netcdf-c/ncgen/ncgeny.c

3914 lines
130 KiB
C
Raw Normal View History

/* A Bison parser, made by GNU Bison 3.7.5. */
2020-12-08 05:45:14 +08:00
/* Bison implementation for Yacc-like parsers in C
Copyright (C) 1984, 1989-1990, 2000-2015, 2018-2021 Free Software Foundation,
Inc.
2020-12-08 05:45:14 +08:00
This program is free software: you can redistribute it and/or modify
2010-06-03 21:24:43 +08:00
it under the terms of the GNU General Public License as published by
2020-12-08 05:45:14 +08:00
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
2010-06-03 21:24:43 +08:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
2010-06-03 21:24:43 +08:00
You should have received a copy of the GNU General Public License
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
along with this program. If not, see <http://www.gnu.org/licenses/>. */
2010-06-03 21:24:43 +08:00
/* As a special exception, you may create a larger work that contains
part or all of the Bison parser skeleton and distribute that work
under terms of your choice, so long as that work isn't itself a
parser generator using the skeleton or a modified version thereof
as a parser skeleton. Alternatively, if you modify or redistribute
the parser skeleton itself, you may (at your option) remove this
special exception, which will cause the skeleton and the resulting
Bison output files to be licensed under the GNU General Public
License without this special exception.
2010-06-03 21:24:43 +08:00
This special exception was added by the Free Software Foundation in
version 2.2 of Bison. */
/* C LALR(1) parser skeleton written by Richard Stallman, by
simplifying the original so-called "semantic" parser. */
/* DO NOT RELY ON FEATURES THAT ARE NOT DOCUMENTED in the manual,
especially those whose name start with YY_ or yy_. They are
private implementation details that can be changed or removed. */
2010-06-03 21:24:43 +08:00
/* All symbols defined below should begin with yy or YY, to avoid
infringing on user name space. This should be done even for local
variables, as they might otherwise be expanded by user macros.
There are some unavoidable exceptions within include files to
define necessary library symbols; they are noted "INFRINGES ON
USER NAME SPACE" below. */
/* Identify Bison output, and Bison version. */
#define YYBISON 30705
2010-06-03 21:24:43 +08:00
/* Bison version string. */
#define YYBISON_VERSION "3.7.5"
2010-06-03 21:24:43 +08:00
/* Skeleton name. */
#define YYSKELETON_NAME "yacc.c"
/* Pure parsers. */
#define YYPURE 0
2020-12-08 05:45:14 +08:00
/* Push parsers. */
#define YYPUSH 0
2020-12-08 05:45:14 +08:00
/* Pull parsers. */
#define YYPULL 1
2020-12-08 05:45:14 +08:00
/* Substitute the variable and function names. */
#define yyparse ncgparse
#define yylex ncglex
#define yyerror ncgerror
#define yydebug ncgdebug
#define yynerrs ncgnerrs
#define yylval ncglval
#define yychar ncgchar
/* First part of user prologue. */
#line 11 "ncgen.y"
2010-06-03 21:24:43 +08:00
/*
static char SccsId[] = "$Id: ncgen.y,v 1.42 2010/05/18 21:32:46 dmh Exp $";
2010-06-03 21:24:43 +08:00
*/
#include "includes.h"
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
#include "netcdf_aux.h"
2016-05-12 05:31:17 +08:00
#include "ncgeny.h"
#include "ncgen.h"
#ifdef USE_NETCDF4
#include "netcdf_filter.h"
#endif
2011-09-16 00:57:16 +08:00
2011-09-17 02:36:08 +08:00
/* Following are in ncdump (for now)*/
/* Need some (unused) definitions to get it to compile */
#define ncatt_t void*
#define ncvar_t void
#include "nctime.h"
2010-06-03 21:24:43 +08:00
#undef GENLIB1
2010-06-03 21:24:43 +08:00
/* parser controls */
#define YY_NO_INPUT 1
/* True if string a equals string b*/
#ifndef NCSTREQ
#define NCSTREQ(a, b) (*(a) == *(b) && strcmp((a), (b)) == 0)
Primary change: add dap4 support Specific changes: 1. Add dap4 code: libdap4 and dap4_test. Note that until the d4ts server problem is solved, dap4 is turned off. 2. Modify various files to support dap4 flags: configure.ac, Makefile.am, CMakeLists.txt, etc. 3. Add nc_test/test_common.sh. This centralizes the handling of the locations of various things in the build tree: e.g. where is ncgen.exe located. See nc_test/test_common.sh for details. 4. Modify .sh files to use test_common.sh 5. Obsolete separate oc2 by moving it to be part of netcdf-c. This means replacing code with netcdf-c equivalents. 5. Add --with-testserver to configure.ac to allow override of the servers to be used for --enable-dap-remote-tests. 6. There were multiple versions of nctypealignment code. Try to centralize in libdispatch/doffset.c and include/ncoffsets.h 7. Add a unit test for the ncuri code because of its complexity. 8. Move the findserver code out of libdispatch and into a separate, self contained program in ncdap_test and dap4_test. 9. Move the dispatch header files (nc{3,4}dispatch.h) to .../include because they are now shared by modules. 10. Revamp the handling of TOPSRCDIR and TOPBUILDDIR for shell scripts. 11. Make use of MREMAP if available 12. Misc. minor changes e.g. - #include <config.h> -> #include "config.h" - Add some no-install headers to /include - extern -> EXTERNL and vice versa as needed - misc header cleanup - clean up checking for misc. unix vs microsoft functions 13. Change copyright decls in some files to point to LICENSE file. 14. Add notes to RELEASENOTES.md
2017-03-09 08:01:10 +08:00
#endif
2010-06-03 21:24:43 +08:00
#define VLENSIZE (sizeof(nc_vlen_t))
#define MAXFLOATDIM 4294967295.0
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
/* mnemonics */
2010-06-03 21:24:43 +08:00
typedef enum Attrkind {ATTRVAR, ATTRGLOBAL, DONTKNOW} Attrkind;
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
#define ISCONST 1
#define ISLIST 0
2010-06-03 21:24:43 +08:00
typedef nc_vlen_t vlen_t;
/* We retain the old representation of the symbol list
as a linked list.
*/
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
List* symlist;
2010-06-03 21:24:43 +08:00
/* Track rootgroup separately*/
Symbol* rootgroup;
/* Track the group sequence */
static List* groupstack;
/* Provide a separate sequence for accumulating values
during the parse.
*/
static List* stack;
/* track homogeneity of types for data lists*/
static nc_type consttype;
/* Misc. */
static int stackbase;
static int stacklen;
static int count;
static int opaqueid; /* counter for opaque constants*/
static int arrayuid; /* counter for pseudo-array types*/
char* primtypenames[PRIMNO] = {
"nat",
"byte", "char", "short",
"int", "float", "double",
"ubyte", "ushort", "uint",
"int64", "uint64",
"string"
};
static int GLOBAL_SPECIAL = _NCPROPS_FLAG
| _ISNETCDF4_FLAG
| _SUPERBLOCK_FLAG
| _FORMAT_FLAG ;
2010-06-03 21:24:43 +08:00
/*Defined in ncgen.l*/
extern int lineno; /* line number for error messages */
extern Bytebuffer* lextext; /* name or string with escapes removed */
2010-06-03 21:24:43 +08:00
extern double double_val; /* last double value read */
extern float float_val; /* last float value read */
extern long long int64_val; /* last int64 value read */
extern int int32_val; /* last int32 value read */
extern short int16_val; /* last short value read */
extern unsigned long long uint64_val; /* last int64 value read */
extern unsigned int uint32_val; /* last int32 value read */
extern unsigned short uint16_val; /* last short value read */
extern char char_val; /* last char value read */
extern signed char byte_val; /* last byte value read */
extern unsigned char ubyte_val; /* last byte value read */
/* Track definitions of dims, types, attributes, and vars*/
List* grpdefs;
List* dimdefs;
List* attdefs; /* variable-specific attributes*/
List* gattdefs; /* global attributes only*/
List* xattdefs; /* unknown attributes*/
List* typdefs;
List* vardefs;
List* tmp;
/* Forward */
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
static NCConstant* makeconstdata(nc_type);
static NCConstant* evaluate(Symbol* fcn, Datalist* arglist);
static NCConstant* makeenumconstref(Symbol*);
2010-06-03 21:24:43 +08:00
static void addtogroup(Symbol*);
static Symbol* currentgroup(void);
static Symbol* createrootgroup(const char*);
2010-06-03 21:24:43 +08:00
static Symbol* creategroup(Symbol*);
static int dupobjectcheck(nc_class,Symbol*);
static void setpathcurrent(Symbol* sym);
static Symbol* makeattribute(Symbol*,Symbol*,Symbol*,Datalist*,Attrkind);
static Symbol* makeprimitivetype(nc_type i);
static Symbol* makespecial(int tag, Symbol* vsym, Symbol* tsym, void* data, int isconst);
static int containsfills(Datalist* list);
static void vercheck(int ncid);
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
static long long extractint(NCConstant* con);
#ifdef USE_NETCDF4
static int parsefilterflag(const char* sdata0, Specialdata* special);
Add filter support to NCZarr Filter support has three goals: 1. Use the existing HDF5 filter implementations, 2. Allow filter metadata to be stored in the NumCodecs metadata format used by Zarr, 3. Allow filters to be used even when HDF5 is disabled Detailed usage directions are define in docs/filters.md. For now, the existing filter API is left in place. So filters are defined using ''nc_def_var_filter'' using the HDF5 style where the id and parameters are unsigned integers. This is a big change since filters affect many parts of the code. In the following, the terms "compressor" and "filter" and "codec" are generally used synonomously. ### Filter-Related Changes: * In order to support dynamic loading of shared filter libraries, a new library was added in the libncpoco directory; it helps to isolate dynamic loading across multiple platforms. * Provide a json parsing library for use by plugins; this is created by merging libdispatch/ncjson.c with include/ncjson.h. * Add a new _Codecs attribute to allow clients to see what codecs are being used; let ncdump -s print it out. * Provide special headers to help support compilation of HDF5 filters when HDF5 is not enabled: netcdf_filter_hdf5_build.h and netcdf_filter_build.h. * Add a number of new test to test the new nczarr filters. * Let ncgen parse _Codecs attribute, although it is ignored. ### Plugin directory changes: * Add support for the Blosc compressor; this is essential because it is the most common compressor used in Zarr datasets. This also necessitated adding a CMake FindBlosc.cmake file * Add NCZarr support for the big-four filters provided by HDF5: shuffle, fletcher32, deflate (zlib), and szip * Add a Codec defaulter (see docs/filters.md) for the big four filters. * Make plugins work with windows by properly adding __declspec declaration. ### Misc. Non-Filter Changes * Replace most uses of USE_NETCDF4 (deprecated) with USE_HDF5. * Improve support for caching * More fixes for path conversion code * Fix misc. memory leaks * Add new utility -- ncdump/ncpathcvt -- that does more or less the same thing as cygpath. * Add a number of new test to test the non-filter fixes. * Update the parsers * Convert most instances of '#ifdef _MSC_VER' to '#ifdef _WIN32'
2021-09-03 07:04:26 +08:00
static int parsecodecsflag(const char* sdata0, Specialdata* special);
Support MSYS2/Mingw platform re: The current netcdf-c release has some problems with the mingw platform on windows. Mostly they are path issues. Changes to support mingw+msys2: ------------------------------- * Enable option of looking into the windows registry to find the mingw root path. In aid of proper path handling. * Add mingw+msys as a specific platform in configure.ac and move testing of the platform to the front so it is available early. * Handle mingw X libncpoco (dynamic loader) properly even though mingw does not yet support it. * Handle mingw X plugins properly even though mingw does not yet support it. * Alias pwd='pwd -W' to better handle paths in shell scripts. * Plus a number of other minor compile irritations. * Disallow the use of multiple nc_open's on the same file for windows (and mingw) because windows does not seem to handle these properly. Not sure why we did not catch this earlier. * Add mountpoint info to dpathmgr.c to help support mingw. * Cleanup dpathmgr conversions. Known problems: --------------- * I have not been able to get shared libraries to work, so plugins/filters must be disabled. * There is some kind of problem with libcurl that I have not solved, so all uses of libcurl (currently DAP+Byterange) must be disabled. Misc. other fixes: ------------------ * Cleanup the relationship between ENABLE_PLUGINS and various other flags in CMakeLists.txt and configure.ac. * Re-arrange the TESTDIRS order in Makefile.am. * Add pseudo-breakpoint to nclog.[ch] for debugging. * Improve the documentation of the path manager code in ncpathmgr.h * Add better support for relative paths in dpathmgr.c * Default the mode args to NCfopen to include "b" (binary) for windows. * Add optional debugging output in various places. * Make sure that everything builds with plugins disabled. * Fix numerous (s)printf inconsistencies betweenb the format spec and the arguments.
2021-12-24 13:18:56 +08:00
static Symbol* identkeyword(const Symbol*);
Add support for multiple filters per variable. re: https://github.com/Unidata/netcdf-c/issues/1584 Support has been added for multiple filters per variable. This affects a number of components in netcdf. The new APIs are documented in NUG/filters.md. The primary changes are: * A set of new functions are provided (see __include/netcdf_filter.h__). - Obtain a list of the filters associated with a variable - Obtain the parameters for a specific filter. * The existing __nc_inq_var_filter__ function now returns info about the first defined filter. * The utilities (ncgen, ncdump, and nccopy) now support an extended format for specifying a sequence of filters. The general form is __<filter>|<filter>..._. * The ncdump **_Filter** attribute now dumps a list of all the filters associated with a variable using the above new format. * Filter specifications can now use a filter name instead of number for filters known to the netcdf library, which in turn is taken from the HDF5 filter registration page. * New errors are defined: NC_EFILTER and NC_ENOFILTER. The latter is returned if an attempt is made to access an unknown filter. * Internally, the dispatch table has been extended to add a function to handle all of the filter functions. * New, filter-related, tests were added to nc_test4. * A new plugin was added to the plugins directory to help with testing. Notes: 1. The shuffle and fletcher32 filters are not part of the multifilter system. Misc. changes: 1. A debug module was added to libhdf5 to help catch error locations.
2020-02-17 03:59:33 +08:00
#ifdef GENDEBUG1
Mostly revert the filter code to reduce its complexity of use. re: https://github.com/Unidata/netcdf-c/issues/1836 Revert the internal filter code to simplify it. From the user's point of view, the only visible changes should be: 1. The functions that convert text to filter specs have had their signature reverted and have been moved to netcdf_aux.h 2. Some filter API functions now return NC_ENOFILTER when inquiry is made about some filter. Internally,the dispatch table has been modified to get rid of the filter_actions entry and associated complex structures. It has been replaced with inq_var_filter_ids and inq_var_filter_info entries and the dispatch table version has been bumped to 3. Corresponding NOOP and NOTNC4 functions were added to libdispatch/dnotnc4.c. Also, the filter_action entries in dispatch tables were replaced for all dispatch code bases (HDF5, DAP2, etc). This should only impact UDF users. In the process, it became clear that the form of the filters field in NC_VAR_INFO_T was format dependent, so I converted it to be of type void* and pushed its management into the various dispatch code bases. Specifically libhdf5 and libnczarr now manage the filters field in their own way. The auxilliary functions for parsing textual filter specifications were moved to netcdf_aux.h and were renamed to the following: * ncaux_h5filterspec_parse * ncaux_h5filterspec_parselist * ncaux_h5filterspec_free * ncaux_h5filter_fix8 Misc. Other Changes: 1. Document NUG/filters.md updated to reflect the changes above. 2. All the old data types (structs and enums) used by filter_actions actions were deleted. The exception is the NC_H5_Filterspec because it is needed by ncaux_h5filterspec_parselist. 3. Clientside filters were removed -- another enhancement for which no-one ever asked. 4. The ability to remove filters was itself removed. 5. Some functionality needed by nczarr was moved from libhdf5 to libsrc4 e.g. nc4_find_default_chunksizes 6. All the filterx code was removed 7. ncfilter.h and nc4filter.c no longer used Misc. Unrelated Changes: 1. The nczarr_test makefile clean was leaving some directories; so add clean-local to take care of them.
2020-09-28 02:43:46 +08:00
static void printfilters(int nfilters, NC_ParsedFilterSpec** filters);
Add support for multiple filters per variable. re: https://github.com/Unidata/netcdf-c/issues/1584 Support has been added for multiple filters per variable. This affects a number of components in netcdf. The new APIs are documented in NUG/filters.md. The primary changes are: * A set of new functions are provided (see __include/netcdf_filter.h__). - Obtain a list of the filters associated with a variable - Obtain the parameters for a specific filter. * The existing __nc_inq_var_filter__ function now returns info about the first defined filter. * The utilities (ncgen, ncdump, and nccopy) now support an extended format for specifying a sequence of filters. The general form is __<filter>|<filter>..._. * The ncdump **_Filter** attribute now dumps a list of all the filters associated with a variable using the above new format. * Filter specifications can now use a filter name instead of number for filters known to the netcdf library, which in turn is taken from the HDF5 filter registration page. * New errors are defined: NC_EFILTER and NC_ENOFILTER. The latter is returned if an attempt is made to access an unknown filter. * Internally, the dispatch table has been extended to add a function to handle all of the filter functions. * New, filter-related, tests were added to nc_test4. * A new plugin was added to the plugins directory to help with testing. Notes: 1. The shuffle and fletcher32 filters are not part of the multifilter system. Misc. changes: 1. A debug module was added to libhdf5 to help catch error locations.
2020-02-17 03:59:33 +08:00
#endif
#endif
2010-06-03 21:24:43 +08:00
int yylex(void);
#ifndef NO_STDARG
static void yyerror(const char *fmt, ...);
#else
static void yyerror(fmt,va_alist) const char* fmt; va_dcl;
#endif
/* Extern */
extern int lex_init(void);
#line 221 "ncgeny.c"
2010-06-03 21:24:43 +08:00
# ifndef YY_CAST
# ifdef __cplusplus
# define YY_CAST(Type, Val) static_cast<Type> (Val)
# define YY_REINTERPRET_CAST(Type, Val) reinterpret_cast<Type> (Val)
# else
# define YY_CAST(Type, Val) ((Type) (Val))
# define YY_REINTERPRET_CAST(Type, Val) ((Type) (Val))
# endif
# endif
2020-12-08 05:45:14 +08:00
# ifndef YY_NULLPTR
# if defined __cplusplus
# if 201103L <= __cplusplus
# define YY_NULLPTR nullptr
# else
# define YY_NULLPTR 0
# endif
2020-12-08 05:45:14 +08:00
# else
# define YY_NULLPTR ((void*)0)
2020-12-08 05:45:14 +08:00
# endif
# endif
2010-06-03 21:24:43 +08:00
#include "ncgeny.h"
/* Symbol kind. */
enum yysymbol_kind_t
{
YYSYMBOL_YYEMPTY = -2,
YYSYMBOL_YYEOF = 0, /* "end of file" */
YYSYMBOL_YYerror = 1, /* error */
YYSYMBOL_YYUNDEF = 2, /* "invalid token" */
YYSYMBOL_NC_UNLIMITED_K = 3, /* NC_UNLIMITED_K */
YYSYMBOL_CHAR_K = 4, /* CHAR_K */
YYSYMBOL_BYTE_K = 5, /* BYTE_K */
YYSYMBOL_SHORT_K = 6, /* SHORT_K */
YYSYMBOL_INT_K = 7, /* INT_K */
YYSYMBOL_FLOAT_K = 8, /* FLOAT_K */
YYSYMBOL_DOUBLE_K = 9, /* DOUBLE_K */
YYSYMBOL_UBYTE_K = 10, /* UBYTE_K */
YYSYMBOL_USHORT_K = 11, /* USHORT_K */
YYSYMBOL_UINT_K = 12, /* UINT_K */
YYSYMBOL_INT64_K = 13, /* INT64_K */
YYSYMBOL_UINT64_K = 14, /* UINT64_K */
YYSYMBOL_STRING_K = 15, /* STRING_K */
YYSYMBOL_IDENT = 16, /* IDENT */
YYSYMBOL_TERMSTRING = 17, /* TERMSTRING */
YYSYMBOL_CHAR_CONST = 18, /* CHAR_CONST */
YYSYMBOL_BYTE_CONST = 19, /* BYTE_CONST */
YYSYMBOL_SHORT_CONST = 20, /* SHORT_CONST */
YYSYMBOL_INT_CONST = 21, /* INT_CONST */
YYSYMBOL_INT64_CONST = 22, /* INT64_CONST */
YYSYMBOL_UBYTE_CONST = 23, /* UBYTE_CONST */
YYSYMBOL_USHORT_CONST = 24, /* USHORT_CONST */
YYSYMBOL_UINT_CONST = 25, /* UINT_CONST */
YYSYMBOL_UINT64_CONST = 26, /* UINT64_CONST */
YYSYMBOL_FLOAT_CONST = 27, /* FLOAT_CONST */
YYSYMBOL_DOUBLE_CONST = 28, /* DOUBLE_CONST */
YYSYMBOL_DIMENSIONS = 29, /* DIMENSIONS */
YYSYMBOL_VARIABLES = 30, /* VARIABLES */
YYSYMBOL_NETCDF = 31, /* NETCDF */
YYSYMBOL_DATA = 32, /* DATA */
YYSYMBOL_TYPES = 33, /* TYPES */
YYSYMBOL_COMPOUND = 34, /* COMPOUND */
YYSYMBOL_ENUM = 35, /* ENUM */
YYSYMBOL_OPAQUE_ = 36, /* OPAQUE_ */
YYSYMBOL_OPAQUESTRING = 37, /* OPAQUESTRING */
YYSYMBOL_GROUP = 38, /* GROUP */
YYSYMBOL_PATH = 39, /* PATH */
YYSYMBOL_FILLMARKER = 40, /* FILLMARKER */
YYSYMBOL_NIL = 41, /* NIL */
YYSYMBOL__FILLVALUE = 42, /* _FILLVALUE */
YYSYMBOL__FORMAT = 43, /* _FORMAT */
YYSYMBOL__STORAGE = 44, /* _STORAGE */
YYSYMBOL__CHUNKSIZES = 45, /* _CHUNKSIZES */
YYSYMBOL__DEFLATELEVEL = 46, /* _DEFLATELEVEL */
YYSYMBOL__SHUFFLE = 47, /* _SHUFFLE */
YYSYMBOL__ENDIANNESS = 48, /* _ENDIANNESS */
YYSYMBOL__NOFILL = 49, /* _NOFILL */
YYSYMBOL__FLETCHER32 = 50, /* _FLETCHER32 */
YYSYMBOL__NCPROPS = 51, /* _NCPROPS */
YYSYMBOL__ISNETCDF4 = 52, /* _ISNETCDF4 */
YYSYMBOL__SUPERBLOCK = 53, /* _SUPERBLOCK */
YYSYMBOL__FILTER = 54, /* _FILTER */
YYSYMBOL__CODECS = 55, /* _CODECS */
YYSYMBOL__QUANTIZEBG = 56, /* _QUANTIZEBG */
YYSYMBOL__QUANTIZEBR = 57, /* _QUANTIZEBR */
YYSYMBOL_DATASETID = 58, /* DATASETID */
YYSYMBOL_59_ = 59, /* '{' */
YYSYMBOL_60_ = 60, /* '}' */
YYSYMBOL_61_ = 61, /* ';' */
YYSYMBOL_62_ = 62, /* ',' */
YYSYMBOL_63_ = 63, /* '=' */
YYSYMBOL_64_ = 64, /* '(' */
YYSYMBOL_65_ = 65, /* ')' */
YYSYMBOL_66_ = 66, /* '*' */
YYSYMBOL_67_ = 67, /* ':' */
YYSYMBOL_YYACCEPT = 68, /* $accept */
YYSYMBOL_ncdesc = 69, /* ncdesc */
YYSYMBOL_datasetid = 70, /* datasetid */
YYSYMBOL_rootgroup = 71, /* rootgroup */
YYSYMBOL_groupbody = 72, /* groupbody */
YYSYMBOL_subgrouplist = 73, /* subgrouplist */
YYSYMBOL_namedgroup = 74, /* namedgroup */
YYSYMBOL_75_1 = 75, /* $@1 */
YYSYMBOL_76_2 = 76, /* $@2 */
YYSYMBOL_typesection = 77, /* typesection */
YYSYMBOL_typedecls = 78, /* typedecls */
YYSYMBOL_typename = 79, /* typename */
YYSYMBOL_type_or_attr_decl = 80, /* type_or_attr_decl */
YYSYMBOL_typedecl = 81, /* typedecl */
YYSYMBOL_optsemicolon = 82, /* optsemicolon */
YYSYMBOL_enumdecl = 83, /* enumdecl */
YYSYMBOL_enumidlist = 84, /* enumidlist */
YYSYMBOL_enumid = 85, /* enumid */
YYSYMBOL_opaquedecl = 86, /* opaquedecl */
YYSYMBOL_vlendecl = 87, /* vlendecl */
YYSYMBOL_compounddecl = 88, /* compounddecl */
YYSYMBOL_fields = 89, /* fields */
YYSYMBOL_field = 90, /* field */
YYSYMBOL_primtype = 91, /* primtype */
YYSYMBOL_dimsection = 92, /* dimsection */
YYSYMBOL_dimdecls = 93, /* dimdecls */
YYSYMBOL_dim_or_attr_decl = 94, /* dim_or_attr_decl */
YYSYMBOL_dimdeclist = 95, /* dimdeclist */
YYSYMBOL_dimdecl = 96, /* dimdecl */
YYSYMBOL_dimd = 97, /* dimd */
YYSYMBOL_vasection = 98, /* vasection */
YYSYMBOL_vadecls = 99, /* vadecls */
YYSYMBOL_vadecl_or_attr = 100, /* vadecl_or_attr */
YYSYMBOL_vardecl = 101, /* vardecl */
YYSYMBOL_varlist = 102, /* varlist */
YYSYMBOL_varspec = 103, /* varspec */
YYSYMBOL_dimspec = 104, /* dimspec */
YYSYMBOL_dimlist = 105, /* dimlist */
YYSYMBOL_dimref = 106, /* dimref */
YYSYMBOL_fieldlist = 107, /* fieldlist */
YYSYMBOL_fieldspec = 108, /* fieldspec */
YYSYMBOL_fielddimspec = 109, /* fielddimspec */
YYSYMBOL_fielddimlist = 110, /* fielddimlist */
YYSYMBOL_fielddim = 111, /* fielddim */
YYSYMBOL_varref = 112, /* varref */
YYSYMBOL_typeref = 113, /* typeref */
YYSYMBOL_ambiguous_ref = 114, /* ambiguous_ref */
YYSYMBOL_attrdecllist = 115, /* attrdecllist */
YYSYMBOL_attrdecl = 116, /* attrdecl */
YYSYMBOL_path = 117, /* path */
YYSYMBOL_datasection = 118, /* datasection */
YYSYMBOL_datadecls = 119, /* datadecls */
YYSYMBOL_datadecl = 120, /* datadecl */
YYSYMBOL_datalist = 121, /* datalist */
YYSYMBOL_datalist0 = 122, /* datalist0 */
YYSYMBOL_datalist1 = 123, /* datalist1 */
YYSYMBOL_dataitem = 124, /* dataitem */
YYSYMBOL_constdata = 125, /* constdata */
YYSYMBOL_econstref = 126, /* econstref */
YYSYMBOL_function = 127, /* function */
YYSYMBOL_arglist = 128, /* arglist */
YYSYMBOL_simpleconstant = 129, /* simpleconstant */
YYSYMBOL_intlist = 130, /* intlist */
YYSYMBOL_constint = 131, /* constint */
YYSYMBOL_conststring = 132, /* conststring */
YYSYMBOL_constbool = 133, /* constbool */
YYSYMBOL_varident = 134, /* varident */
YYSYMBOL_ident = 135 /* ident */
2020-12-08 05:45:14 +08:00
};
typedef enum yysymbol_kind_t yysymbol_kind_t;
2010-06-03 21:24:43 +08:00
2020-12-08 05:45:14 +08:00
#ifdef short
# undef short
#endif
/* On compilers that do not define __PTRDIFF_MAX__ etc., make sure
<limits.h> and (if available) <stdint.h> are included
so that the code can choose integer types of a good width. */
Mostly revert the filter code to reduce its complexity of use. re: https://github.com/Unidata/netcdf-c/issues/1836 Revert the internal filter code to simplify it. From the user's point of view, the only visible changes should be: 1. The functions that convert text to filter specs have had their signature reverted and have been moved to netcdf_aux.h 2. Some filter API functions now return NC_ENOFILTER when inquiry is made about some filter. Internally,the dispatch table has been modified to get rid of the filter_actions entry and associated complex structures. It has been replaced with inq_var_filter_ids and inq_var_filter_info entries and the dispatch table version has been bumped to 3. Corresponding NOOP and NOTNC4 functions were added to libdispatch/dnotnc4.c. Also, the filter_action entries in dispatch tables were replaced for all dispatch code bases (HDF5, DAP2, etc). This should only impact UDF users. In the process, it became clear that the form of the filters field in NC_VAR_INFO_T was format dependent, so I converted it to be of type void* and pushed its management into the various dispatch code bases. Specifically libhdf5 and libnczarr now manage the filters field in their own way. The auxilliary functions for parsing textual filter specifications were moved to netcdf_aux.h and were renamed to the following: * ncaux_h5filterspec_parse * ncaux_h5filterspec_parselist * ncaux_h5filterspec_free * ncaux_h5filter_fix8 Misc. Other Changes: 1. Document NUG/filters.md updated to reflect the changes above. 2. All the old data types (structs and enums) used by filter_actions actions were deleted. The exception is the NC_H5_Filterspec because it is needed by ncaux_h5filterspec_parselist. 3. Clientside filters were removed -- another enhancement for which no-one ever asked. 4. The ability to remove filters was itself removed. 5. Some functionality needed by nczarr was moved from libhdf5 to libsrc4 e.g. nc4_find_default_chunksizes 6. All the filterx code was removed 7. ncfilter.h and nc4filter.c no longer used Misc. Unrelated Changes: 1. The nczarr_test makefile clean was leaving some directories; so add clean-local to take care of them.
