
c->value.stringv.len = 0;
c->value.stringv.stringv = NULL;
2013-04-02 07:05:45 +08:00
c->filled = 0;
return c;
}
#define INDENTMAX 256
static char* dent = NULL;
char*
indented(int n)
{
char* indentation;
if(dent == NULL) {
2017-10-31 05:52:08 +08:00
dent = (char*)ecalloc(INDENTMAX+1);
memset((void*)dent,' ',INDENTMAX);
dent[INDENTMAX] = '\0';
}
if(n*4 >= INDENTMAX) n = INDENTMAX/4;
indentation = dent+(INDENTMAX - 4*n);
return indentation;
}
void
dlextend(Datalist* dl)
{
size_t newalloc;
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
NCConstant** newdata = NULL;
2017-11-01 04:03:57 +08:00
newalloc = (dl->alloc > 0?2*dl->alloc:2);
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
newdata = (NCConstant**)ecalloc(newalloc*sizeof(NCConstant*));
2017-11-01 04:03:57 +08:00
if(dl->length > 0)
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
memcpy(newdata,dl->data,sizeof(NCConstant*)*dl->length);
dl->alloc = newalloc;
2017-11-01 04:03:57 +08:00
nullfree(dl->data);
dl->data = newdata;
}
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
void
capture(Datalist* dl)
{
if(alldatalists == NULL) alldatalists = listnew();
listpush(alldatalists,dl);
}
Datalist*
builddatalist(int initial)
{
Datalist* ci;
if(initial <= 0) initial = DATALISTINIT;
initial++; /* for header*/
2017-10-31 05:52:08 +08:00
ci = (Datalist*)ecalloc(sizeof(Datalist));
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
if(ci == NULL) semerror(0,"out of memory\n");
ci->data = (NCConstant**)ecalloc(sizeof(NCConstant*)*initial);
ci->alloc = initial;
ci->length = 0;
return ci;
}
void
dlappend(Datalist* dl, NCConstant* constant)
{
2017-11-01 04:03:57 +08:00
if(dl->length >= dl->alloc)
dlextend(dl);
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
dl->data[dl->length++] = (constant);
}
void
dlset(Datalist* dl, size_t pos, NCConstant* constant)
{
ASSERT(pos < dl->length);
dl->data[pos] = (constant);
}
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
/* Convert a datalist to a compound constant */
NCConstant*
builddatasublist(Datalist* dl)
{
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
NCConstant* d = nullconst();
d->nctype = NC_COMPOUND;
d->lineno = (dl->length > 0?dl->data[0]->lineno:0);
setconstlist(d,dl);
d->filled = 0;
return d;
}
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
/* Deep copy */
Datalist*
clonedatalist(Datalist* dl)
{
int i;
size_t len;
Datalist* newdl;
if(dl == NULL) return NULL;
len = datalistlen(dl);
newdl = builddatalist(len);
/* initialize */
for(i=0;i<len;i++) {
NCConstant* con = datalistith(dl,i);
con = cloneconstant(con);
dlappend(newdl,con);
}
#if 0
newdl->vlen = dl->vlen;
#endif
newdl->readonly = dl->readonly;
return newdl;
}
/* recursive helpers */
#if 0
static int
isdup(Datalist* dl)
{
int i;
size_t limit = listlength(alldatalists);
for(i=0;i<limit;i++) {
Datalist* di = listget(alldatalists,i);
if(di == dl) return 1;
}
return 0;
}
#endif
void
reclaimconstant(NCConstant* con)
{
if(con == NULL) return;
switch (con->nctype) {
case NC_STRING:
if(con->value.stringv.stringv != NULL)
efree(con->value.stringv.stringv);
break;
case NC_OPAQUE:
if(con->value.opaquev.stringv != NULL)
efree(con->value.opaquev.stringv);
break;
case NC_COMPOUND:
#ifdef VERIFY
{int pos;
if((pos=verify(alldatalists,con->value.compoundv)) >= 0) {
dumpdatalist(listget(alldatalists,pos),"XXX");
abort();
}
}
#endif
reclaimdatalist(con->value.compoundv);
con->value.compoundv = NULL;
break;
default: break;
}
efree(con);
}
void
reclaimdatalist(Datalist* list)
{
int i;
if(list == NULL) return;
if(list->data != NULL) {
for(i=0;i<list->length;i++) {
NCConstant* con = list->data[i];
if(con != NULL) reclaimconstant(con);
}
efree(list->data);
list->data = NULL;
}
efree(list);
}
void
reclaimalldatalists(void)
{
int i;
#if 0
int j;
/* Remove duplicates */