2020-09-28 02:43:46 +08:00
#ifndef __PTRDIFF_MAX__
# include <limits.h> /* INFRINGES ON USER NAME SPACE */
# if defined __STDC_VERSION__ && 199901 <= __STDC_VERSION__
# include <stdint.h> /* INFRINGES ON USER NAME SPACE */
# define YY_STDINT_H
# endif
#endif
/* Narrow types that promote to a signed type and that can represent a
signed or unsigned integer of at least N bits. In tables they can
save space and decrease cache pressure. Promoting to a signed type
helps avoid bugs in integer arithmetic. */
2010-06-03 21:24:43 +08:00
#ifdef __INT_LEAST8_MAX__
typedef __INT_LEAST8_TYPE__ yytype_int8;
#elif defined YY_STDINT_H
typedef int_least8_t yytype_int8;
#else
typedef signed char yytype_int8;
2010-06-03 21:24:43 +08:00
#endif
#ifdef __INT_LEAST16_MAX__
typedef __INT_LEAST16_TYPE__ yytype_int16;
#elif defined YY_STDINT_H
typedef int_least16_t yytype_int16;
2020-12-08 05:45:14 +08:00
#else
typedef short yytype_int16;
2010-06-03 21:24:43 +08:00
#endif
/* Work around bug in HP-UX 11.23, which defines these macros
incorrectly for preprocessor constants. This workaround can likely
be removed in 2023, as HPE has promised support for HP-UX 11.23
(aka HP-UX 11i v2) only through the end of 2022; see Table 2 of
<https://h20195.www2.hpe.com/V2/getpdf.aspx/4AA4-7673ENW.pdf>. */
#ifdef __hpux
# undef UINT_LEAST8_MAX
# undef UINT_LEAST16_MAX
# define UINT_LEAST8_MAX 255
# define UINT_LEAST16_MAX 65535
2010-06-03 21:24:43 +08:00
#endif
#if defined __UINT_LEAST8_MAX__ && __UINT_LEAST8_MAX__ <= __INT_MAX__
typedef __UINT_LEAST8_TYPE__ yytype_uint8;
#elif (!defined __UINT_LEAST8_MAX__ && defined YY_STDINT_H \
&& UINT_LEAST8_MAX <= INT_MAX)
typedef uint_least8_t yytype_uint8;
#elif !defined __UINT_LEAST8_MAX__ && UCHAR_MAX <= INT_MAX
typedef unsigned char yytype_uint8;
2010-06-03 21:24:43 +08:00
#else
typedef short yytype_uint8;
Add filter support to NCZarr Filter support has three goals: 1. Use the existing HDF5 filter implementations, 2. Allow filter metadata to be stored in the NumCodecs metadata format used by Zarr, 3. Allow filters to be used even when HDF5 is disabled Detailed usage directions are define in docs/filters.md. For now, the existing filter API is left in place. So filters are defined using ''nc_def_var_filter'' using the HDF5 style where the id and parameters are unsigned integers. This is a big change since filters affect many parts of the code. In the following, the terms "compressor" and "filter" and "codec" are generally used synonomously. ### Filter-Related Changes: * In order to support dynamic loading of shared filter libraries, a new library was added in the libncpoco directory; it helps to isolate dynamic loading across multiple platforms. * Provide a json parsing library for use by plugins; this is created by merging libdispatch/ncjson.c with include/ncjson.h. * Add a new _Codecs attribute to allow clients to see what codecs are being used; let ncdump -s print it out. * Provide special headers to help support compilation of HDF5 filters when HDF5 is not enabled: netcdf_filter_hdf5_build.h and netcdf_filter_build.h. * Add a number of new test to test the new nczarr filters. * Let ncgen parse _Codecs attribute, although it is ignored. ### Plugin directory changes: * Add support for the Blosc compressor; this is essential because it is the most common compressor used in Zarr datasets. This also necessitated adding a CMake FindBlosc.cmake file * Add NCZarr support for the big-four filters provided by HDF5: shuffle, fletcher32, deflate (zlib), and szip * Add a Codec defaulter (see docs/filters.md) for the big four filters. * Make plugins work with windows by properly adding __declspec declaration. ### Misc. Non-Filter Changes * Replace most uses of USE_NETCDF4 (deprecated) with USE_HDF5. * Improve support for caching * More fixes for path conversion code * Fix misc. memory leaks * Add new utility -- ncdump/ncpathcvt -- that does more or less the same thing as cygpath. * Add a number of new test to test the non-filter fixes. * Update the parsers * Convert most instances of '#ifdef _MSC_VER' to '#ifdef _WIN32'
2021-09-03 07:04:26 +08:00
#endif
#if defined __UINT_LEAST16_MAX__ && __UINT_LEAST16_MAX__ <= __INT_MAX__
typedef __UINT_LEAST16_TYPE__ yytype_uint16;
#elif (!defined __UINT_LEAST16_MAX__ && defined YY_STDINT_H \
&& UINT_LEAST16_MAX <= INT_MAX)
typedef uint_least16_t yytype_uint16;
#elif !defined __UINT_LEAST16_MAX__ && USHRT_MAX <= INT_MAX
typedef unsigned short yytype_uint16;
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
#else
typedef int yytype_uint16;
#endif
#ifndef YYPTRDIFF_T
# if defined __PTRDIFF_TYPE__ && defined __PTRDIFF_MAX__
# define YYPTRDIFF_T __PTRDIFF_TYPE__
# define YYPTRDIFF_MAXIMUM __PTRDIFF_MAX__
# elif defined PTRDIFF_MAX
# ifndef ptrdiff_t
# include <stddef.h> /* INFRINGES ON USER NAME SPACE */
# endif
# define YYPTRDIFF_T ptrdiff_t
# define YYPTRDIFF_MAXIMUM PTRDIFF_MAX
# else
# define YYPTRDIFF_T long
# define YYPTRDIFF_MAXIMUM LONG_MAX
# endif
2010-06-03 21:24:43 +08:00
#endif
#ifndef YYSIZE_T
# ifdef __SIZE_TYPE__
# define YYSIZE_T __SIZE_TYPE__
# elif defined size_t
# define YYSIZE_T size_t
# elif defined __STDC_VERSION__ && 199901 <= __STDC_VERSION__
2010-06-03 21:24:43 +08:00
# include <stddef.h> /* INFRINGES ON USER NAME SPACE */
# define YYSIZE_T size_t
# else
# define YYSIZE_T unsigned
2010-06-03 21:24:43 +08:00
# endif
#endif
#define YYSIZE_MAXIMUM \
YY_CAST (YYPTRDIFF_T, \
(YYPTRDIFF_MAXIMUM < YY_CAST (YYSIZE_T, -1) \
? YYPTRDIFF_MAXIMUM \
: YY_CAST (YYSIZE_T, -1)))
#define YYSIZEOF(X) YY_CAST (YYPTRDIFF_T, sizeof (X))
/* Stored state numbers (used for stacks). */
typedef yytype_int16 yy_state_t;
/* State numbers in computations. */
typedef int yy_state_fast_t;
2010-06-03 21:24:43 +08:00
#ifndef YY_
2010-08-26 03:01:07 +08:00
# if defined YYENABLE_NLS && YYENABLE_NLS
2010-06-03 21:24:43 +08:00
# if ENABLE_NLS
# include <libintl.h> /* INFRINGES ON USER NAME SPACE */
2020-12-08 05:45:14 +08:00
# define YY_(Msgid) dgettext ("bison-runtime", Msgid)
2010-06-03 21:24:43 +08:00
# endif
# endif
# ifndef YY_
2020-12-08 05:45:14 +08:00
# define YY_(Msgid) Msgid
# endif
#endif
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
#ifndef YY_ATTRIBUTE_PURE
# if defined __GNUC__ && 2 < __GNUC__ + (96 <= __GNUC_MINOR__)
# define YY_ATTRIBUTE_PURE __attribute__ ((__pure__))
# else
# define YY_ATTRIBUTE_PURE
# endif
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
#endif
2020-12-08 05:45:14 +08:00
#ifndef YY_ATTRIBUTE_UNUSED
# if defined __GNUC__ && 2 < __GNUC__ + (7 <= __GNUC_MINOR__)
# define YY_ATTRIBUTE_UNUSED __attribute__ ((__unused__))
2020-12-08 05:45:14 +08:00
# else
# define YY_ATTRIBUTE_UNUSED
# endif
#endif
2010-06-03 21:24:43 +08:00
/* Suppress unused-variable warnings by "using" E. */
#if ! defined lint || defined __GNUC__
# define YY_USE(E) ((void) (E))
2010-06-03 21:24:43 +08:00
#else
# define YY_USE(E) /* empty */
2010-06-03 21:24:43 +08:00
#endif
#if defined __GNUC__ && ! defined __ICC && 407 <= __GNUC__ * 100 + __GNUC_MINOR__
2020-12-08 05:45:14 +08:00
/* Suppress an incorrect diagnostic about yylval being uninitialized. */
# define YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN \
_Pragma ("GCC diagnostic push") \
_Pragma ("GCC diagnostic ignored \"-Wuninitialized\"") \
2020-12-08 05:45:14 +08:00
_Pragma ("GCC diagnostic ignored \"-Wmaybe-uninitialized\"")
# define YY_IGNORE_MAYBE_UNINITIALIZED_END \
2020-12-08 05:45:14 +08:00
_Pragma ("GCC diagnostic pop")
#else
2020-12-08 05:45:14 +08:00
# define YY_INITIAL_VALUE(Value) Value
#endif
2020-12-08 05:45:14 +08:00
#ifndef YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN
# define YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN
# define YY_IGNORE_MAYBE_UNINITIALIZED_END
#endif
#ifndef YY_INITIAL_VALUE
# define YY_INITIAL_VALUE(Value) /* Nothing. */
#endif
#if defined __cplusplus && defined __GNUC__ && ! defined __ICC && 6 <= __GNUC__
# define YY_IGNORE_USELESS_CAST_BEGIN \
_Pragma ("GCC diagnostic push") \
_Pragma ("GCC diagnostic ignored \"-Wuseless-cast\"")
# define YY_IGNORE_USELESS_CAST_END \
_Pragma ("GCC diagnostic pop")
#endif
#ifndef YY_IGNORE_USELESS_CAST_BEGIN
# define YY_IGNORE_USELESS_CAST_BEGIN
# define YY_IGNORE_USELESS_CAST_END
#endif
#define YY_ASSERT(E) ((void) (0 && (E)))
Add filter support to NCZarr Filter support has three goals: 1. Use the existing HDF5 filter implementations, 2. Allow filter metadata to be stored in the NumCodecs metadata format used by Zarr, 3. Allow filters to be used even when HDF5 is disabled Detailed usage directions are define in docs/filters.md. For now, the existing filter API is left in place. So filters are defined using ''nc_def_var_filter'' using the HDF5 style where the id and parameters are unsigned integers. This is a big change since filters affect many parts of the code. In the following, the terms "compressor" and "filter" and "codec" are generally used synonomously. ### Filter-Related Changes: * In order to support dynamic loading of shared filter libraries, a new library was added in the libncpoco directory; it helps to isolate dynamic loading across multiple platforms. * Provide a json parsing library for use by plugins; this is created by merging libdispatch/ncjson.c with include/ncjson.h. * Add a new _Codecs attribute to allow clients to see what codecs are being used; let ncdump -s print it out. * Provide special headers to help support compilation of HDF5 filters when HDF5 is not enabled: netcdf_filter_hdf5_build.h and netcdf_filter_build.h. * Add a number of new test to test the new nczarr filters. * Let ncgen parse _Codecs attribute, although it is ignored. ### Plugin directory changes: * Add support for the Blosc compressor; this is essential because it is the most common compressor used in Zarr datasets. This also necessitated adding a CMake FindBlosc.cmake file * Add NCZarr support for the big-four filters provided by HDF5: shuffle, fletcher32, deflate (zlib), and szip * Add a Codec defaulter (see docs/filters.md) for the big four filters. * Make plugins work with windows by properly adding __declspec declaration. ### Misc. Non-Filter Changes * Replace most uses of USE_NETCDF4 (deprecated) with USE_HDF5. * Improve support for caching * More fixes for path conversion code * Fix misc. memory leaks * Add new utility -- ncdump/ncpathcvt -- that does more or less the same thing as cygpath. * Add a number of new test to test the non-filter fixes. * Update the parsers * Convert most instances of '#ifdef _MSC_VER' to '#ifdef _WIN32'
2021-09-03 07:04:26 +08:00
#if 1
2010-06-03 21:24:43 +08:00
/* The parser invokes alloca or malloc; define the necessary symbols. */
# ifdef YYSTACK_USE_ALLOCA
# if YYSTACK_USE_ALLOCA
# ifdef __GNUC__
# define YYSTACK_ALLOC __builtin_alloca
# elif defined __BUILTIN_VA_ARG_INCR
# include <alloca.h> /* INFRINGES ON USER NAME SPACE */
# elif defined _AIX
# define YYSTACK_ALLOC __alloca
# elif defined _MSC_VER
# include <malloc.h> /* INFRINGES ON USER NAME SPACE */
# define alloca _alloca
# else
# define YYSTACK_ALLOC alloca
2020-12-08 05:45:14 +08:00
# if ! defined _ALLOCA_H && ! defined EXIT_SUCCESS
2010-06-03 21:24:43 +08:00
# include <stdlib.h> /* INFRINGES ON USER NAME SPACE */
2020-12-08 05:45:14 +08:00
/* Use EXIT_SUCCESS as a witness for stdlib.h. */
# ifndef EXIT_SUCCESS
# define EXIT_SUCCESS 0
2010-06-03 21:24:43 +08:00
# endif
# endif
# endif
# endif
# endif
# ifdef YYSTACK_ALLOC
2020-12-08 05:45:14 +08:00
/* Pacify GCC's 'empty if-body' warning. */
# define YYSTACK_FREE(Ptr) do { /* empty */; } while (0)
2010-06-03 21:24:43 +08:00
# ifndef YYSTACK_ALLOC_MAXIMUM
/* The OS might guarantee only one guard page at the bottom of the stack,
and a page size can be as small as 4096 bytes. So we cannot safely
invoke alloca (N) if N exceeds 4096. Use a slightly smaller number
to allow for a few compiler-allocated temporary stack slots. */
# define YYSTACK_ALLOC_MAXIMUM 4032 /* reasonable circa 2006 */
# endif
# else
# define YYSTACK_ALLOC YYMALLOC
# define YYSTACK_FREE YYFREE
# ifndef YYSTACK_ALLOC_MAXIMUM
# define YYSTACK_ALLOC_MAXIMUM YYSIZE_MAXIMUM
# endif
2020-12-08 05:45:14 +08:00
# if (defined __cplusplus && ! defined EXIT_SUCCESS \
2010-06-03 21:24:43 +08:00
&& ! ((defined YYMALLOC || defined malloc) \
2020-12-08 05:45:14 +08:00
&& (defined YYFREE || defined free)))
2010-06-03 21:24:43 +08:00
# include <stdlib.h> /* INFRINGES ON USER NAME SPACE */
2020-12-08 05:45:14 +08:00
# ifndef EXIT_SUCCESS
# define EXIT_SUCCESS 0
2010-06-03 21:24:43 +08:00
# endif
# endif
# ifndef YYMALLOC
# define YYMALLOC malloc
2020-12-08 05:45:14 +08:00
# if ! defined malloc && ! defined EXIT_SUCCESS
2010-06-03 21:24:43 +08:00
void *malloc (YYSIZE_T); /* INFRINGES ON USER NAME SPACE */
# endif
# endif
# ifndef YYFREE
# define YYFREE free
2020-12-08 05:45:14 +08:00
# if ! defined free && ! defined EXIT_SUCCESS
2010-06-03 21:24:43 +08:00
void free (void *); /* INFRINGES ON USER NAME SPACE */
# endif
# endif
# endif
#endif /* 1 */
2010-06-03 21:24:43 +08:00
#if (! defined yyoverflow \
&& (! defined __cplusplus \
2020-12-08 05:45:14 +08:00
|| (defined YYSTYPE_IS_TRIVIAL && YYSTYPE_IS_TRIVIAL)))
2010-06-03 21:24:43 +08:00
/* A type that is properly aligned for any stack member. */
union yyalloc
{
yy_state_t yyss_alloc;
2020-12-08 05:45:14 +08:00
YYSTYPE yyvs_alloc;
};
2010-06-03 21:24:43 +08:00
/* The size of the maximum gap between one aligned stack and the next. */
# define YYSTACK_GAP_MAXIMUM (YYSIZEOF (union yyalloc) - 1)
2010-06-03 21:24:43 +08:00
/* The size of an array large to enough to hold all stacks, each with
N elements. */
# define YYSTACK_BYTES(N) \
((N) * (YYSIZEOF (yy_state_t) + YYSIZEOF (YYSTYPE)) \
2010-06-03 21:24:43 +08:00
+ YYSTACK_GAP_MAXIMUM)
2020-12-08 05:45:14 +08:00
# define YYCOPY_NEEDED 1
/* Relocate STACK from its old location to the new one. The
local variables YYSIZE and YYSTACKSIZE give the old and new number of
elements in the stack, and YYPTR gives the new location of the
stack. Advance YYPTR to a properly aligned location for the next
stack. */
2020-12-08 05:45:14 +08:00
# define YYSTACK_RELOCATE(Stack_alloc, Stack) \
do \
{ \
YYPTRDIFF_T yynewbytes; \
2020-12-08 05:45:14 +08:00
YYCOPY (&yyptr->Stack_alloc, Stack, yysize); \
Stack = &yyptr->Stack_alloc; \
yynewbytes = yystacksize * YYSIZEOF (*Stack) + YYSTACK_GAP_MAXIMUM; \
yyptr += yynewbytes / YYSIZEOF (*yyptr); \
2020-12-08 05:45:14 +08:00
} \
while (0)
#endif
2020-12-08 05:45:14 +08:00
#if defined YYCOPY_NEEDED && YYCOPY_NEEDED
/* Copy COUNT objects from SRC to DST. The source and destination do
not overlap. */
# ifndef YYCOPY
# if defined __GNUC__ && 1 < __GNUC__
# define YYCOPY(Dst, Src, Count) \
__builtin_memcpy (Dst, Src, YY_CAST (YYSIZE_T, (Count)) * sizeof (*(Src)))
2020-12-08 05:45:14 +08:00
# else
# define YYCOPY(Dst, Src, Count) \
do \
{ \
YYPTRDIFF_T yyi; \
2020-12-08 05:45:14 +08:00
for (yyi = 0; yyi < (Count); yyi++) \
(Dst)[yyi] = (Src)[yyi]; \
} \
while (0)
# endif
# endif
#endif /* !YYCOPY_NEEDED */
2010-06-03 21:24:43 +08:00
/* YYFINAL -- State number of the termination state. */
#define YYFINAL 5
2010-06-03 21:24:43 +08:00
/* YYLAST -- Last index in YYTABLE. */
#define YYLAST 446
2010-06-03 21:24:43 +08:00
/* YYNTOKENS -- Number of terminals. */
#define YYNTOKENS 68
2010-06-03 21:24:43 +08:00
/* YYNNTS -- Number of nonterminals. */
Support MSYS2/Mingw platform re: The current netcdf-c release has some problems with the mingw platform on windows. Mostly they are path issues. Changes to support mingw+msys2: ------------------------------- * Enable option of looking into the windows registry to find the mingw root path. In aid of proper path handling. * Add mingw+msys as a specific platform in configure.ac and move testing of the platform to the front so it is available early. * Handle mingw X libncpoco (dynamic loader) properly even though mingw does not yet support it. * Handle mingw X plugins properly even though mingw does not yet support it. * Alias pwd='pwd -W' to better handle paths in shell scripts. * Plus a number of other minor compile irritations. * Disallow the use of multiple nc_open's on the same file for windows (and mingw) because windows does not seem to handle these properly. Not sure why we did not catch this earlier. * Add mountpoint info to dpathmgr.c to help support mingw. * Cleanup dpathmgr conversions. Known problems: --------------- * I have not been able to get shared libraries to work, so plugins/filters must be disabled. * There is some kind of problem with libcurl that I have not solved, so all uses of libcurl (currently DAP+Byterange) must be disabled. Misc. other fixes: ------------------ * Cleanup the relationship between ENABLE_PLUGINS and various other flags in CMakeLists.txt and configure.ac. * Re-arrange the TESTDIRS order in Makefile.am. * Add pseudo-breakpoint to nclog.[ch] for debugging. * Improve the documentation of the path manager code in ncpathmgr.h * Add better support for relative paths in dpathmgr.c * Default the mode args to NCfopen to include "b" (binary) for windows. * Add optional debugging output in various places. * Make sure that everything builds with plugins disabled. * Fix numerous (s)printf inconsistencies betweenb the format spec and the arguments.
2021-12-24 13:18:56 +08:00
#define YYNNTS 68
2010-06-03 21:24:43 +08:00
/* YYNRULES -- Number of rules. */
#define YYNRULES 158
2020-12-08 05:45:14 +08:00
/* YYNSTATES -- Number of states. */
#define YYNSTATES 273
/* YYMAXUTOK -- Last valid token kind. */
#define YYMAXUTOK 313
2010-06-03 21:24:43 +08:00
/* YYTRANSLATE(TOKEN-NUM) -- Symbol number corresponding to TOKEN-NUM
as returned by yylex, with out-of-bounds checking. */
#define YYTRANSLATE(YYX) \
(0 <= (YYX) && (YYX) <= YYMAXUTOK \
? YY_CAST (yysymbol_kind_t, yytranslate[YYX]) \
: YYSYMBOL_YYUNDEF)
2020-12-08 05:45:14 +08:00
/* YYTRANSLATE[TOKEN-NUM] -- Symbol number corresponding to TOKEN-NUM
as returned by yylex. */
static const yytype_int8 yytranslate[] =
2010-06-03 21:24:43 +08:00
{
0, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
64, 65, 66, 2, 62, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 67, 61,
2, 63, 2, 2, 2, 2, 2, 2, 2, 2,
2010-06-03 21:24:43 +08:00
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 59, 2, 60, 2, 2, 2, 2,
2010-06-03 21:24:43 +08:00
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58
2010-06-03 21:24:43 +08:00
};
#if YYDEBUG
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
/* YYRLINE[YYN] -- Source line where rule number YYN was defined. */
static const yytype_int16 yyrline[] =
2010-06-03 21:24:43 +08:00
{
0, 242, 242, 248, 250, 257, 264, 264, 267, 276,
266, 281, 282, 283, 287, 287, 289, 299, 299, 302,
303, 304, 305, 308, 308, 311, 341, 343, 360, 369,
381, 395, 428, 429, 432, 446, 447, 448, 449, 450,
451, 452, 453, 454, 455, 456, 457, 460, 461, 462,
465, 466, 469, 469, 471, 472, 476, 484, 494, 506,
507, 508, 511, 512, 515, 515, 517, 539, 543, 547,
576, 577, 580, 581, 585, 599, 603, 608, 637, 638,
642, 643, 648, 658, 678, 689, 700, 719, 726, 726,
729, 731, 733, 735, 737, 746, 757, 759, 761, 763,
765, 767, 769, 771, 773, 775, 777, 779, 781, 783,
788, 795, 804, 805, 806, 809, 810, 813, 817, 818,
822, 826, 827, 832, 833, 837, 838, 839, 840, 841,
842, 846, 850, 854, 856, 861, 862, 863, 864, 865,
866, 867, 868, 869, 870, 871, 872, 876, 877, 881,
883, 885, 887, 892, 896, 897, 905, 906, 910
2010-06-03 21:24:43 +08:00
};
#endif
/** Accessing symbol of state STATE. */
#define YY_ACCESSING_SYMBOL(State) YY_CAST (yysymbol_kind_t, yystos[State])
#if 1
/* The user-facing name of the symbol whose (internal) number is
YYSYMBOL. No bounds checking. */
static const char *yysymbol_name (yysymbol_kind_t yysymbol) YY_ATTRIBUTE_UNUSED;
2010-06-03 21:24:43 +08:00
/* YYTNAME[SYMBOL-NUM] -- String name of the symbol SYMBOL-NUM.
First, the terminals, then, starting at YYNTOKENS, nonterminals. */
static const char *const yytname[] =
{
"\"end of file\"", "error", "\"invalid token\"", "NC_UNLIMITED_K",
"CHAR_K", "BYTE_K", "SHORT_K", "INT_K", "FLOAT_K", "DOUBLE_K", "UBYTE_K",
"USHORT_K", "UINT_K", "INT64_K", "UINT64_K", "STRING_K", "IDENT",
"TERMSTRING", "CHAR_CONST", "BYTE_CONST", "SHORT_CONST", "INT_CONST",
"INT64_CONST", "UBYTE_CONST", "USHORT_CONST", "UINT_CONST",
"UINT64_CONST", "FLOAT_CONST", "DOUBLE_CONST", "DIMENSIONS", "VARIABLES",
"NETCDF", "DATA", "TYPES", "COMPOUND", "ENUM", "OPAQUE_", "OPAQUESTRING",
"GROUP", "PATH", "FILLMARKER", "NIL", "_FILLVALUE", "_FORMAT",
"_STORAGE", "_CHUNKSIZES", "_DEFLATELEVEL", "_SHUFFLE", "_ENDIANNESS",
"_NOFILL", "_FLETCHER32", "_NCPROPS", "_ISNETCDF4", "_SUPERBLOCK",
"_FILTER", "_CODECS", "_QUANTIZEBG", "_QUANTIZEBR", "DATASETID", "'{'",
"'}'", "';'", "','", "'='", "'('", "')'", "'*'", "':'", "$accept",
"ncdesc", "datasetid", "rootgroup", "groupbody", "subgrouplist",
"namedgroup", "$@1", "$@2", "typesection", "typedecls", "typename",
"type_or_attr_decl", "typedecl", "optsemicolon", "enumdecl",
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
"enumidlist", "enumid", "opaquedecl", "vlendecl", "compounddecl",
"fields", "field", "primtype", "dimsection", "dimdecls",
"dim_or_attr_decl", "dimdeclist", "dimdecl", "dimd", "vasection",
"vadecls", "vadecl_or_attr", "vardecl", "varlist", "varspec", "dimspec",
"dimlist", "dimref", "fieldlist", "fieldspec", "fielddimspec",
"fielddimlist", "fielddim", "varref", "typeref", "ambiguous_ref",
"attrdecllist", "attrdecl", "path", "datasection", "datadecls",
"datadecl", "datalist", "datalist0", "datalist1", "dataitem",
"constdata", "econstref", "function", "arglist", "simpleconstant",
"intlist", "constint", "conststring", "constbool", "varident", "ident", YY_NULLPTR
2010-06-03 21:24:43 +08:00
};
static const char *
yysymbol_name (yysymbol_kind_t yysymbol)
{
return yytname[yysymbol];
}
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
#endif
Add filter support to NCZarr Filter support has three goals: 1. Use the existing HDF5 filter implementations, 2. Allow filter metadata to be stored in the NumCodecs metadata format used by Zarr, 3. Allow filters to be used even when HDF5 is disabled Detailed usage directions are define in docs/filters.md. For now, the existing filter API is left in place. So filters are defined using ''nc_def_var_filter'' using the HDF5 style where the id and parameters are unsigned integers. This is a big change since filters affect many parts of the code. In the following, the terms "compressor" and "filter" and "codec" are generally used synonomously. ### Filter-Related Changes: * In order to support dynamic loading of shared filter libraries, a new library was added in the libncpoco directory; it helps to isolate dynamic loading across multiple platforms. * Provide a json parsing library for use by plugins; this is created by merging libdispatch/ncjson.c with include/ncjson.h. * Add a new _Codecs attribute to allow clients to see what codecs are being used; let ncdump -s print it out. * Provide special headers to help support compilation of HDF5 filters when HDF5 is not enabled: netcdf_filter_hdf5_build.h and netcdf_filter_build.h. * Add a number of new test to test the new nczarr filters. * Let ncgen parse _Codecs attribute, although it is ignored. ### Plugin directory changes: * Add support for the Blosc compressor; this is essential because it is the most common compressor used in Zarr datasets. This also necessitated adding a CMake FindBlosc.cmake file * Add NCZarr support for the big-four filters provided by HDF5: shuffle, fletcher32, deflate (zlib), and szip * Add a Codec defaulter (see docs/filters.md) for the big four filters. * Make plugins work with windows by properly adding __declspec declaration. ### Misc. Non-Filter Changes * Replace most uses of USE_NETCDF4 (deprecated) with USE_HDF5. * Improve support for caching * More fixes for path conversion code * Fix misc. memory leaks * Add new utility -- ncdump/ncpathcvt -- that does more or less the same thing as cygpath. * Add a number of new test to test the non-filter fixes. * Update the parsers * Convert most instances of '#ifdef _MSC_VER' to '#ifdef _WIN32'
2021-09-03 07:04:26 +08:00
#ifdef YYPRINT
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
/* YYTOKNUM[NUM] -- (External) token number corresponding to the
(internal) symbol number NUM (which must be that of a token). */
static const yytype_int16 yytoknum[] =
Add filter support to NCZarr Filter support has three goals: 1. Use the existing HDF5 filter implementations, 2. Allow filter metadata to be stored in the NumCodecs metadata format used by Zarr, 3. Allow filters to be used even when HDF5 is disabled Detailed usage directions are define in docs/filters.md. For now, the existing filter API is left in place. So filters are defined using ''nc_def_var_filter'' using the HDF5 style where the id and parameters are unsigned integers. This is a big change since filters affect many parts of the code. In the following, the terms "compressor" and "filter" and "codec" are generally used synonomously. ### Filter-Related Changes: * In order to support dynamic loading of shared filter libraries, a new library was added in the libncpoco directory; it helps to isolate dynamic loading across multiple platforms. * Provide a json parsing library for use by plugins; this is created by merging libdispatch/ncjson.c with include/ncjson.h. * Add a new _Codecs attribute to allow clients to see what codecs are being used; let ncdump -s print it out. * Provide special headers to help support compilation of HDF5 filters when HDF5 is not enabled: netcdf_filter_hdf5_build.h and netcdf_filter_build.h. * Add a number of new test to test the new nczarr filters. * Let ncgen parse _Codecs attribute, although it is ignored. ### Plugin directory changes: * Add support for the Blosc compressor; this is essential because it is the most common compressor used in Zarr datasets. This also necessitated adding a CMake FindBlosc.cmake file * Add NCZarr support for the big-four filters provided by HDF5: shuffle, fletcher32, deflate (zlib), and szip * Add a Codec defaulter (see docs/filters.md) for the big four filters. * Make plugins work with windows by properly adding __declspec declaration. ### Misc. Non-Filter Changes * Replace most uses of USE_NETCDF4 (deprecated) with USE_HDF5. * Improve support for caching * More fixes for path conversion code * Fix misc. memory leaks * Add new utility -- ncdump/ncpathcvt -- that does more or less the same thing as cygpath. * Add a number of new test to test the non-filter fixes. * Update the parsers * Convert most instances of '#ifdef _MSC_VER' to '#ifdef _WIN32'
2021-09-03 07:04:26 +08:00
{
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
0, 256, 257, 258, 259, 260, 261, 262, 263, 264,
265, 266, 267, 268, 269, 270, 271, 272, 273, 274,
275, 276, 277, 278, 279, 280, 281, 282, 283, 284,
285, 286, 287, 288, 289, 290, 291, 292, 293, 294,
295, 296, 297, 298, 299, 300, 301, 302, 303, 304,
305, 306, 307, 308, 309, 310, 311, 312, 313, 123,
125, 59, 44, 61, 40, 41, 42, 58
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
};
#endif
2010-06-03 21:24:43 +08:00
#define YYPACT_NINF (-149)
#define yypact_value_is_default(Yyn) \
((Yyn) == YYPACT_NINF)
#define YYTABLE_NINF (-159)
Mostly revert the filter code to reduce its complexity of use. re: https://github.com/Unidata/netcdf-c/issues/1836 Revert the internal filter code to simplify it. From the user's point of view, the only visible changes should be: 1. The functions that convert text to filter specs have had their signature reverted and have been moved to netcdf_aux.h 2. Some filter API functions now return NC_ENOFILTER when inquiry is made about some filter. Internally,the dispatch table has been modified to get rid of the filter_actions entry and associated complex structures. It has been replaced with inq_var_filter_ids and inq_var_filter_info entries and the dispatch table version has been bumped to 3. Corresponding NOOP and NOTNC4 functions were added to libdispatch/dnotnc4.c. Also, the filter_action entries in dispatch tables were replaced for all dispatch code bases (HDF5, DAP2, etc). This should only impact UDF users. In the process, it became clear that the form of the filters field in NC_VAR_INFO_T was format dependent, so I converted it to be of type void* and pushed its management into the various dispatch code bases. Specifically libhdf5 and libnczarr now manage the filters field in their own way. The auxilliary functions for parsing textual filter specifications were moved to netcdf_aux.h and were renamed to the following: * ncaux_h5filterspec_parse * ncaux_h5filterspec_parselist * ncaux_h5filterspec_free * ncaux_h5filter_fix8 Misc. Other Changes: 1. Document NUG/filters.md updated to reflect the changes above. 2. All the old data types (structs and enums) used by filter_actions actions were deleted. The exception is the NC_H5_Filterspec because it is needed by ncaux_h5filterspec_parselist. 3. Clientside filters were removed -- another enhancement for which no-one ever asked. 4. The ability to remove filters was itself removed. 5. Some functionality needed by nczarr was moved from libhdf5 to libsrc4 e.g. nc4_find_default_chunksizes 6. All the filterx code was removed 7. ncfilter.h and nc4filter.c no longer used Misc. Unrelated Changes: 1. The nczarr_test makefile clean was leaving some directories; so add clean-local to take care of them.
2020-09-28 02:43:46 +08:00
#define yytable_value_is_error(Yyn) \
2020-12-08 05:45:14 +08:00
0
Mostly revert the filter code to reduce its complexity of use. re: https://github.com/Unidata/netcdf-c/issues/1836 Revert the internal filter code to simplify it. From the user's point of view, the only visible changes should be: 1. The functions that convert text to filter specs have had their signature reverted and have been moved to netcdf_aux.h 2. Some filter API functions now return NC_ENOFILTER when inquiry is made about some filter. Internally,the dispatch table has been modified to get rid of the filter_actions entry and associated complex structures. It has been replaced with inq_var_filter_ids and inq_var_filter_info entries and the dispatch table version has been bumped to 3. Corresponding NOOP and NOTNC4 functions were added to libdispatch/dnotnc4.c. Also, the filter_action entries in dispatch tables were replaced for all dispatch code bases (HDF5, DAP2, etc). This should only impact UDF users. In the process, it became clear that the form of the filters field in NC_VAR_INFO_T was format dependent, so I converted it to be of type void* and pushed its management into the various dispatch code bases. Specifically libhdf5 and libnczarr now manage the filters field in their own way. The auxilliary functions for parsing textual filter specifications were moved to netcdf_aux.h and were renamed to the following: * ncaux_h5filterspec_parse * ncaux_h5filterspec_parselist * ncaux_h5filterspec_free * ncaux_h5filter_fix8 Misc. Other Changes: 1. Document NUG/filters.md updated to reflect the changes above. 2. All the old data types (structs and enums) used by filter_actions actions were deleted. The exception is the NC_H5_Filterspec because it is needed by ncaux_h5filterspec_parselist. 3. Clientside filters were removed -- another enhancement for which no-one ever asked. 4. The ability to remove filters was itself removed. 5. Some functionality needed by nczarr was moved from libhdf5 to libsrc4 e.g. nc4_find_default_chunksizes 6. All the filterx code was removed 7. ncfilter.h and nc4filter.c no longer used Misc. Unrelated Changes: 1. The nczarr_test makefile clean was leaving some directories; so add clean-local to take care of them.
2020-09-28 02:43:46 +08:00
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
/* YYPACT[STATE-NUM] -- Index in YYTABLE of the portion describing
STATE-NUM. */
static const yytype_int16 yypact[] =
{
-10, -13, 46, -149, -3, -149, 237, -149, -149, -149,
-149, -149, -149, -149, -149, -149, -149, -149, -149, -149,
-149, -149, -4, -149, -149, 407, -12, 40, 18, -149,
-149, 29, 32, 33, 38, 39, -9, 24, 251, 224,
56, 237, 86, 86, 43, 1, 333, 88, -149, -149,
-1, 42, 44, 45, 49, 53, 54, 57, 58, 60,
61, 62, 63, 64, 88, 65, 224, -149, -149, 67,
67, 67, 67, 71, 273, 69, 237, 101, -149, -149,
-149, -149, -149, -149, -149, -149, -149, -149, -149, -149,
-149, -149, -149, -149, -149, -149, -149, -149, -149, -149,
-149, -149, -149, -149, -149, 333, -149, 72, -149, -149,
-149, -149, -149, -149, -149, 76, 74, 78, 79, 333,
86, 1, 1, 43, 86, 43, 43, 86, 86, 1,
1, 333, 84, -149, 123, -149, -149, -149, -149, -149,
-149, 88, 80, -149, 237, 89, 85, -149, 90, -149,
92, 237, 117, 16, 333, 408, -149, 333, 333, 72,
-149, 94, -149, -149, -149, -149, -149, -149, -149, -149,
-149, -149, 72, 407, 87, 100, 96, 102, -149, 88,
41, 237, 103, -149, 371, -149, 407, -149, -149, -149,
-45, -149, 237, 72, 72, 1, 309, 104, 88, -149,
88, 88, 88, -149, -149, -149, -149, -149, 105, -149,
95, -149, 106, -149, 108, 107, -149, 407, 112, 408,
-149, -149, -149, -149, 113, -149, 115, -149, 111, -149,
22, -149, 119, -149, -149, 2, -2, -149, 333, 122,
-149, -149, 129, -149, 88, 11, -149, -149, 88, 1,
-149, -149, -27, -149, -149, 72, -149, 91, -149, -149,
-149, 12, -149, -149, -149, -2, -149, 237, 11, -149,
-149, -149, -149
};
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
/* YYDEFACT[STATE-NUM] -- Default reduction number in state STATE-NUM.
Performed when YYTABLE does not specify something else to do. Zero
means the default is an error. */
2020-12-08 05:45:14 +08:00
static const yytype_uint8 yydefact[] =
{
0, 0, 0, 3, 0, 1, 88, 2, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
158, 111, 0, 6, 87, 0, 85, 11, 0, 86,
110, 0, 0, 0, 0, 0, 0, 0, 0, 12,
47, 88, 0, 0, 0, 0, 120, 0, 4, 7,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 13, 14, 17, 23,
23, 23, 23, 87, 0, 0, 48, 59, 89, 153,
109, 90, 149, 151, 150, 152, 155, 154, 91, 92,
146, 135, 136, 137, 138, 139, 140, 141, 142, 143,
144, 145, 126, 127, 128, 120, 131, 93, 118, 119,
121, 123, 129, 130, 125, 110, 0, 0, 0, 120,
2020-12-08 05:45:14 +08:00
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 120, 0, 16, 0, 15, 24, 19, 22, 21,
20, 0, 0, 18, 49, 0, 52, 54, 0, 53,
110, 60, 112, 0, 0, 0, 8, 120, 120, 96,
98, 99, 147, 101, 102, 103, 108, 100, 104, 105,
106, 107, 95, 0, 0, 0, 0, 0, 50, 0,
0, 61, 0, 64, 0, 65, 113, 5, 124, 122,
0, 133, 88, 97, 94, 0, 0, 0, 0, 85,
0, 0, 0, 51, 55, 58, 57, 56, 0, 62,
156, 157, 66, 67, 70, 0, 84, 114, 0, 0,
132, 6, 148, 31, 0, 32, 34, 75, 78, 29,
0, 26, 0, 30, 63, 0, 0, 69, 120, 0,
115, 134, 9, 33, 0, 0, 77, 25, 0, 0,
156, 68, 0, 72, 74, 117, 116, 0, 76, 83,
82, 0, 80, 27, 28, 0, 71, 88, 0, 79,
73, 10, 81
2020-12-08 05:45:14 +08:00
};
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
/* YYPGOTO[NTERM-NUM]. */
static const yytype_int16 yypgoto[] =
{
-149, -149, -149, -149, -8, -35, -149, -149, -149, -149,
-149, -130, 121, -149, 28, -149, -149, -63, -149, -149,
-149, -149, -7, -26, -149, -149, 47, -149, 9, -149,
-149, -149, 14, -149, -149, -42, -149, -149, -75, -149,
-48, -149, -149, -71, -149, -36, -15, -40, -33, -44,
-149, -149, -19, -100, -149, -149, 50, -149, -149, -149,
-149, -148, -149, -41, -34, -73, -149, -22
};
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
/* YYDEFGOTO[NTERM-NUM]. */
Support MSYS2/Mingw platform re: The current netcdf-c release has some problems with the mingw platform on windows. Mostly they are path issues. Changes to support mingw+msys2: ------------------------------- * Enable option of looking into the windows registry to find the mingw root path. In aid of proper path handling. * Add mingw+msys as a specific platform in configure.ac and move testing of the platform to the front so it is available early. * Handle mingw X libncpoco (dynamic loader) properly even though mingw does not yet support it. * Handle mingw X plugins properly even though mingw does not yet support it. * Alias pwd='pwd -W' to better handle paths in shell scripts. * Plus a number of other minor compile irritations. * Disallow the use of multiple nc_open's on the same file for windows (and mingw) because windows does not seem to handle these properly. Not sure why we did not catch this earlier. * Add mountpoint info to dpathmgr.c to help support mingw. * Cleanup dpathmgr conversions. Known problems: --------------- * I have not been able to get shared libraries to work, so plugins/filters must be disabled. * There is some kind of problem with libcurl that I have not solved, so all uses of libcurl (currently DAP+Byterange) must be disabled. Misc. other fixes: ------------------ * Cleanup the relationship between ENABLE_PLUGINS and various other flags in CMakeLists.txt and configure.ac. * Re-arrange the TESTDIRS order in Makefile.am. * Add pseudo-breakpoint to nclog.[ch] for debugging. * Improve the documentation of the path manager code in ncpathmgr.h * Add better support for relative paths in dpathmgr.c * Default the mode args to NCfopen to include "b" (binary) for windows. * Add optional debugging output in various places. * Make sure that everything builds with plugins disabled. * Fix numerous (s)printf inconsistencies betweenb the format spec and the arguments.
2021-12-24 13:18:56 +08:00
static const yytype_int16 yydefgoto[] =
2020-12-08 05:45:14 +08:00
{
0, 2, 4, 7, 23, 36, 49, 192, 257, 40,
66, 132, 67, 68, 137, 69, 230, 231, 70, 71,
72, 196, 197, 24, 77, 144, 145, 146, 147, 148,
152, 181, 182, 183, 212, 213, 237, 252, 253, 226,
227, 246, 261, 262, 215, 25, 26, 27, 28, 29,
187, 217, 218, 107, 108, 109, 110, 111, 112, 113,
190, 114, 161, 86, 87, 88, 214, 30
2020-12-08 05:45:14 +08:00
};
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
/* YYTABLE[YYPACT[STATE-NUM]] -- What to do in state STATE-NUM. If
positive, shift that token. If negative, reduce the rule whose
number is the opposite. If YYTABLE_NINF, syntax error. */
2010-06-03 21:24:43 +08:00
static const yytype_int16 yytable[] =
{
35, 78, 106, 74, 89, 153, 75, 191, 80, 81,
37, 175, 20, 73, 20, 20, 63, 219, 250, 159,
220, 1, 82, 83, 115, 116, 84, 85, 118, 47,
74, 172, 259, 75, 211, 265, 260, 21, 266, 31,
73, 117, 133, 149, 206, 3, 5, 32, 33, 34,
164, 48, 166, 167, 150, 38, 6, 193, 194, 37,
79, 106, 82, 83, 82, 83, 84, 85, 84, 85,
229, 241, 233, 39, 268, 106, 188, 269, 154, 41,
162, 163, 247, 115, 248, 76, 160, 106, 170, 171,
165, 50, 42, 168, 169, 43, 44, 115, 138, 139,
140, 45, 46, 79, 20, 119, 141, 120, 121, 115,
106, 149, 122, 106, 106, 184, 123, 124, 185, 133,
125, 126, 150, 127, 128, 129, 130, 131, 136, 134,
143, 151, 115, 156, 154, 115, 115, 198, 255, 207,
155, 157, 158, 173, 174, 184, 176, 179, 185, 186,
178, 267, 200, 180, 222, -58, 195, 205, 199, 201,
198, 202, -158, 203, 209, 225, 234, 47, 235, 37,
238, 216, 236, 240, 243, 245, 228, 244, 133, 232,
133, 199, 249, 256, 221, 263, 242, 135, 204, 224,
270, 177, 254, 251, 106, 208, 258, 272, 239, 0,
0, 0, 216, 0, 189, 0, 0, 0, 264, 0,
0, 0, 0, 0, 0, 0, 115, 0, 0, 0,
0, 254, 228, 0, 0, 0, 232, 271, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 0, 0, 0, 0, 64, 0,
65, 0, 0, 21, 0, 0, 0, 20, 0, 0,
Support MSYS2/Mingw platform re: The current netcdf-c release has some problems with the mingw platform on windows. Mostly they are path issues. Changes to support mingw+msys2: ------------------------------- * Enable option of looking into the windows registry to find the mingw root path. In aid of proper path handling. * Add mingw+msys as a specific platform in configure.ac and move testing of the platform to the front so it is available early. * Handle mingw X libncpoco (dynamic loader) properly even though mingw does not yet support it. * Handle mingw X plugins properly even though mingw does not yet support it. * Alias pwd='pwd -W' to better handle paths in shell scripts. * Plus a number of other minor compile irritations. * Disallow the use of multiple nc_open's on the same file for windows (and mingw) because windows does not seem to handle these properly. Not sure why we did not catch this earlier. * Add mountpoint info to dpathmgr.c to help support mingw. * Cleanup dpathmgr conversions. Known problems: --------------- * I have not been able to get shared libraries to work, so plugins/filters must be disabled. * There is some kind of problem with libcurl that I have not solved, so all uses of libcurl (currently DAP+Byterange) must be disabled. Misc. other fixes: ------------------ * Cleanup the relationship between ENABLE_PLUGINS and various other flags in CMakeLists.txt and configure.ac. * Re-arrange the TESTDIRS order in Makefile.am. * Add pseudo-breakpoint to nclog.[ch] for debugging. * Improve the documentation of the path manager code in ncpathmgr.h * Add better support for relative paths in dpathmgr.c * Default the mode args to NCfopen to include "b" (binary) for windows. * Add optional debugging output in various places. * Make sure that everything builds with plugins disabled. * Fix numerous (s)printf inconsistencies betweenb the format spec and the arguments.