for(i=0;i<listlength(alldatalists);i++) {
Datalist* di = listget(alldatalists,i);
if(di == NULL) continue;
for(j=i;j<listlength(alldatalists);j++) {
Datalist* dj = listget(alldatalists,j);
if(dj == di) {
listset(alldatalists,j,NULL);
fprintf(stderr,"XXX\n");
}
}
}
#endif
for(i=0;i<listlength(alldatalists);i++) {
Datalist* di = listget(alldatalists,i);
if(di != NULL)
reclaimdatalist(di);
}
efree(alldatalists);
alldatalists = NULL;
}
/* Obsolete */
#if 0
/* return 1 if the next element in the datasrc is compound*/
int
issublist(Datasrc* datasrc) {return istype(datasrc,NC_COMPOUND);}
/* return 1 if the next element in the datasrc is a string*/
int
isstring(Datasrc* datasrc) {return istype(datasrc,NC_STRING);}
/* return 1 if the next element in the datasrc is a fill value*/
int
isfillvalue(Datasrc* datasrc)
{
return srcpeek(datasrc) == NULL || istype(datasrc,NC_FILLVALUE);
}
/* return 1 if the next element in the datasrc is nc_type*/
int
istype(Datasrc* datasrc , nc_type nctype)
{
NCConstant* ci = srcpeek(datasrc);
if(ci != NULL && ci->nctype == nctype) return 1;
return 0;
}
/**************************************************/
void
freedatasrc(Datasrc* src)
{
efree(src);
}
Datasrc*
allocdatasrc(void)
{
Datasrc* src;
src = ecalloc(sizeof(Datasrc));
src->data = NULL;
src->index = 0;
src->length = 0;
src->prev = NULL;
return src;
}
Datasrc*
datalist2src(Datalist* list)
{
Datasrc* src;
ASSERT(list != NULL);
src = allocdatasrc();
src->data = list->data;
src->index = 0;
src->length = list->length;
DUMPSRC(src,"#");
return src;
}
Datasrc*
const2src(NCConstant* con)
{
Datasrc* src;
ASSERT(con != NULL);
src = allocdatasrc();
src->data = emalloc(sizeof(NCConstant*));
src->data[0] = con;
src->index = 0;
src->length = 1;
DUMPSRC(src,"#");
return src;
}
NCConstant*
srcpeek(Datasrc* ds)
{
if(ds == NULL) return NULL;
if(ds->index < ds->length)
return ds->data[ds->index];
if(ds->spliced)
return srcpeek(ds->prev);
return NULL;
}
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
void
srcreset(Datasrc* ds)
{
ds->index = 0;
}
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
NCConstant*
srcnext(Datasrc* ds)
{
DUMPSRC(ds,"!");
if(ds == NULL) return NULL;
if(ds->index < ds->length)
return ds->data[ds->index++];
if(ds->spliced) {
srcpop(ds);
return srcnext(ds);
}
return NULL;
}
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
int
srcmore(Datasrc* ds)
{
if(ds == NULL) return 0;
if(ds->index < ds->length) return 1;
if(ds->spliced) return srcmore(ds->prev);
return 0;
}
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
int
srcline(Datasrc* ds)
{
int index = ds->index;
int len = ds->length;
/* pick closest available entry*/
if(len == 0) return 0;
if(index >= len) index = len-1;
return ds->data[index]->lineno;
}
void
srcpush(Datasrc* src)
{
NCConstant* con;
ASSERT(src != NULL);
con = srcnext(src);
ASSERT(con->nctype == NC_COMPOUND);
srcpushlist(src,con->value.compoundv);
}
void
srcpushlist(Datasrc* src, Datalist* dl)
{
Datasrc* newsrc;
ASSERT(src != NULL && dl != NULL);
newsrc = allocdatasrc();
*newsrc = *src;
src->prev = newsrc;
src->index = 0;
src->data = dl->data;
src->length = dl->length;
DUMPSRC(src,">!");
}
void
srcpop(Datasrc* src)
{
if(src != NULL) {
Datasrc* prev = src->prev;
*src = *prev;
freedatasrc(prev);
}
DUMPSRC(src,"<");
}
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
void
srcsplice(Datasrc* ds, Datalist* list)
{
srcpushlist(ds,list);
ds->spliced = 1;
}
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
void
srcsetfill(Datasrc* ds, Datalist* list)
{
if(ds->index >= ds->length) PANIC("srcsetfill: no space");
if(ds->data[ds->index]->nctype != NC_FILLVALUE) PANIC("srcsetfill: not fill");
ds->data[ds->index]->nctype = NC_COMPOUND;
setconstlist(ds->data[ds->index],list);
}
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
#endif /*0*/