2021-12-24 13:18:56 +08:00
0, 0, 0, 0, 0, 0, 21, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
0, 22, 0, 51, 0, 52, 53, 54, 55, 56,
57, 58, 0, 0, 22, 59, 60, 61, 62, 0,
0, 0, 21, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 142, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 21, 20,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
100, 101, 0, 0, 0, 0, 0, 0, 0, 223,
102, 0, 21, 103, 104, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 210, 0, 0,
0, 0, 105, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 211, 0, 0, 0, 0, 0, 0,
21, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 0, 90, 91, 92, 93, 94,
95, 96, 97, 98, 99, 100, 101, 0, 0, 0,
0, 0, 0, 0, 0, 0, 21
2010-06-03 21:24:43 +08:00
};
static const yytype_int16 yycheck[] =
{
22, 41, 46, 39, 45, 105, 39, 155, 42, 43,
25, 141, 16, 39, 16, 16, 38, 62, 16, 119,
65, 31, 21, 22, 46, 47, 25, 26, 50, 38,
66, 131, 21, 66, 32, 62, 25, 39, 65, 43,
66, 42, 64, 76, 3, 58, 0, 51, 52, 53,
123, 60, 125, 126, 76, 67, 59, 157, 158, 74,
17, 105, 21, 22, 21, 22, 25, 26, 25, 26,
200, 219, 202, 33, 62, 119, 60, 65, 62, 61,
121, 122, 60, 105, 62, 29, 120, 131, 129, 130,
124, 67, 63, 127, 128, 63, 63, 119, 70, 71,
72, 63, 63, 17, 16, 63, 35, 63, 63, 131,
154, 144, 63, 157, 158, 151, 63, 63, 151, 141,
63, 63, 144, 63, 63, 63, 63, 63, 61, 64,
61, 30, 154, 59, 62, 157, 158, 173, 238, 180,
64, 63, 63, 59, 21, 181, 66, 62, 181, 32,
61, 60, 65, 63, 195, 63, 62, 179, 173, 59,
196, 65, 67, 61, 61, 61, 61, 38, 62, 184,
63, 186, 64, 61, 61, 64, 198, 62, 200, 201,
202, 196, 63, 61, 192, 248, 221, 66, 179, 196,
265, 144, 236, 235, 238, 181, 244, 268, 217, -1,
-1, -1, 217, -1, 154, -1, -1, -1, 249, -1,
-1, -1, -1, -1, -1, -1, 238, -1, -1, -1,
-1, 265, 244, -1, -1, -1, 248, 267, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, -1, -1, -1, -1, 34, -1,
36, -1, -1, 39, -1, -1, -1, 16, -1, -1,
Support MSYS2/Mingw platform re: The current netcdf-c release has some problems with the mingw platform on windows. Mostly they are path issues. Changes to support mingw+msys2: ------------------------------- * Enable option of looking into the windows registry to find the mingw root path. In aid of proper path handling. * Add mingw+msys as a specific platform in configure.ac and move testing of the platform to the front so it is available early. * Handle mingw X libncpoco (dynamic loader) properly even though mingw does not yet support it. * Handle mingw X plugins properly even though mingw does not yet support it. * Alias pwd='pwd -W' to better handle paths in shell scripts. * Plus a number of other minor compile irritations. * Disallow the use of multiple nc_open's on the same file for windows (and mingw) because windows does not seem to handle these properly. Not sure why we did not catch this earlier. * Add mountpoint info to dpathmgr.c to help support mingw. * Cleanup dpathmgr conversions. Known problems: --------------- * I have not been able to get shared libraries to work, so plugins/filters must be disabled. * There is some kind of problem with libcurl that I have not solved, so all uses of libcurl (currently DAP+Byterange) must be disabled. Misc. other fixes: ------------------ * Cleanup the relationship between ENABLE_PLUGINS and various other flags in CMakeLists.txt and configure.ac. * Re-arrange the TESTDIRS order in Makefile.am. * Add pseudo-breakpoint to nclog.[ch] for debugging. * Improve the documentation of the path manager code in ncpathmgr.h * Add better support for relative paths in dpathmgr.c * Default the mode args to NCfopen to include "b" (binary) for windows. * Add optional debugging output in various places. * Make sure that everything builds with plugins disabled. * Fix numerous (s)printf inconsistencies betweenb the format spec and the arguments.
2021-12-24 13:18:56 +08:00
-1, -1, -1, -1, -1, -1, 39, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
-1, 67, -1, 42, -1, 44, 45, 46, 47, 48,
49, 50, -1, -1, 67, 54, 55, 56, 57, -1,
-1, -1, 39, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, 64, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, 39, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, -1, -1, -1, -1, -1, -1, -1, 60,
37, -1, 39, 40, 41, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, -1, -1,
-1, -1, 59, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, 32, -1, -1, -1, -1, -1, -1,
39, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, -1, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, -1, -1, -1,
-1, -1, -1, -1, -1, -1, 39
2010-06-03 21:24:43 +08:00
};
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
/* YYSTOS[STATE-NUM] -- The (internal number of the) accessing
symbol of state STATE-NUM. */
2010-06-03 21:24:43 +08:00
static const yytype_uint8 yystos[] =
{
0, 31, 69, 58, 70, 0, 59, 71, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 39, 67, 72, 91, 113, 114, 115, 116, 117,
135, 43, 51, 52, 53, 135, 73, 114, 67, 33,
77, 61, 63, 63, 63, 63, 63, 38, 60, 74,
67, 42, 44, 45, 46, 47, 48, 49, 50, 54,
55, 56, 57, 135, 34, 36, 78, 80, 81, 83,
86, 87, 88, 91, 113, 116, 29, 92, 115, 17,
132, 132, 21, 22, 25, 26, 131, 132, 133, 131,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 37, 40, 41, 59, 117, 121, 122, 123,
124, 125, 126, 127, 129, 135, 135, 42, 135, 63,
63, 63, 63, 63, 63, 63, 63, 63, 63, 63,
63, 63, 79, 135, 64, 80, 61, 82, 82, 82,
82, 35, 64, 61, 93, 94, 95, 96, 97, 116,
135, 30, 98, 121, 62, 64, 59, 63, 63, 121,
132, 130, 131, 131, 133, 132, 133, 133, 132, 132,
131, 131, 121, 59, 21, 79, 66, 94, 61, 62,
63, 99, 100, 101, 113, 116, 32, 118, 60, 124,
128, 129, 75, 121, 121, 62, 89, 90, 113, 114,
65, 59, 65, 61, 96, 135, 3, 131, 100, 61,
16, 32, 102, 103, 134, 112, 114, 119, 120, 62,
65, 72, 131, 60, 90, 61, 107, 108, 135, 79,
84, 85, 135, 79, 61, 62, 64, 104, 63, 120,
61, 129, 73, 61, 62, 64, 109, 60, 62, 63,
16, 103, 105, 106, 117, 121, 61, 76, 108, 21,
25, 110, 111, 85, 131, 62, 65, 60, 62, 65,
106, 115, 111
2010-06-03 21:24:43 +08:00
};
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
/* YYR1[YYN] -- Symbol number of symbol that rule YYN derives. */
2020-12-08 05:45:14 +08:00
static const yytype_uint8 yyr1[] =
{
0, 68, 69, 70, 71, 72, 73, 73, 75, 76,
74, 77, 77, 77, 78, 78, 79, 80, 80, 81,
81, 81, 81, 82, 82, 83, 84, 84, 85, 86,
87, 88, 89, 89, 90, 91, 91, 91, 91, 91,
91, 91, 91, 91, 91, 91, 91, 92, 92, 92,
93, 93, 94, 94, 95, 95, 96, 96, 97, 98,
98, 98, 99, 99, 100, 100, 101, 102, 102, 103,
104, 104, 105, 105, 106, 107, 107, 108, 109, 109,
110, 110, 111, 111, 112, 113, 114, 114, 115, 115,
116, 116, 116, 116, 116, 116, 116, 116, 116, 116,
116, 116, 116, 116, 116, 116, 116, 116, 116, 116,
117, 117, 118, 118, 118, 119, 119, 120, 121, 121,
122, 123, 123, 124, 124, 125, 125, 125, 125, 125,
125, 126, 127, 128, 128, 129, 129, 129, 129, 129,
129, 129, 129, 129, 129, 129, 129, 130, 130, 131,
131, 131, 131, 132, 133, 133, 134, 134, 135
2020-12-08 05:45:14 +08:00
};
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
/* YYR2[YYN] -- Number of symbols on the right hand side of rule YYN. */
static const yytype_int8 yyr2[] =
2020-12-08 05:45:14 +08:00
{
0, 2, 3, 1, 4, 5, 0, 2, 0, 0,
9, 0, 1, 2, 1, 2, 1, 1, 2, 2,
2, 2, 2, 0, 1, 6, 1, 3, 3, 5,
5, 5, 2, 3, 2, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0, 1, 2,
2, 3, 1, 1, 1, 3, 3, 3, 1, 0,
1, 2, 2, 3, 1, 1, 2, 1, 3, 2,
0, 3, 1, 3, 1, 1, 3, 2, 0, 3,
1, 3, 1, 1, 1, 1, 1, 1, 0, 3,
4, 4, 4, 4, 6, 5, 5, 6, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 4,
1, 1, 0, 1, 2, 2, 3, 3, 1, 1,
0, 1, 3, 1, 3, 1, 1, 1, 1, 1,
1, 1, 4, 1, 3, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 3, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1
2020-12-08 05:45:14 +08:00
};
2010-06-03 21:24:43 +08:00
enum { YYENOMEM = -2 };
2020-12-08 05:45:14 +08:00
#define yyerrok (yyerrstatus = 0)
#define yyclearin (yychar = YYEMPTY)
2017-11-14 02:15:02 +08:00
2020-12-08 05:45:14 +08:00
#define YYACCEPT goto yyacceptlab
#define YYABORT goto yyabortlab
#define YYERROR goto yyerrorlab
2010-06-03 21:24:43 +08:00
2020-12-08 05:45:14 +08:00
#define YYRECOVERING() (!!yyerrstatus)
2010-06-03 21:24:43 +08:00
#define YYBACKUP(Token, Value) \
do \
if (yychar == YYEMPTY) \
{ \
yychar = (Token); \
yylval = (Value); \
YYPOPSTACK (yylen); \
yystate = *yyssp; \
goto yybackup; \
} \
else \
{ \
yyerror (YY_("syntax error: cannot back up")); \
YYERROR; \
} \
while (0)
/* Backward compatibility with an undocumented macro.
Use YYerror or YYUNDEF. */
#define YYERRCODE YYUNDEF
2010-06-03 21:24:43 +08:00
/* Enable debugging if requested. */
#if YYDEBUG
# ifndef YYFPRINTF
# include <stdio.h> /* INFRINGES ON USER NAME SPACE */
# define YYFPRINTF fprintf
# endif
2020-12-08 05:45:14 +08:00
# define YYDPRINTF(Args) \
do { \
if (yydebug) \
YYFPRINTF Args; \
} while (0)
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
/* This macro is provided for backward compatibility. */
# ifndef YY_LOCATION_PRINT
# define YY_LOCATION_PRINT(File, Loc) ((void) 0)
# endif
Support MSYS2/Mingw platform re: The current netcdf-c release has some problems with the mingw platform on windows. Mostly they are path issues. Changes to support mingw+msys2: ------------------------------- * Enable option of looking into the windows registry to find the mingw root path. In aid of proper path handling. * Add mingw+msys as a specific platform in configure.ac and move testing of the platform to the front so it is available early. * Handle mingw X libncpoco (dynamic loader) properly even though mingw does not yet support it. * Handle mingw X plugins properly even though mingw does not yet support it. * Alias pwd='pwd -W' to better handle paths in shell scripts. * Plus a number of other minor compile irritations. * Disallow the use of multiple nc_open's on the same file for windows (and mingw) because windows does not seem to handle these properly. Not sure why we did not catch this earlier. * Add mountpoint info to dpathmgr.c to help support mingw. * Cleanup dpathmgr conversions. Known problems: --------------- * I have not been able to get shared libraries to work, so plugins/filters must be disabled. * There is some kind of problem with libcurl that I have not solved, so all uses of libcurl (currently DAP+Byterange) must be disabled. Misc. other fixes: ------------------ * Cleanup the relationship between ENABLE_PLUGINS and various other flags in CMakeLists.txt and configure.ac. * Re-arrange the TESTDIRS order in Makefile.am. * Add pseudo-breakpoint to nclog.[ch] for debugging. * Improve the documentation of the path manager code in ncpathmgr.h * Add better support for relative paths in dpathmgr.c * Default the mode args to NCfopen to include "b" (binary) for windows. * Add optional debugging output in various places. * Make sure that everything builds with plugins disabled. * Fix numerous (s)printf inconsistencies betweenb the format spec and the arguments.
2021-12-24 13:18:56 +08:00
2020-12-08 05:45:14 +08:00
# define YY_SYMBOL_PRINT(Title, Kind, Value, Location) \
2020-12-08 05:45:14 +08:00
do { \
if (yydebug) \
{ \
YYFPRINTF (stderr, "%s ", Title); \
yy_symbol_print (stderr, \
Kind, Value); \
2020-12-08 05:45:14 +08:00
YYFPRINTF (stderr, "\n"); \
} \
} while (0)
/*-----------------------------------.
| Print this symbol's value on YYO. |
`-----------------------------------*/
2020-12-08 05:45:14 +08:00
static void
yy_symbol_value_print (FILE *yyo,
yysymbol_kind_t yykind, YYSTYPE const * const yyvaluep)
2010-06-03 21:24:43 +08:00
{
FILE *yyoutput = yyo;
YY_USE (yyoutput);
2010-06-03 21:24:43 +08:00
if (!yyvaluep)
return;
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
# ifdef YYPRINT
if (yykind < YYNTOKENS)
YYPRINT (yyo, yytoknum[yykind], *yyvaluep);
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
# endif
YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN
YY_USE (yykind);
YY_IGNORE_MAYBE_UNINITIALIZED_END
2010-06-03 21:24:43 +08:00
}
/*---------------------------.
| Print this symbol on YYO. |
`---------------------------*/
2010-06-03 21:24:43 +08:00
static void
yy_symbol_print (FILE *yyo,
yysymbol_kind_t yykind, YYSTYPE const * const yyvaluep)
2010-06-03 21:24:43 +08:00
{
YYFPRINTF (yyo, "%s %s (",
yykind < YYNTOKENS ? "token" : "nterm", yysymbol_name (yykind));
2010-06-03 21:24:43 +08:00
yy_symbol_value_print (yyo, yykind, yyvaluep);
YYFPRINTF (yyo, ")");
2010-06-03 21:24:43 +08:00
}
/*------------------------------------------------------------------.
| yy_stack_print -- Print the state stack from its BOTTOM up to its |
| TOP (included). |
`------------------------------------------------------------------*/
static void
yy_stack_print (yy_state_t *yybottom, yy_state_t *yytop)
2010-06-03 21:24:43 +08:00
{
YYFPRINTF (stderr, "Stack now");
2020-12-08 05:45:14 +08:00
for (; yybottom <= yytop; yybottom++)
{
int yybot = *yybottom;
YYFPRINTF (stderr, " %d", yybot);
}
2010-06-03 21:24:43 +08:00
YYFPRINTF (stderr, "\n");
}
2020-12-08 05:45:14 +08:00
# define YY_STACK_PRINT(Bottom, Top) \
do { \
if (yydebug) \
yy_stack_print ((Bottom), (Top)); \
} while (0)
2010-06-03 21:24:43 +08:00
/*------------------------------------------------.
| Report that the YYRULE is going to be reduced. |
`------------------------------------------------*/
static void
yy_reduce_print (yy_state_t *yyssp, YYSTYPE *yyvsp,
int yyrule)
2010-06-03 21:24:43 +08:00
{
int yylno = yyrline[yyrule];
2010-06-03 21:24:43 +08:00
int yynrhs = yyr2[yyrule];
int yyi;
YYFPRINTF (stderr, "Reducing stack by rule %d (line %d):\n",
2020-12-08 05:45:14 +08:00
yyrule - 1, yylno);
2010-06-03 21:24:43 +08:00
/* The symbols being reduced. */
for (yyi = 0; yyi < yynrhs; yyi++)
{
2020-12-08 05:45:14 +08:00
YYFPRINTF (stderr, " $%d = ", yyi + 1);
yy_symbol_print (stderr,
YY_ACCESSING_SYMBOL (+yyssp[yyi + 1 - yynrhs]),
&yyvsp[(yyi + 1) - (yynrhs)]);
2020-12-08 05:45:14 +08:00
YYFPRINTF (stderr, "\n");
2010-06-03 21:24:43 +08:00
}
}
2020-12-08 05:45:14 +08:00
# define YY_REDUCE_PRINT(Rule) \
do { \
if (yydebug) \
yy_reduce_print (yyssp, yyvsp, Rule); \
} while (0)
2010-06-03 21:24:43 +08:00
/* Nonzero means print parse trace. It is left uninitialized so that
multiple parsers can coexist. */
int yydebug;
#else /* !YYDEBUG */
# define YYDPRINTF(Args) ((void) 0)
# define YY_SYMBOL_PRINT(Title, Kind, Value, Location)
2010-06-03 21:24:43 +08:00
# define YY_STACK_PRINT(Bottom, Top)
# define YY_REDUCE_PRINT(Rule)
#endif /* !YYDEBUG */
/* YYINITDEPTH -- initial size of the parser's stacks. */
2020-12-08 05:45:14 +08:00
#ifndef YYINITDEPTH
2010-06-03 21:24:43 +08:00
# define YYINITDEPTH 200
#endif
/* YYMAXDEPTH -- maximum size the stacks can grow to (effective only
if the built-in stack extension method is used).
Do not make this value too large; the results are undefined if
YYSTACK_ALLOC_MAXIMUM < YYSTACK_BYTES (YYMAXDEPTH)
evaluated with infinite-precision integer arithmetic. */
#ifndef YYMAXDEPTH
# define YYMAXDEPTH 10000
#endif
/* Context of a parse error. */
typedef struct
{
yy_state_t *yyssp;
yysymbol_kind_t yytoken;
} yypcontext_t;
/* Put in YYARG at most YYARGN of the expected tokens given the
current YYCTX, and return the number of tokens stored in YYARG. If
YYARG is null, return the number of expected tokens (guaranteed to
be less than YYNTOKENS). Return YYENOMEM on memory exhaustion.
Return 0 if there are more than YYARGN expected tokens, yet fill
YYARG up to YYARGN. */
static int
yypcontext_expected_tokens (const yypcontext_t *yyctx,
yysymbol_kind_t yyarg[], int yyargn)
{
/* Actual size of YYARG. */
int yycount = 0;
int yyn = yypact[+*yyctx->yyssp];
if (!yypact_value_is_default (yyn))
{
/* Start YYX at -YYN if negative to avoid negative indexes in
YYCHECK. In other words, skip the first -YYN actions for
this state because they are default actions. */
int yyxbegin = yyn < 0 ? -yyn : 0;
/* Stay within bounds of both yycheck and yytname. */
int yychecklim = YYLAST - yyn + 1;
int yyxend = yychecklim < YYNTOKENS ? yychecklim : YYNTOKENS;
int yyx;
for (yyx = yyxbegin; yyx < yyxend; ++yyx)
if (yycheck[yyx + yyn] == yyx && yyx != YYSYMBOL_YYerror
&& !yytable_value_is_error (yytable[yyx + yyn]))
{
if (!yyarg)
++yycount;
else if (yycount == yyargn)
return 0;
else
yyarg[yycount++] = YY_CAST (yysymbol_kind_t, yyx);
}
}
if (yyarg && yycount == 0 && 0 < yyargn)
yyarg[0] = YYSYMBOL_YYEMPTY;
return yycount;
}
2010-06-03 21:24:43 +08:00
#ifndef yystrlen
# if defined __GLIBC__ && defined _STRING_H
# define yystrlen(S) (YY_CAST (YYPTRDIFF_T, strlen (S)))
# else
2010-06-03 21:24:43 +08:00
/* Return the length of YYSTR. */
static YYPTRDIFF_T
2010-06-03 21:24:43 +08:00
yystrlen (const char *yystr)
{
YYPTRDIFF_T yylen;
2010-06-03 21:24:43 +08:00
for (yylen = 0; yystr[yylen]; yylen++)
continue;
return yylen;
}
# endif
#endif
2010-06-03 21:24:43 +08:00
#ifndef yystpcpy
# if defined __GLIBC__ && defined _STRING_H && defined _GNU_SOURCE
# define yystpcpy stpcpy
# else
2010-06-03 21:24:43 +08:00
/* Copy YYSRC to YYDEST, returning the address of the terminating '\0' in
YYDEST. */
static char *
yystpcpy (char *yydest, const char *yysrc)
{
char *yyd = yydest;
const char *yys = yysrc;
while ((*yyd++ = *yys++) != '\0')
continue;
return yyd - 1;
}
# endif
#endif
2010-06-03 21:24:43 +08:00
#ifndef yytnamerr
2010-06-03 21:24:43 +08:00
/* Copy to YYRES the contents of YYSTR after stripping away unnecessary
quotes and backslashes, so that it's suitable for yyerror. The
heuristic is that double-quoting is unnecessary unless the string
contains an apostrophe, a comma, or backslash (other than
backslash-backslash). YYSTR is taken from yytname. If YYRES is
null, do not copy; instead, return the length of what the result
would have been. */
static YYPTRDIFF_T
2010-06-03 21:24:43 +08:00
yytnamerr (char *yyres, const char *yystr)
{
if (*yystr == '"')
{
YYPTRDIFF_T yyn = 0;
2010-06-03 21:24:43 +08:00
char const *yyp = yystr;
for (;;)
2020-12-08 05:45:14 +08:00
switch (*++yyp)
{
case '\'':
case ',':
goto do_not_strip_quotes;
case '\\':
if (*++yyp != '\\')
goto do_not_strip_quotes;
else
goto append;
append:
2020-12-08 05:45:14 +08:00
default:
if (yyres)
yyres[yyn] = *yyp;
yyn++;
break;
case '"':
if (yyres)
yyres[yyn] = '\0';
return yyn;
}
2010-06-03 21:24:43 +08:00
do_not_strip_quotes: ;
}
if (yyres)
return yystpcpy (yyres, yystr) - yyres;
else
2010-06-03 21:24:43 +08:00
return yystrlen (yystr);
}
#endif
2010-06-03 21:24:43 +08:00
2020-12-08 05:45:14 +08:00
static int
yy_syntax_error_arguments (const yypcontext_t *yyctx,
yysymbol_kind_t yyarg[], int yyargn)
{
/* Actual size of YYARG. */
2020-12-08 05:45:14 +08:00
int yycount = 0;
/* There are many possibilities here to consider:
- If this state is a consistent state with a default action, then
the only way this function was invoked is if the default action
is an error action. In that case, don't check for expected
tokens because there are none.
- The only way there can be no lookahead present (in yychar) is if
this state is a consistent state with a default action. Thus,
detecting the absence of a lookahead is sufficient to determine
that there is no unexpected or expected token to report. In that
case, just report a simple "syntax error".
- Don't assume there isn't a lookahead just because this state is a
consistent state with a default action. There might have been a
previous inconsistent state, consistent state with a non-default
action, or user semantic action that manipulated yychar.
- Of course, the expected token list depends on states to have
correct lookahead information, and it depends on the parser not
to perform extra reductions after fetching a lookahead from the
scanner and before detecting a syntax error. Thus, state merging
(from LALR or IELR) and default reductions corrupt the expected
token list. However, the list is correct for canonical LR with
one exception: it will still contain any token that will not be
accepted due to an error action in a later state.
*/
if (yyctx->yytoken != YYSYMBOL_YYEMPTY)
2020-12-08 05:45:14 +08:00
{
int yyn;
if (yyarg)
yyarg[yycount] = yyctx->yytoken;
++yycount;
yyn = yypcontext_expected_tokens (yyctx,
yyarg ? yyarg + 1 : yyarg, yyargn - 1);
if (yyn == YYENOMEM)
return YYENOMEM;
else
yycount += yyn;
2020-12-08 05:45:14 +08:00
}
return yycount;
}
/* Copy into *YYMSG, which is of size *YYMSG_ALLOC, an error message
about the unexpected token YYTOKEN for the state stack whose top is
YYSSP.
Return 0 if *YYMSG was successfully written. Return -1 if *YYMSG is
not large enough to hold the message. In that case, also set
*YYMSG_ALLOC to the required number of bytes. Return YYENOMEM if the
required number of bytes is too large to store. */
static int
yysyntax_error (YYPTRDIFF_T *yymsg_alloc, char **yymsg,
const yypcontext_t *yyctx)
{
enum { YYARGS_MAX = 5 };
/* Internationalized format string. */
const char *yyformat = YY_NULLPTR;
/* Arguments of yyformat: reported tokens (one for the "unexpected",
one per "expected"). */
yysymbol_kind_t yyarg[YYARGS_MAX];
/* Cumulated lengths of YYARG. */
YYPTRDIFF_T yysize = 0;
/* Actual size of YYARG. */
int yycount = yy_syntax_error_arguments (yyctx, yyarg, YYARGS_MAX);
if (yycount == YYENOMEM)
return YYENOMEM;
2020-12-08 05:45:14 +08:00
switch (yycount)
Mostly revert the filter code to reduce its complexity of use. re: https://github.com/Unidata/netcdf-c/issues/1836 Revert the internal filter code to simplify it. From the user's point of view, the only visible changes should be: 1. The functions that convert text to filter specs have had their signature reverted and have been moved to netcdf_aux.h 2. Some filter API functions now return NC_ENOFILTER when inquiry is made about some filter. Internally,the dispatch table has been modified to get rid of the filter_actions entry and associated complex structures. It has been replaced with inq_var_filter_ids and inq_var_filter_info entries and the dispatch table version has been bumped to 3. Corresponding NOOP and NOTNC4 functions were added to libdispatch/dnotnc4.c. Also, the filter_action entries in dispatch tables were replaced for all dispatch code bases (HDF5, DAP2, etc). This should only impact UDF users. In the process, it became clear that the form of the filters field in NC_VAR_INFO_T was format dependent, so I converted it to be of type void* and pushed its management into the various dispatch code bases. Specifically libhdf5 and libnczarr now manage the filters field in their own way. The auxilliary functions for parsing textual filter specifications were moved to netcdf_aux.h and were renamed to the following: * ncaux_h5filterspec_parse * ncaux_h5filterspec_parselist * ncaux_h5filterspec_free * ncaux_h5filter_fix8 Misc. Other Changes: 1. Document NUG/filters.md updated to reflect the changes above. 2. All the old data types (structs and enums) used by filter_actions actions were deleted. The exception is the NC_H5_Filterspec because it is needed by ncaux_h5filterspec_parselist. 3. Clientside filters were removed -- another enhancement for which no-one ever asked. 4. The ability to remove filters was itself removed. 5. Some functionality needed by nczarr was moved from libhdf5 to libsrc4 e.g. nc4_find_default_chunksizes 6. All the filterx code was removed 7. ncfilter.h and nc4filter.c no longer used Misc. Unrelated Changes: 1. The nczarr_test makefile clean was leaving some directories; so add clean-local to take care of them.
2020-09-28 02:43:46 +08:00
{
#define YYCASE_(N, S) \
2020-12-08 05:45:14 +08:00
case N: \
yyformat = S; \
break
default: /* Avoid compiler warnings. */
2020-12-08 05:45:14 +08:00
YYCASE_(0, YY_("syntax error"));
YYCASE_(1, YY_("syntax error, unexpected %s"));
YYCASE_(2, YY_("syntax error, unexpected %s, expecting %s"));
YYCASE_(3, YY_("syntax error, unexpected %s, expecting %s or %s"));
YYCASE_(4, YY_("syntax error, unexpected %s, expecting %s or %s or %s"));
YYCASE_(5, YY_("syntax error, unexpected %s, expecting %s or %s or %s or %s"));
#undef YYCASE_
2020-12-08 05:45:14 +08:00
}
/* Compute error message size. Don't count the "%s"s, but reserve
room for the terminator. */
yysize = yystrlen (yyformat) - 2 * yycount + 1;
2020-12-08 05:45:14 +08:00
{
int yyi;
for (yyi = 0; yyi < yycount; ++yyi)
{
YYPTRDIFF_T yysize1
= yysize + yytnamerr (YY_NULLPTR, yytname[yyarg[yyi]]);
if (yysize <= yysize1 && yysize1 <= YYSTACK_ALLOC_MAXIMUM)
yysize = yysize1;
else
return YYENOMEM;
}
2020-12-08 05:45:14 +08:00
}
2020-12-08 05:45:14 +08:00
if (*yymsg_alloc < yysize)
{
*yymsg_alloc = 2 * yysize;
if (! (yysize <= *yymsg_alloc
&& *yymsg_alloc <= YYSTACK_ALLOC_MAXIMUM))
*yymsg_alloc = YYSTACK_ALLOC_MAXIMUM;
return -1;
Mostly revert the filter code to reduce its complexity of use. re: https://github.com/Unidata/netcdf-c/issues/1836 Revert the internal filter code to simplify it. From the user's point of view, the only visible changes should be: 1. The functions that convert text to filter specs have had their signature reverted and have been moved to netcdf_aux.h 2. Some filter API functions now return NC_ENOFILTER when inquiry is made about some filter. Internally,the dispatch table has been modified to get rid of the filter_actions entry and associated complex structures. It has been replaced with inq_var_filter_ids and inq_var_filter_info entries and the dispatch table version has been bumped to 3. Corresponding NOOP and NOTNC4 functions were added to libdispatch/dnotnc4.c. Also, the filter_action entries in dispatch tables were replaced for all dispatch code bases (HDF5, DAP2, etc). This should only impact UDF users. In the process, it became clear that the form of the filters field in NC_VAR_INFO_T was format dependent, so I converted it to be of type void* and pushed its management into the various dispatch code bases. Specifically libhdf5 and libnczarr now manage the filters field in their own way. The auxilliary functions for parsing textual filter specifications were moved to netcdf_aux.h and were renamed to the following: * ncaux_h5filterspec_parse * ncaux_h5filterspec_parselist * ncaux_h5filterspec_free * ncaux_h5filter_fix8 Misc. Other Changes: 1. Document NUG/filters.md updated to reflect the changes above. 2. All the old data types (structs and enums) used by filter_actions actions were deleted. The exception is the NC_H5_Filterspec because it is needed by ncaux_h5filterspec_parselist. 3. Clientside filters were removed -- another enhancement for which no-one ever asked. 4. The ability to remove filters was itself removed. 5. Some functionality needed by nczarr was moved from libhdf5 to libsrc4 e.g. nc4_find_default_chunksizes 6. All the filterx code was removed 7. ncfilter.h and nc4filter.c no longer used Misc. Unrelated Changes: 1. The nczarr_test makefile clean was leaving some directories; so add clean-local to take care of them.
2020-09-28 02:43:46 +08:00
}
2020-12-08 05:45:14 +08:00
/* Avoid sprintf, as that infringes on the user's name space.
Don't have undefined behavior even if the translation
produced a string with the wrong number of "%s"s. */
{
char *yyp = *yymsg;
int yyi = 0;
while ((*yyp = *yyformat) != '\0')
if (*yyp == '%' && yyformat[1] == 's' && yyi < yycount)
{
yyp += yytnamerr (yyp, yytname[yyarg[yyi++]]);
2020-12-08 05:45:14 +08:00
yyformat += 2;
}
else
{
++yyp;
++yyformat;
2020-12-08 05:45:14 +08:00
}
}
return 0;
2010-06-03 21:24:43 +08:00
}
2010-06-03 21:24:43 +08:00
/*-----------------------------------------------.
| Release the memory associated to this symbol. |
`-----------------------------------------------*/
static void
yydestruct (const char *yymsg,
yysymbol_kind_t yykind, YYSTYPE *yyvaluep)
2010-06-03 21:24:43 +08:00
{
YY_USE (yyvaluep);
2010-06-03 21:24:43 +08:00
if (!yymsg)
yymsg = "Deleting";
YY_SYMBOL_PRINT (yymsg, yykind, yyvaluep, yylocationp);
2010-06-03 21:24:43 +08:00
2020-12-08 05:45:14 +08:00
YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN
YY_USE (yykind);
2020-12-08 05:45:14 +08:00
YY_IGNORE_MAYBE_UNINITIALIZED_END
}
/* Lookahead token kind. */
2010-06-03 21:24:43 +08:00
int yychar;
2020-12-08 05:45:14 +08:00
/* The semantic value of the lookahead symbol. */
YYSTYPE yylval;
2010-06-03 21:24:43 +08:00
/* Number of syntax errors so far. */
int yynerrs;
/*----------.
| yyparse. |
`----------*/
2010-06-03 21:24:43 +08:00
int
yyparse (void)
{
yy_state_fast_t yystate = 0;
2020-12-08 05:45:14 +08:00
/* Number of tokens to shift before error messages enabled. */
int yyerrstatus = 0;
/* Refer to the stacks through separate pointers, to allow yyoverflow
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
to reallocate them elsewhere. */
/* Their size. */
YYPTRDIFF_T yystacksize = YYINITDEPTH;
2015-08-16 06:26:35 +08:00
/* The state stack: array, bottom, top. */
yy_state_t yyssa[YYINITDEPTH];
yy_state_t *yyss = yyssa;
yy_state_t *yyssp = yyss;
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
/* The semantic value stack: array, bottom, top. */
YYSTYPE yyvsa[YYINITDEPTH];
YYSTYPE *yyvs = yyvsa;
YYSTYPE *yyvsp = yyvs;
2020-12-08 05:45:14 +08:00
int yyn;
/* The return value of yyparse. */
2020-12-08 05:45:14 +08:00
int yyresult;
/* Lookahead symbol kind. */
yysymbol_kind_t yytoken = YYSYMBOL_YYEMPTY;
/* The variables used to return semantic value and location from the
action routines. */
YYSTYPE yyval;
2020-12-08 05:45:14 +08:00
/* Buffer for error messages, and its allocated size. */
char yymsgbuf[128];
char *yymsg = yymsgbuf;
YYPTRDIFF_T yymsg_alloc = sizeof yymsgbuf;
2020-12-08 05:45:14 +08:00
#define YYPOPSTACK(N) (yyvsp -= (N), yyssp -= (N))
2010-06-03 21:24:43 +08:00
/* The number of symbols on the RHS of the reduced rule.
Keep to zero when no symbol should be popped. */
int yylen = 0;
YYDPRINTF ((stderr, "Starting parse\n"));
2020-12-08 05:45:14 +08:00
yychar = YYEMPTY; /* Cause a token to be read. */
2010-06-03 21:24:43 +08:00
goto yysetstate;
2010-06-03 21:24:43 +08:00
/*------------------------------------------------------------.
| yynewstate -- push a new state, which is found in yystate. |
2010-06-03 21:24:43 +08:00
`------------------------------------------------------------*/
yynewstate:
2010-06-03 21:24:43 +08:00
/* In all cases, when you get here, the value and location stacks
have just been pushed. So pushing a state here evens the stacks. */
yyssp++;
/*--------------------------------------------------------------------.
| yysetstate -- set current state (the top of the stack) to yystate. |
`--------------------------------------------------------------------*/
yysetstate:
YYDPRINTF ((stderr, "Entering state %d\n", yystate));
YY_ASSERT (0 <= yystate && yystate < YYNSTATES);
YY_IGNORE_USELESS_CAST_BEGIN
*yyssp = YY_CAST (yy_state_t, yystate);
YY_IGNORE_USELESS_CAST_END
YY_STACK_PRINT (yyss, yyssp);
2010-06-03 21:24:43 +08:00
if (yyss + yystacksize - 1 <= yyssp)
#if !defined yyoverflow && !defined YYSTACK_RELOCATE
goto yyexhaustedlab;
#else
2010-06-03 21:24:43 +08:00
{
/* Get the current used size of the three stacks, in elements. */
YYPTRDIFF_T yysize = yyssp - yyss + 1;
2010-06-03 21:24:43 +08:00
# if defined yyoverflow
2010-06-03 21:24:43 +08:00
{
2020-12-08 05:45:14 +08:00
/* Give user a chance to reallocate the stack. Use copies of
these so that the &'s don't force the real ones into
memory. */
yy_state_t *yyss1 = yyss;
2020-12-08 05:45:14 +08:00
YYSTYPE *yyvs1 = yyvs;
/* Each stack pointer address is followed by the size of the
data in use in that stack, in bytes. This used to be a
conditional around just the two extra args, but that might
be undefined if yyoverflow is a macro. */
yyoverflow (YY_("memory exhausted"),
&yyss1, yysize * YYSIZEOF (*yyssp),
&yyvs1, yysize * YYSIZEOF (*yyvsp),
2020-12-08 05:45:14 +08:00
&yystacksize);
yyss = yyss1;
yyvs = yyvs1;
2010-06-03 21:24:43 +08:00
}
# else /* defined YYSTACK_RELOCATE */
2010-06-03 21:24:43 +08:00
/* Extend the stack our own way. */
if (YYMAXDEPTH <= yystacksize)
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
goto yyexhaustedlab;
2010-06-03 21:24:43 +08:00
yystacksize *= 2;
if (YYMAXDEPTH < yystacksize)
2020-12-08 05:45:14 +08:00
yystacksize = YYMAXDEPTH;
2010-06-03 21:24:43 +08:00
{
yy_state_t *yyss1 = yyss;
2020-12-08 05:45:14 +08:00
union yyalloc *yyptr =
YY_CAST (union yyalloc *,
YYSTACK_ALLOC (YY_CAST (YYSIZE_T, YYSTACK_BYTES (yystacksize))));
2020-12-08 05:45:14 +08:00
if (! yyptr)
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
goto yyexhaustedlab;
2020-12-08 05:45:14 +08:00
YYSTACK_RELOCATE (yyss_alloc, yyss);
YYSTACK_RELOCATE (yyvs_alloc, yyvs);
# undef YYSTACK_RELOCATE
2020-12-08 05:45:14 +08:00
if (yyss1 != yyssa)
YYSTACK_FREE (yyss1);
2010-06-03 21:24:43 +08:00
}
# endif
yyssp = yyss + yysize - 1;
yyvsp = yyvs + yysize - 1;
YY_IGNORE_USELESS_CAST_BEGIN
YYDPRINTF ((stderr, "Stack size increased to %ld\n",
YY_CAST (long, yystacksize)));
YY_IGNORE_USELESS_CAST_END
2010-06-03 21:24:43 +08:00
if (yyss + yystacksize - 1 <= yyssp)
2020-12-08 05:45:14 +08:00
YYABORT;
2010-06-03 21:24:43 +08:00
}
#endif /* !defined yyoverflow && !defined YYSTACK_RELOCATE */
Support MSYS2/Mingw platform re: The current netcdf-c release has some problems with the mingw platform on windows. Mostly they are path issues. Changes to support mingw+msys2: ------------------------------- * Enable option of looking into the windows registry to find the mingw root path. In aid of proper path handling. * Add mingw+msys as a specific platform in configure.ac and move testing of the platform to the front so it is available early. * Handle mingw X libncpoco (dynamic loader) properly even though mingw does not yet support it. * Handle mingw X plugins properly even though mingw does not yet support it. * Alias pwd='pwd -W' to better handle paths in shell scripts. * Plus a number of other minor compile irritations. * Disallow the use of multiple nc_open's on the same file for windows (and mingw) because windows does not seem to handle these properly. Not sure why we did not catch this earlier. * Add mountpoint info to dpathmgr.c to help support mingw. * Cleanup dpathmgr conversions. Known problems: --------------- * I have not been able to get shared libraries to work, so plugins/filters must be disabled. * There is some kind of problem with libcurl that I have not solved, so all uses of libcurl (currently DAP+Byterange) must be disabled. Misc. other fixes: ------------------ * Cleanup the relationship between ENABLE_PLUGINS and various other flags in CMakeLists.txt and configure.ac. * Re-arrange the TESTDIRS order in Makefile.am. * Add pseudo-breakpoint to nclog.[ch] for debugging. * Improve the documentation of the path manager code in ncpathmgr.h * Add better support for relative paths in dpathmgr.c * Default the mode args to NCfopen to include "b" (binary) for windows. * Add optional debugging output in various places. * Make sure that everything builds with plugins disabled. * Fix numerous (s)printf inconsistencies betweenb the format spec and the arguments.
2021-12-24 13:18:56 +08:00
2020-12-08 05:45:14 +08:00
if (yystate == YYFINAL)
YYACCEPT;
2010-06-03 21:24:43 +08:00
goto yybackup;
2010-06-03 21:24:43 +08:00
/*-----------.
| yybackup. |
`-----------*/
yybackup:
/* Do appropriate processing given the current state. Read a
2020-12-08 05:45:14 +08:00
lookahead token if we need one and don't already have one. */
2010-06-03 21:24:43 +08:00
2020-12-08 05:45:14 +08:00
/* First try to decide what to do without reference to lookahead token. */
2010-06-03 21:24:43 +08:00
yyn = yypact[yystate];
2020-12-08 05:45:14 +08:00
if (yypact_value_is_default (yyn))
2010-06-03 21:24:43 +08:00
goto yydefault;
2020-12-08 05:45:14 +08:00
/* Not known => get a lookahead token if don't already have one. */
2010-06-03 21:24:43 +08:00
/* YYCHAR is either empty, or end-of-input, or a valid lookahead. */
2010-06-03 21:24:43 +08:00
if (yychar == YYEMPTY)
{
YYDPRINTF ((stderr, "Reading a token\n"));
2020-12-08 05:45:14 +08:00
yychar = yylex ();
2010-06-03 21:24:43 +08:00
}
if (yychar <= YYEOF)
{
yychar = YYEOF;
yytoken = YYSYMBOL_YYEOF;
2010-06-03 21:24:43 +08:00
YYDPRINTF ((stderr, "Now at end of input.\n"));
}
else if (yychar == YYerror)
{
/* The scanner already issued an error message, process directly
to error recovery. But do not keep the error token as
lookahead, it is too special and may lead us to an endless
loop in error recovery. */
yychar = YYUNDEF;
yytoken = YYSYMBOL_YYerror;
goto yyerrlab1;
}
2010-06-03 21:24:43 +08:00
else
{
yytoken = YYTRANSLATE (yychar);
YY_SYMBOL_PRINT ("Next token is", yytoken, &yylval, &yylloc);
}
/* If the proper action on seeing token YYTOKEN is to reduce or to
detect an error, take that action. */
yyn += yytoken;
if (yyn < 0 || YYLAST < yyn || yycheck[yyn] != yytoken)
goto yydefault;
yyn = yytable[yyn];
if (yyn <= 0)
{
2020-12-08 05:45:14 +08:00
if (yytable_value_is_error (yyn))
goto yyerrlab;
2010-06-03 21:24:43 +08:00
yyn = -yyn;
goto yyreduce;
}
/* Count tokens shifted since error; after three, turn off error
status. */
if (yyerrstatus)
yyerrstatus--;
2020-12-08 05:45:14 +08:00
/* Shift the lookahead token. */
2010-06-03 21:24:43 +08:00
YY_SYMBOL_PRINT ("Shifting", yytoken, &yylval, &yylloc);
yystate = yyn;
2020-12-08 05:45:14 +08:00
YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN
2010-06-03 21:24:43 +08:00
*++yyvsp = yylval;
2020-12-08 05:45:14 +08:00
YY_IGNORE_MAYBE_UNINITIALIZED_END
2010-06-03 21:24:43 +08:00
/* Discard the shifted token. */
yychar = YYEMPTY;
2010-06-03 21:24:43 +08:00
goto yynewstate;
/*-----------------------------------------------------------.
| yydefault -- do the default action for the current state. |
`-----------------------------------------------------------*/
yydefault:
yyn = yydefact[yystate];
if (yyn == 0)
goto yyerrlab;
goto yyreduce;
/*-----------------------------.
| yyreduce -- do a reduction. |
2010-06-03 21:24:43 +08:00
`-----------------------------*/
yyreduce:
/* yyn is the number of a rule to reduce with. */
yylen = yyr2[yyn];
/* If YYLEN is nonzero, implement the default value of the action:
2020-12-08 05:45:14 +08:00
'$$ = $1'.
2010-06-03 21:24:43 +08:00
Otherwise, the following line sets YYVAL to garbage.
This behavior is undocumented and Bison
users should not rely upon it. Assigning to YYVAL
unconditionally makes the parser a bit smaller, and it avoids a
GCC warning that YYVAL may be used uninitialized. */
yyval = yyvsp[1-yylen];
YY_REDUCE_PRINT (yyn);
switch (yyn)
{
case 2: /* ncdesc: NETCDF datasetid rootgroup */
#line 245 "ncgen.y"
{if (error_count > 0) YYABORT;}
#line 1867 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 3: /* datasetid: DATASETID */
#line 248 "ncgen.y"
{createrootgroup(datasetname);}
#line 1873 "ncgeny.c"
break;
case 8: /* $@1: %empty */
#line 267 "ncgen.y"
{
2020-12-08 05:45:14 +08:00
Symbol* id = (yyvsp[-1].sym);
markcdf4("Group specification");
if(creategroup(id) == NULL)
2010-06-03 21:24:43 +08:00
yyerror("duplicate group declaration within parent group for %s",
2010-08-26 03:01:07 +08:00
id->name);
2020-12-08 05:45:14 +08:00
}
#line 1885 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 9: /* $@2: %empty */
#line 276 "ncgen.y"
{listpop(groupstack);}
#line 1891 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 12: /* typesection: TYPES */
#line 282 "ncgen.y"
{}
#line 1897 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 13: /* typesection: TYPES typedecls */
#line 284 "ncgen.y"
{markcdf4("Type specification");}
#line 1903 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 16: /* typename: ident */
#line 290 "ncgen.y"
{ /* Use when defining a type */
2020-12-08 05:45:14 +08:00
(yyvsp[0].sym)->objectclass = NC_TYPE;
if(dupobjectcheck(NC_TYPE,(yyvsp[0].sym)))
2010-06-03 21:24:43 +08:00
yyerror("duplicate type declaration for %s",
2020-12-08 05:45:14 +08:00
(yyvsp[0].sym)->name);
listpush(typdefs,(void*)(yyvsp[0].sym));
}
#line 1915 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 17: /* type_or_attr_decl: typedecl */
#line 299 "ncgen.y"
{}
#line 1921 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 18: /* type_or_attr_decl: attrdecl ';' */
#line 299 "ncgen.y"
{}
#line 1927 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 25: /* enumdecl: primtype ENUM typename '{' enumidlist '}' */
#line 313 "ncgen.y"
{
2010-06-03 21:24:43 +08:00
int i;
2020-12-08 05:45:14 +08:00
addtogroup((yyvsp[-3].sym)); /* sets prefix*/
(yyvsp[-3].sym)->objectclass=NC_TYPE;
(yyvsp[-3].sym)->subclass=NC_ENUM;
(yyvsp[-3].sym)->typ.basetype=(yyvsp[-5].sym);
(yyvsp[-3].sym)->typ.size = (yyvsp[-5].sym)->typ.size;
(yyvsp[-3].sym)->typ.alignment = (yyvsp[-5].sym)->typ.alignment;
stackbase=(yyvsp[-1].mark);
2010-06-03 21:24:43 +08:00
stacklen=listlength(stack);
2020-12-08 05:45:14 +08:00
(yyvsp[-3].sym)->subnodes = listnew();
2010-06-03 21:24:43 +08:00
/* Variety of field fixups*/
/* 1. add in the enum values*/
/* 2. make this type be their container*/
/* 3. make constant names visible in the group*/
/* 4. set field basetype to be same as enum basetype*/
for(i=stackbase;i<stacklen;i++) {
Symbol* eid = (Symbol*)listget(stack,i);
assert(eid->subclass == NC_ECONST);
addtogroup(eid);
2020-12-08 05:45:14 +08:00
listpush((yyvsp[-3].sym)->subnodes,(void*)eid);
eid->container = (yyvsp[-3].sym);
eid->typ.basetype = (yyvsp[-3].sym)->typ.basetype;
}
2010-06-03 21:24:43 +08:00
listsetlength(stack,stackbase);/* remove stack nodes*/
2020-12-08 05:45:14 +08:00
}
#line 1958 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 26: /* enumidlist: enumid */
#line 342 "ncgen.y"
{(yyval.mark)=listlength(stack); listpush(stack,(void*)(yyvsp[0].sym));}
#line 1964 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 27: /* enumidlist: enumidlist ',' enumid */
#line 344 "ncgen.y"
{
2010-06-03 21:24:43 +08:00
int i;
2020-12-08 05:45:14 +08:00
(yyval.mark)=(yyvsp[-2].mark);
2010-06-03 21:24:43 +08:00
/* check for duplicates*/
2020-12-08 05:45:14 +08:00
stackbase=(yyvsp[-2].mark);
2010-06-03 21:24:43 +08:00
stacklen=listlength(stack);
for(i=stackbase;i<stacklen;i++) {
Symbol* elem = (Symbol*)listget(stack,i);
2020-12-08 05:45:14 +08:00
if(strcmp((yyvsp[0].sym)->name,elem->name)==0)
2010-06-03 21:24:43 +08:00
yyerror("duplicate enum declaration for %s",
elem->name);
}
2020-12-08 05:45:14 +08:00
listpush(stack,(void*)(yyvsp[0].sym));
}
#line 1983 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 28: /* enumid: ident '=' constint */
#line 361 "ncgen.y"
{
2020-12-08 05:45:14 +08:00
(yyvsp[-2].sym)->objectclass=NC_TYPE;
(yyvsp[-2].sym)->subclass=NC_ECONST;
(yyvsp[-2].sym)->typ.econst=(yyvsp[0].constant);
(yyval.sym)=(yyvsp[-2].sym);
}
#line 1994 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 29: /* opaquedecl: OPAQUE_ '(' INT_CONST ')' typename */
#line 370 "ncgen.y"
{
vercheck(NC_OPAQUE);
2020-12-08 05:45:14 +08:00
addtogroup((yyvsp[0].sym)); /*sets prefix*/
(yyvsp[0].sym)->objectclass=NC_TYPE;
(yyvsp[0].sym)->subclass=NC_OPAQUE;
(yyvsp[0].sym)->typ.typecode=NC_OPAQUE;
(yyvsp[0].sym)->typ.size=int32_val;
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
(void)ncaux_class_alignment(NC_OPAQUE,&(yyvsp[0].sym)->typ.alignment);
2020-12-08 05:45:14 +08:00
}
#line 2008 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 30: /* vlendecl: typeref '(' '*' ')' typename */
#line 382 "ncgen.y"
{
2020-12-08 05:45:14 +08:00
Symbol* basetype = (yyvsp[-4].sym);
vercheck(NC_VLEN);
2020-12-08 05:45:14 +08:00
addtogroup((yyvsp[0].sym)); /*sets prefix*/
(yyvsp[0].sym)->objectclass=NC_TYPE;
(yyvsp[0].sym)->subclass=NC_VLEN;
(yyvsp[0].sym)->typ.basetype=basetype;
(yyvsp[0].sym)->typ.typecode=NC_VLEN;
(yyvsp[0].sym)->typ.size=VLENSIZE;
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
(void)ncaux_class_alignment(NC_VLEN,&(yyvsp[0].sym)->typ.alignment);
2020-12-08 05:45:14 +08:00
}
#line 2024 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 31: /* compounddecl: COMPOUND typename '{' fields '}' */
#line 396 "ncgen.y"
{
2010-06-03 21:24:43 +08:00
int i,j;
vercheck(NC_COMPOUND);
2020-12-08 05:45:14 +08:00
addtogroup((yyvsp[-3].sym));
2010-06-03 21:24:43 +08:00
/* check for duplicate field names*/
2020-12-08 05:45:14 +08:00
stackbase=(yyvsp[-1].mark);
2010-06-03 21:24:43 +08:00
stacklen=listlength(stack);
for(i=stackbase;i<stacklen;i++) {
Symbol* elem1 = (Symbol*)listget(stack,i);
for(j=i+1;j<stacklen;j++) {
Symbol* elem2 = (Symbol*)listget(stack,j);
if(strcmp(elem1->name,elem2->name)==0) {
yyerror("duplicate field declaration for %s",elem1->name);
}
}
}
2020-12-08 05:45:14 +08:00
(yyvsp[-3].sym)->objectclass=NC_TYPE;
(yyvsp[-3].sym)->subclass=NC_COMPOUND;
(yyvsp[-3].sym)->typ.basetype=NULL;
(yyvsp[-3].sym)->typ.typecode=NC_COMPOUND;
(yyvsp[-3].sym)->subnodes = listnew();
2010-06-03 21:24:43 +08:00
/* Add in the fields*/
for(i=stackbase;i<stacklen;i++) {
Symbol* fsym = (Symbol*)listget(stack,i);
2020-12-08 05:45:14 +08:00
fsym->container = (yyvsp[-3].sym);
listpush((yyvsp[-3].sym)->subnodes,(void*)fsym);
}
2010-06-03 21:24:43 +08:00
listsetlength(stack,stackbase);/* remove stack nodes*/
2020-12-08 05:45:14 +08:00
}
#line 2058 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 32: /* fields: field ';' */
#line 428 "ncgen.y"
{(yyval.mark)=(yyvsp[-1].mark);}
#line 2064 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 33: /* fields: fields field ';' */
#line 429 "ncgen.y"
{(yyval.mark)=(yyvsp[-2].mark);}
#line 2070 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 34: /* field: typeref fieldlist */
#line 433 "ncgen.y"
{
2010-06-03 21:24:43 +08:00
int i;
2020-12-08 05:45:14 +08:00
(yyval.mark)=(yyvsp[0].mark);
stackbase=(yyvsp[0].mark);
2010-06-03 21:24:43 +08:00
stacklen=listlength(stack);
/* process each field in the fieldlist*/
for(i=stackbase;i<stacklen;i++) {
Symbol* f = (Symbol*)listget(stack,i);
2020-12-08 05:45:14 +08:00
f->typ.basetype = (yyvsp[-1].sym);
2010-06-03 21:24:43 +08:00
}
2020-12-08 05:45:14 +08:00
}
#line 2086 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 35: /* primtype: CHAR_K */
#line 446 "ncgen.y"
{ (yyval.sym) = primsymbols[NC_CHAR]; }
#line 2092 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 36: /* primtype: BYTE_K */
#line 447 "ncgen.y"
{ (yyval.sym) = primsymbols[NC_BYTE]; }
#line 2098 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 37: /* primtype: SHORT_K */
#line 448 "ncgen.y"
{ (yyval.sym) = primsymbols[NC_SHORT]; }
#line 2104 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 38: /* primtype: INT_K */
#line 449 "ncgen.y"
{ (yyval.sym) = primsymbols[NC_INT]; }
#line 2110 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 39: /* primtype: FLOAT_K */
#line 450 "ncgen.y"
{ (yyval.sym) = primsymbols[NC_FLOAT]; }
#line 2116 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 40: /* primtype: DOUBLE_K */
#line 451 "ncgen.y"
{ (yyval.sym) = primsymbols[NC_DOUBLE]; }
#line 2122 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 41: /* primtype: UBYTE_K */
#line 452 "ncgen.y"
{ vercheck(NC_UBYTE); (yyval.sym) = primsymbols[NC_UBYTE]; }
#line 2128 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 42: /* primtype: USHORT_K */
#line 453 "ncgen.y"
{ vercheck(NC_USHORT); (yyval.sym) = primsymbols[NC_USHORT]; }
#line 2134 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 43: /* primtype: UINT_K */
#line 454 "ncgen.y"
{ vercheck(NC_UINT); (yyval.sym) = primsymbols[NC_UINT]; }
#line 2140 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 44: /* primtype: INT64_K */
#line 455 "ncgen.y"
{ vercheck(NC_INT64); (yyval.sym) = primsymbols[NC_INT64]; }
#line 2146 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 45: /* primtype: UINT64_K */
#line 456 "ncgen.y"
{ vercheck(NC_UINT64); (yyval.sym) = primsymbols[NC_UINT64]; }
#line 2152 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 46: /* primtype: STRING_K */
#line 457 "ncgen.y"
{ vercheck(NC_STRING); (yyval.sym) = primsymbols[NC_STRING]; }
#line 2158 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 48: /* dimsection: DIMENSIONS */
#line 461 "ncgen.y"
{}
#line 2164 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 49: /* dimsection: DIMENSIONS dimdecls */
#line 462 "ncgen.y"
{}
#line 2170 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 52: /* dim_or_attr_decl: dimdeclist */
#line 469 "ncgen.y"
{}
#line 2176 "ncgeny.c"
break;
case 53: /* dim_or_attr_decl: attrdecl */
#line 469 "ncgen.y"
{}
#line 2182 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 56: /* dimdecl: dimd '=' constint */
#line 477 "ncgen.y"
{
2020-12-08 05:45:14 +08:00
(yyvsp[-2].sym)->dim.declsize = (size_t)extractint((yyvsp[0].constant));
#ifdef GENDEBUG1
2020-12-08 05:45:14 +08:00
fprintf(stderr,"dimension: %s = %llu\n",(yyvsp[-2].sym)->name,(unsigned long long)(yyvsp[-2].sym)->dim.declsize);
#endif
2020-12-08 05:45:14 +08:00
reclaimconstant((yyvsp[0].constant));
}
#line 2194 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 57: /* dimdecl: dimd '=' NC_UNLIMITED_K */
#line 485 "ncgen.y"
{
2020-12-08 05:45:14 +08:00
(yyvsp[-2].sym)->dim.declsize = NC_UNLIMITED;
(yyvsp[-2].sym)->dim.isunlimited = 1;
#ifdef GENDEBUG1
2020-12-08 05:45:14 +08:00
fprintf(stderr,"dimension: %s = UNLIMITED\n",(yyvsp[-2].sym)->name);
#endif
2020-12-08 05:45:14 +08:00
}
#line 2206 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 58: /* dimd: ident */
#line 495 "ncgen.y"
{
2020-12-08 05:45:14 +08:00
(yyvsp[0].sym)->objectclass=NC_DIM;
if(dupobjectcheck(NC_DIM,(yyvsp[0].sym)))
2010-06-03 21:24:43 +08:00
yyerror( "Duplicate dimension declaration for %s",
2020-12-08 05:45:14 +08:00
(yyvsp[0].sym)->name);
addtogroup((yyvsp[0].sym));
(yyval.sym)=(yyvsp[0].sym);
listpush(dimdefs,(void*)(yyvsp[0].sym));
}
#line 2220 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 60: /* vasection: VARIABLES */
#line 507 "ncgen.y"
{}
#line 2226 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 61: /* vasection: VARIABLES vadecls */
#line 508 "ncgen.y"
{}
#line 2232 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 64: /* vadecl_or_attr: vardecl */
#line 515 "ncgen.y"
{}
#line 2238 "ncgeny.c"
break;
case 65: /* vadecl_or_attr: attrdecl */
#line 515 "ncgen.y"
{}
#line 2244 "ncgeny.c"
break;
case 66: /* vardecl: typeref varlist */
#line 518 "ncgen.y"
{
2010-06-03 21:24:43 +08:00
int i;
2020-12-08 05:45:14 +08:00
stackbase=(yyvsp[0].mark);
2010-06-03 21:24:43 +08:00
stacklen=listlength(stack);
/* process each variable in the varlist*/
for(i=stackbase;i<stacklen;i++) {
Symbol* sym = (Symbol*)listget(stack,i);
sym->objectclass = NC_VAR;
if(dupobjectcheck(NC_VAR,sym)) {
yyerror("Duplicate variable declaration for %s",
sym->name);
} else {
2020-12-08 05:45:14 +08:00
sym->typ.basetype = (yyvsp[-1].sym);
2010-06-03 21:24:43 +08:00
addtogroup(sym);
listpush(vardefs,(void*)sym);
2010-06-03 21:24:43 +08:00
}
}
listsetlength(stack,stackbase);/* remove stack nodes*/
2020-12-08 05:45:14 +08:00
}
#line 2268 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 67: /* varlist: varspec */
#line 540 "ncgen.y"
{(yyval.mark)=listlength(stack);
2020-12-08 05:45:14 +08:00
listpush(stack,(void*)(yyvsp[0].sym));
}
#line 2276 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 68: /* varlist: varlist ',' varspec */
#line 544 "ncgen.y"
{(yyval.mark)=(yyvsp[-2].mark); listpush(stack,(void*)(yyvsp[0].sym));}
#line 2282 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 69: /* varspec: varident dimspec */
#line 548 "ncgen.y"
{
2010-06-03 21:24:43 +08:00
int i;
Dimset dimset;
2020-12-08 05:45:14 +08:00
Symbol* var = (yyvsp[-1].sym); /* for debugging */
2010-06-03 21:24:43 +08:00
stacklen=listlength(stack);
2020-12-08 05:45:14 +08:00
stackbase=(yyvsp[0].mark);
2010-06-03 21:24:43 +08:00
count = stacklen - stackbase;
if(count >= NC_MAX_VAR_DIMS) {
2020-12-08 05:45:14 +08:00
yyerror("%s has too many dimensions",(yyvsp[-1].sym)->name);
2010-06-03 21:24:43 +08:00
count = NC_MAX_VAR_DIMS - 1;
stacklen = stackbase + count;
}
dimset.ndims = count;
/* extract the actual dimensions*/
if(dimset.ndims > 0) {
for(i=0;i<count;i++) {
Symbol* dsym = (Symbol*)listget(stack,stackbase+i);
dimset.dimsyms[i] = dsym;
}
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
var->typ.dimset = dimset;
2010-06-03 21:24:43 +08:00
}
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
var->typ.basetype = NULL; /* not yet known*/
var->objectclass=NC_VAR;
2010-06-03 21:24:43 +08:00
listsetlength(stack,stackbase);/* remove stack nodes*/
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
(yyval.sym) = var;
2020-12-08 05:45:14 +08:00
}
#line 2313 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 70: /* dimspec: %empty */
#line 576 "ncgen.y"
{(yyval.mark)=listlength(stack);}
#line 2319 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 71: /* dimspec: '(' dimlist ')' */
#line 577 "ncgen.y"
{(yyval.mark)=(yyvsp[-1].mark);}
#line 2325 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 72: /* dimlist: dimref */
#line 580 "ncgen.y"
{(yyval.mark)=listlength(stack); listpush(stack,(void*)(yyvsp[0].sym));}
#line 2331 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 73: /* dimlist: dimlist ',' dimref */
#line 582 "ncgen.y"
{(yyval.mark)=(yyvsp[-2].mark); listpush(stack,(void*)(yyvsp[0].sym));}
#line 2337 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 74: /* dimref: path */
#line 586 "ncgen.y"
{Symbol* dimsym = (yyvsp[0].sym);
2010-06-03 21:24:43 +08:00
dimsym->objectclass = NC_DIM;
/* Find the actual dimension*/
dimsym = locate(dimsym);
if(dimsym == NULL) {
2020-12-08 05:45:14 +08:00
derror("Undefined or forward referenced dimension: %s",(yyvsp[0].sym)->name);
2010-06-03 21:24:43 +08:00
YYABORT;
}
(yyval.sym)=dimsym;
2020-12-08 05:45:14 +08:00
}
#line 2352 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 75: /* fieldlist: fieldspec */
#line 600 "ncgen.y"
{(yyval.mark)=listlength(stack);
2020-12-08 05:45:14 +08:00
listpush(stack,(void*)(yyvsp[0].sym));
}
#line 2360 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 76: /* fieldlist: fieldlist ',' fieldspec */
#line 604 "ncgen.y"
{(yyval.mark)=(yyvsp[-2].mark); listpush(stack,(void*)(yyvsp[0].sym));}
#line 2366 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 77: /* fieldspec: ident fielddimspec */
#line 609 "ncgen.y"
{
2010-06-03 21:24:43 +08:00
int i;
Dimset dimset;
2020-12-08 05:45:14 +08:00
stackbase=(yyvsp[0].mark);
2010-06-03 21:24:43 +08:00
stacklen=listlength(stack);
count = stacklen - stackbase;
if(count >= NC_MAX_VAR_DIMS) {
2020-12-08 05:45:14 +08:00
yyerror("%s has too many dimensions",(yyvsp[-1].sym)->name);
2010-06-03 21:24:43 +08:00
count = NC_MAX_VAR_DIMS - 1;
stacklen = stackbase + count;
}
dimset.ndims = count;
if(count > 0) {
/* extract the actual dimensions*/
for(i=0;i<count;i++) {
Symbol* dsym = (Symbol*)listget(stack,stackbase+i);
dimset.dimsyms[i] = dsym;
}
2020-12-08 05:45:14 +08:00
(yyvsp[-1].sym)->typ.dimset = dimset;
2010-06-03 21:24:43 +08:00
}
2020-12-08 05:45:14 +08:00
(yyvsp[-1].sym)->typ.basetype = NULL; /* not yet known*/
(yyvsp[-1].sym)->objectclass=NC_TYPE;
(yyvsp[-1].sym)->subclass=NC_FIELD;
2010-06-03 21:24:43 +08:00
listsetlength(stack,stackbase);/* remove stack nodes*/
2020-12-08 05:45:14 +08:00
(yyval.sym) = (yyvsp[-1].sym);
}
#line 2397 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 78: /* fielddimspec: %empty */
#line 637 "ncgen.y"
{(yyval.mark)=listlength(stack);}
#line 2403 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 79: /* fielddimspec: '(' fielddimlist ')' */
#line 638 "ncgen.y"
{(yyval.mark)=(yyvsp[-1].mark);}
#line 2409 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 80: /* fielddimlist: fielddim */
#line 642 "ncgen.y"
{(yyval.mark)=listlength(stack); listpush(stack,(void*)(yyvsp[0].sym));}
#line 2415 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 81: /* fielddimlist: fielddimlist ',' fielddim */
#line 644 "ncgen.y"
{(yyval.mark)=(yyvsp[-2].mark); listpush(stack,(void*)(yyvsp[0].sym));}
#line 2421 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 82: /* fielddim: UINT_CONST */
#line 649 "ncgen.y"
{ /* Anonymous integer dimension.
2010-06-03 21:24:43 +08:00
Can only occur in type definitions*/
char anon[32];
sprintf(anon,"const%u",uint32_val);
(yyval.sym) = install(anon);
(yyval.sym)->objectclass = NC_DIM;
(yyval.sym)->dim.isconstant = 1;
(yyval.sym)->dim.declsize = uint32_val;
2020-12-08 05:45:14 +08:00
}
#line 2435 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 83: /* fielddim: INT_CONST */
#line 659 "ncgen.y"
{ /* Anonymous integer dimension.
2010-06-03 21:24:43 +08:00
Can only occur in type definitions*/
char anon[32];
if(int32_val <= 0) {
derror("field dimension must be positive");
YYABORT;
}
sprintf(anon,"const%d",int32_val);
(yyval.sym) = install(anon);
(yyval.sym)->objectclass = NC_DIM;
(yyval.sym)->dim.isconstant = 1;
(yyval.sym)->dim.declsize = int32_val;
2020-12-08 05:45:14 +08:00
}
#line 2453 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 84: /* varref: ambiguous_ref */
#line 679 "ncgen.y"
{Symbol* vsym = (yyvsp[0].sym);
2010-06-03 21:24:43 +08:00
if(vsym->objectclass != NC_VAR) {
derror("Undefined or forward referenced variable: %s",vsym->name);
YYABORT;
}
(yyval.sym)=vsym;
2020-12-08 05:45:14 +08:00
}
#line 2465 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 85: /* typeref: ambiguous_ref */
#line 690 "ncgen.y"
{Symbol* tsym = (yyvsp[0].sym);
2010-06-03 21:24:43 +08:00
if(tsym->objectclass != NC_TYPE) {
derror("Undefined or forward referenced type: %s",tsym->name);
YYABORT;
}
(yyval.sym)=tsym;
2020-12-08 05:45:14 +08:00
}
#line 2477 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 86: /* ambiguous_ref: path */
#line 701 "ncgen.y"
{Symbol* tvsym = (yyvsp[0].sym); Symbol* sym;
2010-06-03 21:24:43 +08:00
/* disambiguate*/
tvsym->objectclass = NC_VAR;
sym = locate(tvsym);
if(sym == NULL) {
tvsym->objectclass = NC_TYPE;
sym = locate(tvsym);
if(tvsym == NULL) {
2020-12-08 05:45:14 +08:00
derror("Undefined or forward referenced name: %s",(yyvsp[0].sym)->name);
2010-06-03 21:24:43 +08:00
YYABORT;
} else tvsym = sym;
} else tvsym = sym;
if(tvsym == NULL) {
2020-12-08 05:45:14 +08:00
derror("Undefined name (line %d): %s",(yyvsp[0].sym)->lineno,(yyvsp[0].sym)->name);
2010-06-03 21:24:43 +08:00
YYABORT;
}
(yyval.sym)=tvsym;
2020-12-08 05:45:14 +08:00
}
#line 2500 "ncgeny.c"
break;
case 87: /* ambiguous_ref: primtype */
#line 719 "ncgen.y"
{(yyval.sym)=(yyvsp[0].sym);}
#line 2506 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 88: /* attrdecllist: %empty */
#line 726 "ncgen.y"
{}
#line 2512 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 89: /* attrdecllist: attrdecl ';' attrdecllist */
#line 726 "ncgen.y"
{}
#line 2518 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 90: /* attrdecl: ':' _NCPROPS '=' conststring */
#line 730 "ncgen.y"
{(yyval.sym) = makespecial(_NCPROPS_FLAG,NULL,NULL,(void*)(yyvsp[0].constant),ISCONST);}
#line 2524 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 91: /* attrdecl: ':' _ISNETCDF4 '=' constbool */
#line 732 "ncgen.y"
{(yyval.sym) = makespecial(_ISNETCDF4_FLAG,NULL,NULL,(void*)(yyvsp[0].constant),ISCONST);}
#line 2530 "ncgeny.c"
break;
case 92: /* attrdecl: ':' _SUPERBLOCK '=' constint */
#line 734 "ncgen.y"
{(yyval.sym) = makespecial(_SUPERBLOCK_FLAG,NULL,NULL,(void*)(yyvsp[0].constant),ISCONST);}
#line 2536 "ncgeny.c"
break;
case 93: /* attrdecl: ':' ident '=' datalist */
#line 736 "ncgen.y"
{ (yyval.sym)=makeattribute((yyvsp[-2].sym),NULL,NULL,(yyvsp[0].datalist),ATTRGLOBAL);}
#line 2542 "ncgeny.c"
break;
case 94: /* attrdecl: typeref ambiguous_ref ':' ident '=' datalist */
#line 738 "ncgen.y"
{Symbol* tsym = (yyvsp[-5].sym); Symbol* vsym = (yyvsp[-4].sym); Symbol* asym = (yyvsp[-2].sym);
2010-06-03 21:24:43 +08:00
if(vsym->objectclass == NC_VAR) {
2020-12-08 05:45:14 +08:00
(yyval.sym)=makeattribute(asym,vsym,tsym,(yyvsp[0].datalist),ATTRVAR);
2010-06-03 21:24:43 +08:00
} else {
derror("Doubly typed attribute: %s",asym->name);
YYABORT;
}
2020-12-08 05:45:14 +08:00
}
#line 2555 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 95: /* attrdecl: ambiguous_ref ':' ident '=' datalist */
#line 747 "ncgen.y"
{Symbol* sym = (yyvsp[-4].sym); Symbol* asym = (yyvsp[-2].sym);
2010-06-03 21:24:43 +08:00
if(sym->objectclass == NC_VAR) {
2020-12-08 05:45:14 +08:00
(yyval.sym)=makeattribute(asym,sym,NULL,(yyvsp[0].datalist),ATTRVAR);
2010-06-03 21:24:43 +08:00
} else if(sym->objectclass == NC_TYPE) {
2020-12-08 05:45:14 +08:00
(yyval.sym)=makeattribute(asym,NULL,sym,(yyvsp[0].datalist),ATTRGLOBAL);
2010-06-03 21:24:43 +08:00
} else {
derror("Attribute prefix not a variable or type: %s",asym->name);
YYABORT;
}
2020-12-08 05:45:14 +08:00
}
#line 2570 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 96: /* attrdecl: ambiguous_ref ':' _FILLVALUE '=' datalist */
#line 758 "ncgen.y"
{(yyval.sym) = makespecial(_FILLVALUE_FLAG,(yyvsp[-4].sym),NULL,(void*)(yyvsp[0].datalist),ISLIST);}
#line 2576 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 97: /* attrdecl: typeref ambiguous_ref ':' _FILLVALUE '=' datalist */
#line 760 "ncgen.y"
{(yyval.sym) = makespecial(_FILLVALUE_FLAG,(yyvsp[-4].sym),(yyvsp[-5].sym),(void*)(yyvsp[0].datalist),ISLIST);}
#line 2582 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 98: /* attrdecl: ambiguous_ref ':' _STORAGE '=' conststring */
#line 762 "ncgen.y"
{(yyval.sym) = makespecial(_STORAGE_FLAG,(yyvsp[-4].sym),NULL,(void*)(yyvsp[0].constant),ISCONST);}
#line 2588 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 99: /* attrdecl: ambiguous_ref ':' _CHUNKSIZES '=' intlist */
#line 764 "ncgen.y"
{(yyval.sym) = makespecial(_CHUNKSIZES_FLAG,(yyvsp[-4].sym),NULL,(void*)(yyvsp[0].datalist),ISLIST);}
#line 2594 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 100: /* attrdecl: ambiguous_ref ':' _FLETCHER32 '=' constbool */
#line 766 "ncgen.y"
{(yyval.sym) = makespecial(_FLETCHER32_FLAG,(yyvsp[-4].sym),NULL,(void*)(yyvsp[0].constant),ISCONST);}
#line 2600 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 101: /* attrdecl: ambiguous_ref ':' _DEFLATELEVEL '=' constint */
#line 768 "ncgen.y"
{(yyval.sym) = makespecial(_DEFLATE_FLAG,(yyvsp[-4].sym),NULL,(void*)(yyvsp[0].constant),ISCONST);}
#line 2606 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 102: /* attrdecl: ambiguous_ref ':' _SHUFFLE '=' constbool */
#line 770 "ncgen.y"
{(yyval.sym) = makespecial(_SHUFFLE_FLAG,(yyvsp[-4].sym),NULL,(void*)(yyvsp[0].constant),ISCONST);}
#line 2612 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 103: /* attrdecl: ambiguous_ref ':' _ENDIANNESS '=' conststring */
#line 772 "ncgen.y"
{(yyval.sym) = makespecial(_ENDIAN_FLAG,(yyvsp[-4].sym),NULL,(void*)(yyvsp[0].constant),ISCONST);}
#line 2618 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 104: /* attrdecl: ambiguous_ref ':' _FILTER '=' conststring */
#line 774 "ncgen.y"
{(yyval.sym) = makespecial(_FILTER_FLAG,(yyvsp[-4].sym),NULL,(void*)(yyvsp[0].constant),ISCONST);}
#line 2624 "ncgeny.c"
break;
case 105: /* attrdecl: ambiguous_ref ':' _CODECS '=' conststring */
#line 776 "ncgen.y"
{(yyval.sym) = makespecial(_CODECS_FLAG,(yyvsp[-4].sym),NULL,(void*)(yyvsp[0].constant),ISCONST);}
#line 2630 "ncgeny.c"
break;
case 106: /* attrdecl: ambiguous_ref ':' _QUANTIZEBG '=' constint */
#line 778 "ncgen.y"
{(yyval.sym) = makespecial(_QUANTIZEBG_FLAG,(yyvsp[-4].sym),NULL,(void*)(yyvsp[0].constant),ISCONST);}
#line 2636 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 107: /* attrdecl: ambiguous_ref ':' _QUANTIZEBR '=' constint */
#line 780 "ncgen.y"
{(yyval.sym) = makespecial(_QUANTIZEBR_FLAG,(yyvsp[-4].sym),NULL,(void*)(yyvsp[0].constant),ISCONST);}
#line 2642 "ncgeny.c"
Add filter support to NCZarr Filter support has three goals: 1. Use the existing HDF5 filter implementations, 2. Allow filter metadata to be stored in the NumCodecs metadata format used by Zarr, 3. Allow filters to be used even when HDF5 is disabled Detailed usage directions are define in docs/filters.md. For now, the existing filter API is left in place. So filters are defined using ''nc_def_var_filter'' using the HDF5 style where the id and parameters are unsigned integers. This is a big change since filters affect many parts of the code. In the following, the terms "compressor" and "filter" and "codec" are generally used synonomously. ### Filter-Related Changes: * In order to support dynamic loading of shared filter libraries, a new library was added in the libncpoco directory; it helps to isolate dynamic loading across multiple platforms. * Provide a json parsing library for use by plugins; this is created by merging libdispatch/ncjson.c with include/ncjson.h. * Add a new _Codecs attribute to allow clients to see what codecs are being used; let ncdump -s print it out. * Provide special headers to help support compilation of HDF5 filters when HDF5 is not enabled: netcdf_filter_hdf5_build.h and netcdf_filter_build.h. * Add a number of new test to test the new nczarr filters. * Let ncgen parse _Codecs attribute, although it is ignored. ### Plugin directory changes: * Add support for the Blosc compressor; this is essential because it is the most common compressor used in Zarr datasets. This also necessitated adding a CMake FindBlosc.cmake file * Add NCZarr support for the big-four filters provided by HDF5: shuffle, fletcher32, deflate (zlib), and szip * Add a Codec defaulter (see docs/filters.md) for the big four filters. * Make plugins work with windows by properly adding __declspec declaration. ### Misc. Non-Filter Changes * Replace most uses of USE_NETCDF4 (deprecated) with USE_HDF5. * Improve support for caching * More fixes for path conversion code * Fix misc. memory leaks * Add new utility -- ncdump/ncpathcvt -- that does more or less the same thing as cygpath. * Add a number of new test to test the non-filter fixes. * Update the parsers * Convert most instances of '#ifdef _MSC_VER' to '#ifdef _WIN32'
2021-09-03 07:04:26 +08:00
break;
case 108: /* attrdecl: ambiguous_ref ':' _NOFILL '=' constbool */
#line 782 "ncgen.y"
{(yyval.sym) = makespecial(_NOFILL_FLAG,(yyvsp[-4].sym),NULL,(void*)(yyvsp[0].constant),ISCONST);}
#line 2648 "ncgeny.c"
break;
case 109: /* attrdecl: ':' _FORMAT '=' conststring */
#line 784 "ncgen.y"
{(yyval.sym) = makespecial(_FORMAT_FLAG,NULL,NULL,(void*)(yyvsp[0].constant),ISCONST);}
#line 2654 "ncgeny.c"
break;
case 110: /* path: ident */
#line 789 "ncgen.y"
{
2020-12-08 05:45:14 +08:00
(yyval.sym)=(yyvsp[0].sym);
(yyvsp[0].sym)->ref.is_ref=1;
(yyvsp[0].sym)->is_prefixed=0;
setpathcurrent((yyvsp[0].sym));
}
#line 2665 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 111: /* path: PATH */
#line 796 "ncgen.y"
{
2020-12-08 05:45:14 +08:00
(yyval.sym)=(yyvsp[0].sym);
(yyvsp[0].sym)->ref.is_ref=1;
(yyvsp[0].sym)->is_prefixed=1;
/* path is set in ncgen.l*/
2020-12-08 05:45:14 +08:00
}
#line 2676 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 113: /* datasection: DATA */
#line 805 "ncgen.y"
{}
#line 2682 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 114: /* datasection: DATA datadecls */
#line 806 "ncgen.y"
{}
#line 2688 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 117: /* datadecl: varref '=' datalist */
#line 814 "ncgen.y"
{(yyvsp[-2].sym)->data = (yyvsp[0].datalist);}
#line 2694 "ncgeny.c"
break;
case 118: /* datalist: datalist0 */
#line 817 "ncgen.y"
{(yyval.datalist) = (yyvsp[0].datalist);}
#line 2700 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 119: /* datalist: datalist1 */
#line 818 "ncgen.y"
{(yyval.datalist) = (yyvsp[0].datalist);}
#line 2706 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 120: /* datalist0: %empty */
#line 822 "ncgen.y"
{(yyval.datalist) = builddatalist(0);}
#line 2712 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 121: /* datalist1: dataitem */
#line 826 "ncgen.y"
{(yyval.datalist) = const2list((yyvsp[0].constant));}
#line 2718 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 122: /* datalist1: datalist ',' dataitem */
#line 828 "ncgen.y"
{dlappend((yyvsp[-2].datalist),((yyvsp[0].constant))); (yyval.datalist)=(yyvsp[-2].datalist); }
#line 2724 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 123: /* dataitem: constdata */
#line 832 "ncgen.y"
{(yyval.constant)=(yyvsp[0].constant);}
#line 2730 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 124: /* dataitem: '{' datalist '}' */
#line 833 "ncgen.y"
{(yyval.constant)=builddatasublist((yyvsp[-1].datalist));}
#line 2736 "ncgeny.c"
break;
case 125: /* constdata: simpleconstant */
#line 837 "ncgen.y"
{(yyval.constant)=(yyvsp[0].constant);}
#line 2742 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 126: /* constdata: OPAQUESTRING */
#line 838 "ncgen.y"
{(yyval.constant)=makeconstdata(NC_OPAQUE);}
#line 2748 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 127: /* constdata: FILLMARKER */
#line 839 "ncgen.y"
{(yyval.constant)=makeconstdata(NC_FILLVALUE);}
#line 2754 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 128: /* constdata: NIL */
#line 840 "ncgen.y"
{(yyval.constant)=makeconstdata(NC_NIL);}
#line 2760 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 129: /* constdata: econstref */
#line 841 "ncgen.y"
{(yyval.constant)=(yyvsp[0].constant);}
#line 2766 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 131: /* econstref: path */
#line 846 "ncgen.y"
{(yyval.constant) = makeenumconstref((yyvsp[0].sym));}
#line 2772 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 132: /* function: ident '(' arglist ')' */
#line 850 "ncgen.y"
{(yyval.constant)=evaluate((yyvsp[-3].sym),(yyvsp[-1].datalist));}
#line 2778 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 133: /* arglist: simpleconstant */
#line 855 "ncgen.y"
{(yyval.datalist) = const2list((yyvsp[0].constant));}
#line 2784 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 134: /* arglist: arglist ',' simpleconstant */
#line 857 "ncgen.y"
{dlappend((yyvsp[-2].datalist),((yyvsp[0].constant))); (yyval.datalist)=(yyvsp[-2].datalist);}
#line 2790 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 135: /* simpleconstant: CHAR_CONST */
#line 861 "ncgen.y"
{(yyval.constant)=makeconstdata(NC_CHAR);}
#line 2796 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 136: /* simpleconstant: BYTE_CONST */
#line 862 "ncgen.y"
{(yyval.constant)=makeconstdata(NC_BYTE);}
#line 2802 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 137: /* simpleconstant: SHORT_CONST */
#line 863 "ncgen.y"
{(yyval.constant)=makeconstdata(NC_SHORT);}
#line 2808 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 138: /* simpleconstant: INT_CONST */
#line 864 "ncgen.y"
{(yyval.constant)=makeconstdata(NC_INT);}
#line 2814 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 139: /* simpleconstant: INT64_CONST */
#line 865 "ncgen.y"
{(yyval.constant)=makeconstdata(NC_INT64);}
#line 2820 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 140: /* simpleconstant: UBYTE_CONST */
#line 866 "ncgen.y"
{(yyval.constant)=makeconstdata(NC_UBYTE);}
#line 2826 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 141: /* simpleconstant: USHORT_CONST */
#line 867 "ncgen.y"
{(yyval.constant)=makeconstdata(NC_USHORT);}
#line 2832 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 142: /* simpleconstant: UINT_CONST */
#line 868 "ncgen.y"
{(yyval.constant)=makeconstdata(NC_UINT);}
#line 2838 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 143: /* simpleconstant: UINT64_CONST */
#line 869 "ncgen.y"
{(yyval.constant)=makeconstdata(NC_UINT64);}
#line 2844 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 144: /* simpleconstant: FLOAT_CONST */
#line 870 "ncgen.y"
{(yyval.constant)=makeconstdata(NC_FLOAT);}
#line 2850 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 145: /* simpleconstant: DOUBLE_CONST */
#line 871 "ncgen.y"
{(yyval.constant)=makeconstdata(NC_DOUBLE);}
#line 2856 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 146: /* simpleconstant: TERMSTRING */
#line 872 "ncgen.y"
{(yyval.constant)=makeconstdata(NC_STRING);}
#line 2862 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
case 147: /* intlist: constint */
#line 876 "ncgen.y"
{(yyval.datalist) = const2list((yyvsp[0].constant));}
#line 2868 "ncgeny.c"
2011-09-16 00:57:16 +08:00
break;
case 148: /* intlist: intlist ',' constint */
#line 877 "ncgen.y"
{(yyval.datalist)=(yyvsp[-2].datalist); dlappend((yyvsp[-2].datalist),((yyvsp[0].constant)));}
#line 2874 "ncgeny.c"
2011-09-16 00:57:16 +08:00
break;
case 149: /* constint: INT_CONST */
#line 882 "ncgen.y"
{(yyval.constant)=makeconstdata(NC_INT);}
#line 2880 "ncgeny.c"
2011-09-16 00:57:16 +08:00
break;
case 150: /* constint: UINT_CONST */
#line 884 "ncgen.y"
{(yyval.constant)=makeconstdata(NC_UINT);}
#line 2886 "ncgeny.c"
2011-09-16 00:57:16 +08:00
break;
case 151: /* constint: INT64_CONST */
#line 886 "ncgen.y"
{(yyval.constant)=makeconstdata(NC_INT64);}
#line 2892 "ncgeny.c"
2011-09-16 00:57:16 +08:00
break;
case 152: /* constint: UINT64_CONST */
#line 888 "ncgen.y"
{(yyval.constant)=makeconstdata(NC_UINT64);}
#line 2898 "ncgeny.c"
2012-01-16 09:29:19 +08:00
break;
case 153: /* conststring: TERMSTRING */
#line 892 "ncgen.y"
{(yyval.constant)=makeconstdata(NC_STRING);}
#line 2904 "ncgeny.c"
break;
case 154: /* constbool: conststring */
#line 896 "ncgen.y"
{(yyval.constant)=(yyvsp[0].constant);}
#line 2910 "ncgeny.c"
break;
case 155: /* constbool: constint */
#line 897 "ncgen.y"
{(yyval.constant)=(yyvsp[0].constant);}
#line 2916 "ncgeny.c"
Support MSYS2/Mingw platform re: The current netcdf-c release has some problems with the mingw platform on windows. Mostly they are path issues. Changes to support mingw+msys2: ------------------------------- * Enable option of looking into the windows registry to find the mingw root path. In aid of proper path handling. * Add mingw+msys as a specific platform in configure.ac and move testing of the platform to the front so it is available early. * Handle mingw X libncpoco (dynamic loader) properly even though mingw does not yet support it. * Handle mingw X plugins properly even though mingw does not yet support it. * Alias pwd='pwd -W' to better handle paths in shell scripts. * Plus a number of other minor compile irritations. * Disallow the use of multiple nc_open's on the same file for windows (and mingw) because windows does not seem to handle these properly. Not sure why we did not catch this earlier. * Add mountpoint info to dpathmgr.c to help support mingw. * Cleanup dpathmgr conversions. Known problems: --------------- * I have not been able to get shared libraries to work, so plugins/filters must be disabled. * There is some kind of problem with libcurl that I have not solved, so all uses of libcurl (currently DAP+Byterange) must be disabled. Misc. other fixes: ------------------ * Cleanup the relationship between ENABLE_PLUGINS and various other flags in CMakeLists.txt and configure.ac. * Re-arrange the TESTDIRS order in Makefile.am. * Add pseudo-breakpoint to nclog.[ch] for debugging. * Improve the documentation of the path manager code in ncpathmgr.h * Add better support for relative paths in dpathmgr.c * Default the mode args to NCfopen to include "b" (binary) for windows. * Add optional debugging output in various places. * Make sure that everything builds with plugins disabled. * Fix numerous (s)printf inconsistencies betweenb the format spec and the arguments.
2021-12-24 13:18:56 +08:00
break;
case 156: /* varident: IDENT */
#line 905 "ncgen.y"
{(yyval.sym)=(yyvsp[0].sym);}
#line 2922 "ncgeny.c"
break;
case 157: /* varident: DATA */
#line 906 "ncgen.y"
{(yyval.sym)=identkeyword((yyvsp[0].sym));}
#line 2928 "ncgeny.c"
Support MSYS2/Mingw platform re: The current netcdf-c release has some problems with the mingw platform on windows. Mostly they are path issues. Changes to support mingw+msys2: ------------------------------- * Enable option of looking into the windows registry to find the mingw root path. In aid of proper path handling. * Add mingw+msys as a specific platform in configure.ac and move testing of the platform to the front so it is available early. * Handle mingw X libncpoco (dynamic loader) properly even though mingw does not yet support it. * Handle mingw X plugins properly even though mingw does not yet support it. * Alias pwd='pwd -W' to better handle paths in shell scripts. * Plus a number of other minor compile irritations. * Disallow the use of multiple nc_open's on the same file for windows (and mingw) because windows does not seem to handle these properly. Not sure why we did not catch this earlier. * Add mountpoint info to dpathmgr.c to help support mingw. * Cleanup dpathmgr conversions. Known problems: --------------- * I have not been able to get shared libraries to work, so plugins/filters must be disabled. * There is some kind of problem with libcurl that I have not solved, so all uses of libcurl (currently DAP+Byterange) must be disabled. Misc. other fixes: ------------------ * Cleanup the relationship between ENABLE_PLUGINS and various other flags in CMakeLists.txt and configure.ac. * Re-arrange the TESTDIRS order in Makefile.am. * Add pseudo-breakpoint to nclog.[ch] for debugging. * Improve the documentation of the path manager code in ncpathmgr.h * Add better support for relative paths in dpathmgr.c * Default the mode args to NCfopen to include "b" (binary) for windows. * Add optional debugging output in various places. * Make sure that everything builds with plugins disabled. * Fix numerous (s)printf inconsistencies betweenb the format spec and the arguments.
2021-12-24 13:18:56 +08:00
break;
case 158: /* ident: IDENT */
#line 910 "ncgen.y"
{(yyval.sym)=(yyvsp[0].sym);}
#line 2934 "ncgeny.c"
2010-06-03 21:24:43 +08:00
break;
#line 2938 "ncgeny.c"
2010-06-03 21:24:43 +08:00
default: break;
}
2020-12-08 05:45:14 +08:00
/* User semantic actions sometimes alter yychar, and that requires
that yytoken be updated with the new translation. We take the
approach of translating immediately before every use of yytoken.
One alternative is translating here after every semantic action,
but that translation would be missed if the semantic action invokes
YYABORT, YYACCEPT, or YYERROR immediately after altering yychar or
if it invokes YYBACKUP. In the case of YYABORT or YYACCEPT, an
incorrect destructor might then be invoked immediately. In the
case of YYERROR or YYBACKUP, subsequent parser actions might lead
to an incorrect destructor call or verbose syntax error message
before the lookahead is translated. */
YY_SYMBOL_PRINT ("-> $$ =", YY_CAST (yysymbol_kind_t, yyr1[yyn]), &yyval, &yyloc);
2010-06-03 21:24:43 +08:00
YYPOPSTACK (yylen);
yylen = 0;
*++yyvsp = yyval;
2020-12-08 05:45:14 +08:00
/* Now 'shift' the result of the reduction. Determine what state
2010-06-03 21:24:43 +08:00
that goes to, based on the state we popped back to and the rule
number reduced by. */
{
const int yylhs = yyr1[yyn] - YYNTOKENS;
const int yyi = yypgoto[yylhs] + *yyssp;
yystate = (0 <= yyi && yyi <= YYLAST && yycheck[yyi] == *yyssp
? yytable[yyi]
: yydefgoto[yylhs]);
}
2010-06-03 21:24:43 +08:00
goto yynewstate;
2020-12-08 05:45:14 +08:00
/*--------------------------------------.
| yyerrlab -- here on detecting error. |
`--------------------------------------*/
2010-06-03 21:24:43 +08:00
yyerrlab:
2020-12-08 05:45:14 +08:00
/* Make sure we have latest lookahead translation. See comments at
user semantic actions for why this is necessary. */
yytoken = yychar == YYEMPTY ? YYSYMBOL_YYEMPTY : YYTRANSLATE (yychar);
2010-06-03 21:24:43 +08:00
/* If not already recovering from an error, report this error. */
if (!yyerrstatus)
{
++yynerrs;
{
yypcontext_t yyctx
= {yyssp, yytoken};
2020-12-08 05:45:14 +08:00
char const *yymsgp = YY_("syntax error");
int yysyntax_error_status;
yysyntax_error_status = yysyntax_error (&yymsg_alloc, &yymsg, &yyctx);
2020-12-08 05:45:14 +08:00
if (yysyntax_error_status == 0)
yymsgp = yymsg;
else if (yysyntax_error_status == -1)
2020-12-08 05:45:14 +08:00
{
if (yymsg != yymsgbuf)
YYSTACK_FREE (yymsg);
yymsg = YY_CAST (char *,
YYSTACK_ALLOC (YY_CAST (YYSIZE_T, yymsg_alloc)));
if (yymsg)
2020-12-08 05:45:14 +08:00
{
yysyntax_error_status
= yysyntax_error (&yymsg_alloc, &yymsg, &yyctx);
yymsgp = yymsg;
2020-12-08 05:45:14 +08:00
}
else
{
yymsg = yymsgbuf;
yymsg_alloc = sizeof yymsgbuf;
yysyntax_error_status = YYENOMEM;
2020-12-08 05:45:14 +08:00
}
}
yyerror (yymsgp);
if (yysyntax_error_status == YYENOMEM)
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
goto yyexhaustedlab;
2010-06-03 21:24:43 +08:00
}
}
if (yyerrstatus == 3)
{
2020-12-08 05:45:14 +08:00
/* If just tried and failed to reuse lookahead token after an
error, discard it. */
2010-06-03 21:24:43 +08:00
if (yychar <= YYEOF)
2020-12-08 05:45:14 +08:00
{
/* Return failure if at end of input. */
if (yychar == YYEOF)
YYABORT;
}
2010-06-03 21:24:43 +08:00
else
2020-12-08 05:45:14 +08:00
{
yydestruct ("Error: discarding",
yytoken, &yylval);
yychar = YYEMPTY;
}
2010-06-03 21:24:43 +08:00
}
2020-12-08 05:45:14 +08:00
/* Else will try to reuse lookahead token after shifting the error
2010-06-03 21:24:43 +08:00
token. */
goto yyerrlab1;
/*---------------------------------------------------.
| yyerrorlab -- error raised explicitly by YYERROR. |
`---------------------------------------------------*/
yyerrorlab:
/* Pacify compilers when the user code never invokes YYERROR and the
label yyerrorlab therefore never appears in user code. */
if (0)
YYERROR;
2010-06-03 21:24:43 +08:00
2020-12-08 05:45:14 +08:00
/* Do not reclaim the symbols of the rule whose action triggered
2010-06-03 21:24:43 +08:00
this YYERROR. */
YYPOPSTACK (yylen);
yylen = 0;
YY_STACK_PRINT (yyss, yyssp);
yystate = *yyssp;
goto yyerrlab1;
/*-------------------------------------------------------------.
| yyerrlab1 -- common code for both syntax error and YYERROR. |
`-------------------------------------------------------------*/
yyerrlab1:
2020-12-08 05:45:14 +08:00
yyerrstatus = 3; /* Each real token shifted decrements this. */
2010-06-03 21:24:43 +08:00
/* Pop stack until we find a state that shifts the error token. */
2010-06-03 21:24:43 +08:00
for (;;)
{
yyn = yypact[yystate];
2020-12-08 05:45:14 +08:00
if (!yypact_value_is_default (yyn))
{
yyn += YYSYMBOL_YYerror;
if (0 <= yyn && yyn <= YYLAST && yycheck[yyn] == YYSYMBOL_YYerror)
2020-12-08 05:45:14 +08:00
{
yyn = yytable[yyn];
if (0 < yyn)
break;
}
}
2010-06-03 21:24:43 +08:00
/* Pop the current state because it cannot handle the error token. */
if (yyssp == yyss)
2020-12-08 05:45:14 +08:00
YYABORT;
2010-06-03 21:24:43 +08:00
yydestruct ("Error: popping",
YY_ACCESSING_SYMBOL (yystate), yyvsp);
2010-06-03 21:24:43 +08:00
YYPOPSTACK (1);
yystate = *yyssp;
YY_STACK_PRINT (yyss, yyssp);
}
2020-12-08 05:45:14 +08:00
YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN
2010-06-03 21:24:43 +08:00
*++yyvsp = yylval;
2020-12-08 05:45:14 +08:00
YY_IGNORE_MAYBE_UNINITIALIZED_END
2010-06-03 21:24:43 +08:00
/* Shift the error token. */
YY_SYMBOL_PRINT ("Shifting", YY_ACCESSING_SYMBOL (yyn), yyvsp, yylsp);
2010-06-03 21:24:43 +08:00
yystate = yyn;
goto yynewstate;
/*-------------------------------------.
| yyacceptlab -- YYACCEPT comes here. |
`-------------------------------------*/
yyacceptlab:
yyresult = 0;
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
goto yyreturn;
Add filter support to NCZarr Filter support has three goals: 1. Use the existing HDF5 filter implementations, 2. Allow filter metadata to be stored in the NumCodecs metadata format used by Zarr, 3. Allow filters to be used even when HDF5 is disabled Detailed usage directions are define in docs/filters.md. For now, the existing filter API is left in place. So filters are defined using ''nc_def_var_filter'' using the HDF5 style where the id and parameters are unsigned integers. This is a big change since filters affect many parts of the code. In the following, the terms "compressor" and "filter" and "codec" are generally used synonomously. ### Filter-Related Changes: * In order to support dynamic loading of shared filter libraries, a new library was added in the libncpoco directory; it helps to isolate dynamic loading across multiple platforms. * Provide a json parsing library for use by plugins; this is created by merging libdispatch/ncjson.c with include/ncjson.h. * Add a new _Codecs attribute to allow clients to see what codecs are being used; let ncdump -s print it out. * Provide special headers to help support compilation of HDF5 filters when HDF5 is not enabled: netcdf_filter_hdf5_build.h and netcdf_filter_build.h. * Add a number of new test to test the new nczarr filters. * Let ncgen parse _Codecs attribute, although it is ignored. ### Plugin directory changes: * Add support for the Blosc compressor; this is essential because it is the most common compressor used in Zarr datasets. This also necessitated adding a CMake FindBlosc.cmake file * Add NCZarr support for the big-four filters provided by HDF5: shuffle, fletcher32, deflate (zlib), and szip * Add a Codec defaulter (see docs/filters.md) for the big four filters. * Make plugins work with windows by properly adding __declspec declaration. ### Misc. Non-Filter Changes * Replace most uses of USE_NETCDF4 (deprecated) with USE_HDF5. * Improve support for caching * More fixes for path conversion code * Fix misc. memory leaks * Add new utility -- ncdump/ncpathcvt -- that does more or less the same thing as cygpath. * Add a number of new test to test the non-filter fixes. * Update the parsers * Convert most instances of '#ifdef _MSC_VER' to '#ifdef _WIN32'
2021-09-03 07:04:26 +08:00
2010-06-03 21:24:43 +08:00
/*-----------------------------------.
| yyabortlab -- YYABORT comes here. |
`-----------------------------------*/
yyabortlab:
yyresult = 1;
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
goto yyreturn;
Add filter support to NCZarr Filter support has three goals: 1. Use the existing HDF5 filter implementations, 2. Allow filter metadata to be stored in the NumCodecs metadata format used by Zarr, 3. Allow filters to be used even when HDF5 is disabled Detailed usage directions are define in docs/filters.md. For now, the existing filter API is left in place. So filters are defined using ''nc_def_var_filter'' using the HDF5 style where the id and parameters are unsigned integers. This is a big change since filters affect many parts of the code. In the following, the terms "compressor" and "filter" and "codec" are generally used synonomously. ### Filter-Related Changes: * In order to support dynamic loading of shared filter libraries, a new library was added in the libncpoco directory; it helps to isolate dynamic loading across multiple platforms. * Provide a json parsing library for use by plugins; this is created by merging libdispatch/ncjson.c with include/ncjson.h. * Add a new _Codecs attribute to allow clients to see what codecs are being used; let ncdump -s print it out. * Provide special headers to help support compilation of HDF5 filters when HDF5 is not enabled: netcdf_filter_hdf5_build.h and netcdf_filter_build.h. * Add a number of new test to test the new nczarr filters. * Let ncgen parse _Codecs attribute, although it is ignored. ### Plugin directory changes: * Add support for the Blosc compressor; this is essential because it is the most common compressor used in Zarr datasets. This also necessitated adding a CMake FindBlosc.cmake file * Add NCZarr support for the big-four filters provided by HDF5: shuffle, fletcher32, deflate (zlib), and szip * Add a Codec defaulter (see docs/filters.md) for the big four filters. * Make plugins work with windows by properly adding __declspec declaration. ### Misc. Non-Filter Changes * Replace most uses of USE_NETCDF4 (deprecated) with USE_HDF5. * Improve support for caching * More fixes for path conversion code * Fix misc. memory leaks * Add new utility -- ncdump/ncpathcvt -- that does more or less the same thing as cygpath. * Add a number of new test to test the non-filter fixes. * Update the parsers * Convert most instances of '#ifdef _MSC_VER' to '#ifdef _WIN32'
2021-09-03 07:04:26 +08:00
#if 1
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
/*-------------------------------------------------.
| yyexhaustedlab -- memory exhaustion comes here. |
`-------------------------------------------------*/
2010-06-03 21:24:43 +08:00
yyexhaustedlab:
yyerror (YY_("memory exhausted"));
yyresult = 2;
goto yyreturn;
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
#endif
Add filter support to NCZarr Filter support has three goals: 1. Use the existing HDF5 filter implementations, 2. Allow filter metadata to be stored in the NumCodecs metadata format used by Zarr, 3. Allow filters to be used even when HDF5 is disabled Detailed usage directions are define in docs/filters.md. For now, the existing filter API is left in place. So filters are defined using ''nc_def_var_filter'' using the HDF5 style where the id and parameters are unsigned integers. This is a big change since filters affect many parts of the code. In the following, the terms "compressor" and "filter" and "codec" are generally used synonomously. ### Filter-Related Changes: * In order to support dynamic loading of shared filter libraries, a new library was added in the libncpoco directory; it helps to isolate dynamic loading across multiple platforms. * Provide a json parsing library for use by plugins; this is created by merging libdispatch/ncjson.c with include/ncjson.h. * Add a new _Codecs attribute to allow clients to see what codecs are being used; let ncdump -s print it out. * Provide special headers to help support compilation of HDF5 filters when HDF5 is not enabled: netcdf_filter_hdf5_build.h and netcdf_filter_build.h. * Add a number of new test to test the new nczarr filters. * Let ncgen parse _Codecs attribute, although it is ignored. ### Plugin directory changes: * Add support for the Blosc compressor; this is essential because it is the most common compressor used in Zarr datasets. This also necessitated adding a CMake FindBlosc.cmake file * Add NCZarr support for the big-four filters provided by HDF5: shuffle, fletcher32, deflate (zlib), and szip * Add a Codec defaulter (see docs/filters.md) for the big four filters. * Make plugins work with windows by properly adding __declspec declaration. ### Misc. Non-Filter Changes * Replace most uses of USE_NETCDF4 (deprecated) with USE_HDF5. * Improve support for caching * More fixes for path conversion code * Fix misc. memory leaks * Add new utility -- ncdump/ncpathcvt -- that does more or less the same thing as cygpath. * Add a number of new test to test the non-filter fixes. * Update the parsers * Convert most instances of '#ifdef _MSC_VER' to '#ifdef _WIN32'
2021-09-03 07:04:26 +08:00
/*-------------------------------------------------------.
| yyreturn -- parsing is finished, clean up and return. |
`-------------------------------------------------------*/
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
yyreturn:
2020-12-08 05:45:14 +08:00
if (yychar != YYEMPTY)
{
/* Make sure we have latest lookahead translation. See comments at
user semantic actions for why this is necessary. */
yytoken = YYTRANSLATE (yychar);
yydestruct ("Cleanup: discarding lookahead",
yytoken, &yylval);
}
/* Do not reclaim the symbols of the rule whose action triggered
2010-06-03 21:24:43 +08:00
this YYABORT or YYACCEPT. */
YYPOPSTACK (yylen);
YY_STACK_PRINT (yyss, yyssp);
while (yyssp != yyss)
{
yydestruct ("Cleanup: popping",
YY_ACCESSING_SYMBOL (+*yyssp), yyvsp);
2010-06-03 21:24:43 +08:00
YYPOPSTACK (1);
}
#ifndef yyoverflow
if (yyss != yyssa)
YYSTACK_FREE (yyss);
#endif
if (yymsg != yymsgbuf)
YYSTACK_FREE (yymsg);
2020-12-08 05:45:14 +08:00
return yyresult;
2010-06-03 21:24:43 +08:00
}
#line 913 "ncgen.y"
2010-06-03 21:24:43 +08:00
#ifndef NO_STDARG
static void
yyerror(const char *fmt, ...)
#else
static void
yyerror(fmt,va_alist) const char* fmt; va_dcl
#endif
{
va_list argv;
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
va_start(argv,fmt);
2010-06-03 21:24:43 +08:00
(void)fprintf(stderr,"%s: %s line %d: ", progname, cdlname, lineno);
vderror(fmt,argv);
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
va_end(argv);
2010-06-03 21:24:43 +08:00
}
/* undefine yywrap macro, in case we are using bison instead of yacc */
#ifdef yywrap
#undef yywrap
#endif
static int
ncgwrap(void) /* returns 1 on EOF if no more input */
{
return 1;
}
/* get lexical input routine generated by lex */
2015-11-20 04:44:07 +08:00
#include "ncgenl.c"
2010-06-03 21:24:43 +08:00
/* Really should init our data within this file */
void
parse_init(void)
{
int i;
opaqueid = 0;
arrayuid = 0;
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
symlist = listnew();
2010-06-03 21:24:43 +08:00
stack = listnew();
groupstack = listnew();
consttype = NC_NAT;
grpdefs = listnew();
dimdefs = listnew();
attdefs = listnew();
gattdefs = listnew();
xattdefs = listnew();
typdefs = listnew();
vardefs = listnew();
tmp = listnew();
/* Create the primitive types */
for(i=NC_NAT+1;i<=NC_STRING;i++) {
primsymbols[i] = makeprimitivetype(i);
}
lex_init();
}
static Symbol*
makeprimitivetype(nc_type nctype)
{
Symbol* sym = install(primtypenames[nctype]);
sym->objectclass=NC_TYPE;
sym->subclass=NC_PRIM;
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
sym->nc_id = nctype;
2010-06-03 21:24:43 +08:00
sym->typ.typecode = nctype;
sym->typ.size = ncsize(nctype);
sym->typ.nelems = 1;
Fix various problem around VLEN's re: https://github.com/Unidata/netcdf-c/issues/541 re: https://github.com/Unidata/netcdf-c/issues/1208 re: https://github.com/Unidata/netcdf-c/issues/2078 re: https://github.com/Unidata/netcdf-c/issues/2041 re: https://github.com/Unidata/netcdf-c/issues/2143 For a long time, there have been known problems with the management of complex types containing VLENs. This also involves the string type because it is stored as a VLEN of chars. This PR (mostly) fixes this problem. But note that it adds new functions to netcdf.h (see below) and this may require bumping the .so number. These new functions can be removed, if desired, in favor of functions in netcdf_aux.h, but netcdf.h seems the better place for them because they are intended as alternatives to the nc_free_vlen and nc_free_string functions already in netcdf.h. The term complex type refers to any type that directly or transitively references a VLEN type. So an array of VLENS, a compound with a VLEN field, and so on. In order to properly handle instances of these complex types, it is necessary to have function that can recursively walk instances of such types to perform various actions on them. The term "deep" is also used to mean recursive. At the moment, the two operations needed by the netcdf library are: * free'ing an instance of the complex type * copying an instance of the complex type. The current library does only shallow free and shallow copy of complex types. This means that only the top level is properly free'd or copied, but deep internal blocks in the instance are not touched. Note that the term "vector" will be used to mean a contiguous (in memory) sequence of instances of some type. Given an array with, say, dimensions 2 X 3 X 4, this will be stored in memory as a vector of length 2*3*4=24 instances. The use cases are primarily these. ## nc_get_vars Suppose one is reading a vector of instances using nc_get_vars (or nc_get_vara or nc_get_var, etc.). These functions will return the vector in the top-level memory provided. All interior blocks (form nested VLEN or strings) will have been dynamically allocated. After using this vector of instances, it is necessary to free (aka reclaim) the dynamically allocated memory, otherwise a memory leak occurs. So, the recursive reclaim function is used to walk the returned instance vector and do a deep reclaim of the data. Currently functions are defined in netcdf.h that are supposed to handle this: nc_free_vlen(), nc_free_vlens(), and nc_free_string(). Unfortunately, these functions only do a shallow free, so deeply nested instances are not properly handled by them. Note that internally, the provided data is immediately written so there is no need to copy it. But the caller may need to reclaim the data it passed into the function. ## nc_put_att Suppose one is writing a vector of instances as the data of an attribute using, say, nc_put_att. Internally, the incoming attribute data must be copied and stored so that changes/reclamation of the input data will not affect the attribute. Again, the code inside the netcdf library does only shallow copying rather than deep copy. As a result, one sees effects such as described in Github Issue https://github.com/Unidata/netcdf-c/issues/2143. Also, after defining the attribute, it may be necessary for the user to free the data that was provided as input to nc_put_att(). ## nc_get_att Suppose one is reading a vector of instances as the data of an attribute using, say, nc_get_att. Internally, the existing attribute data must be copied and returned to the caller, and the caller is responsible for reclaiming the returned data. Again, the code inside the netcdf library does only shallow copying rather than deep copy. So this can lead to memory leaks and errors because the deep data is shared between the library and the user. # Solution The solution is to build properly recursive reclaim and copy functions and use those as needed. These recursive functions are defined in libdispatch/dinstance.c and their signatures are defined in include/netcdf.h. For back compatibility, corresponding "ncaux_XXX" functions are defined in include/netcdf_aux.h. ```` int nc_reclaim_data(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_reclaim_data_all(int ncid, nc_type xtypeid, void* memory, size_t count); int nc_copy_data(int ncid, nc_type xtypeid, const void* memory, size_t count, void* copy); int nc_copy_data_all(int ncid, nc_type xtypeid, const void* memory, size_t count, void** copyp); ```` There are two variants. The first two, nc_reclaim_data() and nc_copy_data(), assume the top-level vector is managed by the caller. For reclaim, this is so the user can use, for example, a statically allocated vector. For copy, it assumes the user provides the space into which the copy is stored. The second two, nc_reclaim_data_all() and nc_copy_data_all(), allows the functions to manage the top-level. So for nc_reclaim_data_all, the top level is assumed to be dynamically allocated and will be free'd by nc_reclaim_data_all(). The nc_copy_data_all() function will allocate the top level and return a pointer to it to the user. The user can later pass that pointer to nc_reclaim_data_all() to reclaim the instance(s). # Internal Changes The netcdf-c library internals are changed to use the proper reclaim and copy functions. It turns out that the places where these functions are needed is quite pervasive in the netcdf-c library code. Using these functions also allows some simplification of the code since the stdata and vldata fields of NC_ATT_INFO are no longer needed. Currently this is commented out using the SEPDATA \#define macro. When any bugs are largely fixed, all this code will be removed. # Known Bugs 1. There is still one known failure that has not been solved. All the failures revolve around some variant of this .cdl file. The proximate cause of failure is the use of a VLEN FillValue. ```` netcdf x { types: float(*) row_of_floats ; dimensions: m = 5 ; variables: row_of_floats ragged_array(m) ; row_of_floats ragged_array:_FillValue = {-999} ; data: ragged_array = {10, 11, 12, 13, 14}, {20, 21, 22, 23}, {30, 31, 32}, {40, 41}, _ ; } ```` When a solution is found, I will either add it to this PR or post a new PR. # Related Changes * Mark nc_free_vlen(s) as deprecated in favor of ncaux_reclaim_data. * Remove the --enable-unfixed-memory-leaks option. * Remove the NC_VLENS_NOTEST code that suppresses some vlen tests. * Document this change in docs/internal.md * Disable the tst_vlen_data test in ncdump/tst_nccopy4.sh. * Mark types as fixed size or not (transitively) to optimize the reclaim and copy functions. # Misc. Changes * Make Doxygen process libdispatch/daux.c * Make sure the NC_ATT_INFO_T.container field is set.
2022-01-09 09:30:00 +08:00
(void)ncaux_class_alignment(nctype,&sym->typ.alignment);
/* Make the basetype circular so we can always ask for it */
sym->typ.basetype = sym;
2010-06-03 21:24:43 +08:00
sym->prefix = listnew();
return sym;
}
/* Symbol table operations for ncgen tool */
/* install sname in symbol table even if it is already there */
Symbol*
install(const char *sname)
{
return installin(sname,currentgroup());
}
Symbol*
installin(const char *sname, Symbol* grp)
2010-06-03 21:24:43 +08:00
{
Symbol* sp;
2017-10-31 05:52:08 +08:00
sp = (Symbol*) ecalloc (sizeof (struct Symbol));
2010-06-03 21:24:43 +08:00
sp->name = nulldup(sname);
sp->lineno = lineno;
sp->location = grp;
sp->container = grp;
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
listpush(symlist,sp);
2010-06-03 21:24:43 +08:00
return sp;
}
static Symbol*
currentgroup(void)
{
if(listlength(groupstack) == 0) return rootgroup;
return (Symbol*)listtop(groupstack);
}
static Symbol*
createrootgroup(const char* dataset)
2010-06-03 21:24:43 +08:00
{
Symbol* gsym = install(dataset);
2010-06-03 21:24:43 +08:00
gsym->objectclass = NC_GRP;
gsym->container = NULL;
gsym->subnodes = listnew();
gsym->grp.is_root = 1;
gsym->prefix = listnew();
listpush(grpdefs,(void*)gsym);
2010-06-03 21:24:43 +08:00
rootgroup = gsym;
return gsym;
}
static Symbol*
creategroup(Symbol * gsym)
{
/* See if this group already exists in currentgroup */
gsym->objectclass = NC_GRP;
if(dupobjectcheck(NC_GRP,gsym)) {
derror("Duplicate group name in same scope: %s",gsym->name);
return NULL;
}
addtogroup(gsym);
gsym->subnodes = listnew();
listpush(groupstack,(void*)gsym);
listpush(grpdefs,(void*)gsym);
2010-06-03 21:24:43 +08:00
return gsym;
}
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
static NCConstant*
2010-06-03 21:24:43 +08:00
makeconstdata(nc_type nctype)
{
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
NCConstant* con = nullconst();
2010-06-03 21:24:43 +08:00
consttype = nctype;
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
con->nctype = nctype;
con->lineno = lineno;
con->filled = 0;
2010-06-03 21:24:43 +08:00
switch (nctype) {
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
case NC_CHAR: con->value.charv = char_val; break;
case NC_BYTE: con->value.int8v = byte_val; break;
case NC_SHORT: con->value.int16v = int16_val; break;
case NC_INT: con->value.int32v = int32_val; break;
case NC_FLOAT:
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
con->value.floatv = float_val;
break;
case NC_DOUBLE:
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
con->value.doublev = double_val;
break;
2010-06-03 21:24:43 +08:00
case NC_STRING: { /* convert to a set of chars*/
2012-03-08 07:38:51 +08:00
size_t len;
len = bbLength(lextext);
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
con->value.stringv.len = len;
con->value.stringv.stringv = bbExtract(lextext);
2010-06-03 21:24:43 +08:00
}
break;
/* Allow these constants even in netcdf-3 */
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
case NC_UBYTE: con->value.uint8v = ubyte_val; break;
case NC_USHORT: con->value.uint16v = uint16_val; break;
case NC_UINT: con->value.uint32v = uint32_val; break;
case NC_INT64: con->value.int64v = int64_val; break;
case NC_UINT64: con->value.uint64v = uint64_val; break;
2010-06-03 21:24:43 +08:00
#ifdef USE_NETCDF4
case NC_OPAQUE: {
char* s;
2012-05-06 06:31:24 +08:00
int len;
len = bbLength(lextext);
2017-10-31 05:52:08 +08:00
s = (char*)ecalloc(len+1);
strncpy(s,bbContents(lextext),len);
2012-05-06 06:31:24 +08:00
s[len] = '\0';
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
con->value.opaquev.stringv = s;
con->value.opaquev.len = len;
2010-06-03 21:24:43 +08:00
} break;
case NC_NIL:
break; /* no associated value*/
2010-06-03 21:24:43 +08:00
#endif
2017-11-01 04:03:57 +08:00
case NC_FILLVALUE:
2010-06-03 21:24:43 +08:00
break; /* no associated value*/
2010-06-03 21:24:43 +08:00
default:
yyerror("Data constant: unexpected NC type: %s",
nctypename(nctype));
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
con->value.stringv.stringv = NULL;
con->value.stringv.len = 0;
2010-06-03 21:24:43 +08:00
}
return con;
}
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
static NCConstant*
makeenumconstref(Symbol* refsym)
2010-06-03 21:24:43 +08:00
{
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
NCConstant* con = nullconst();
markcdf4("Enum type");
2010-06-03 21:24:43 +08:00
consttype = NC_ENUM;
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
con->nctype = NC_ECONST;
con->lineno = lineno;
con->filled = 0;
refsym->objectclass = NC_TYPE;
refsym->subclass = NC_ECONST;
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
con->value.enumv = refsym;
2010-06-03 21:24:43 +08:00
return con;
}
static void
addtogroup(Symbol* sym)
{
Symbol* grp = currentgroup();
sym->container = grp;
listpush(grp->subnodes,(void*)sym);
2010-06-03 21:24:43 +08:00
setpathcurrent(sym);
}
/* Check for duplicate name of given type within current group*/
static int
dupobjectcheck(nc_class objectclass, Symbol* pattern)
{
int i;
Symbol* grp;
if(pattern == NULL) return 0;
grp = pattern->container;
if(grp == NULL || grp->subnodes == NULL) return 0;
for(i=0;i<listlength(grp->subnodes);i++) {
Symbol* sym = (Symbol*)listget(grp->subnodes,i);
if(!sym->ref.is_ref && sym->objectclass == objectclass
2010-06-03 21:24:43 +08:00
&& strcmp(sym->name,pattern->name)==0) return 1;
}
return 0;
}
static void
setpathcurrent(Symbol* sym)
{
sym->is_prefixed = 0;
sym->prefix = prefixdup(groupstack);
}
/* Convert an nc_type code to the corresponding Symbol*/
Symbol*
basetypefor(nc_type nctype)
{
return primsymbols[nctype];
}
static int
truefalse(NCConstant* con, int tag)
2010-06-03 21:24:43 +08:00
{
if(con->nctype == NC_STRING) {
char* sdata = con->value.stringv.stringv;
if(strncmp(sdata,"false",NC_MAX_NAME) == 0
|| strncmp(sdata,"0",NC_MAX_NAME) == 0)
return 0;
else if(strncmp(sdata,"true",NC_MAX_NAME) == 0
|| strncmp(sdata,"1",NC_MAX_NAME) == 0)
return 1;
else goto fail;
} else if(con->value.int32v < 0 || con->value.int32v > 1)
goto fail;
return con->value.int32v;
fail:
derror("%s: illegal value",specialname(tag));
return 0;
}
/* Since this may be affected by the _Format attribute, which
may come last, capture all the special info and sort it out
in semantics.
*/
static Symbol*
makespecial(int tag, Symbol* vsym, Symbol* tsym, void* data, int isconst)
{
Symbol* attr = NULL;
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
Datalist* list = NULL;
NCConstant* con = NULL;
NCConstant* tmp = NULL;
2010-06-03 21:24:43 +08:00
int tf = 0;
char* sdata = NULL;
int idata = -1;
if((GLOBAL_SPECIAL & tag) != 0) {
if(vsym != NULL) {
derror("_Format: must be global attribute");
vsym = NULL;
}
} else {
if(vsym == NULL) {
derror("%s: must have non-NULL vsym", specialname(tag));
return NULL;
}
}
if(tag != _FILLVALUE_FLAG && tag != _FORMAT_FLAG)
/*Main.*/specials_flag++;
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
if(isconst)
con = (NCConstant*)data;
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
else
2010-06-03 21:24:43 +08:00
list = (Datalist*)data;
switch (tag) {
case _FLETCHER32_FLAG:
case _SHUFFLE_FLAG:
case _ISNETCDF4_FLAG:
2010-06-03 21:24:43 +08:00
case _NOFILL_FLAG:
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
tmp = nullconst();
tmp->nctype = (con->nctype == NC_STRING?NC_STRING:NC_INT);
convert1(con,tmp);
tf = truefalse(tmp,tag);
reclaimconstant(tmp);
2010-06-03 21:24:43 +08:00
break;
case _FORMAT_FLAG:
case _STORAGE_FLAG:
case _NCPROPS_FLAG:
2010-06-03 21:24:43 +08:00
case _ENDIAN_FLAG:
case _FILTER_FLAG:
Add filter support to NCZarr Filter support has three goals: 1. Use the existing HDF5 filter implementations, 2. Allow filter metadata to be stored in the NumCodecs metadata format used by Zarr, 3. Allow filters to be used even when HDF5 is disabled Detailed usage directions are define in docs/filters.md. For now, the existing filter API is left in place. So filters are defined using ''nc_def_var_filter'' using the HDF5 style where the id and parameters are unsigned integers. This is a big change since filters affect many parts of the code. In the following, the terms "compressor" and "filter" and "codec" are generally used synonomously. ### Filter-Related Changes: * In order to support dynamic loading of shared filter libraries, a new library was added in the libncpoco directory; it helps to isolate dynamic loading across multiple platforms. * Provide a json parsing library for use by plugins; this is created by merging libdispatch/ncjson.c with include/ncjson.h. * Add a new _Codecs attribute to allow clients to see what codecs are being used; let ncdump -s print it out. * Provide special headers to help support compilation of HDF5 filters when HDF5 is not enabled: netcdf_filter_hdf5_build.h and netcdf_filter_build.h. * Add a number of new test to test the new nczarr filters. * Let ncgen parse _Codecs attribute, although it is ignored. ### Plugin directory changes: * Add support for the Blosc compressor; this is essential because it is the most common compressor used in Zarr datasets. This also necessitated adding a CMake FindBlosc.cmake file * Add NCZarr support for the big-four filters provided by HDF5: shuffle, fletcher32, deflate (zlib), and szip * Add a Codec defaulter (see docs/filters.md) for the big four filters. * Make plugins work with windows by properly adding __declspec declaration. ### Misc. Non-Filter Changes * Replace most uses of USE_NETCDF4 (deprecated) with USE_HDF5. * Improve support for caching * More fixes for path conversion code * Fix misc. memory leaks * Add new utility -- ncdump/ncpathcvt -- that does more or less the same thing as cygpath. * Add a number of new test to test the non-filter fixes. * Update the parsers * Convert most instances of '#ifdef _MSC_VER' to '#ifdef _WIN32'
2021-09-03 07:04:26 +08:00
case _CODECS_FLAG:
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
tmp = nullconst();
tmp->nctype = NC_STRING;
convert1(con,tmp);
if(tmp->nctype == NC_STRING) {
sdata = tmp->value.stringv.stringv;
tmp->value.stringv.stringv = NULL;
tmp->value.stringv.len = 0;
} else
2010-06-03 21:24:43 +08:00
derror("%s: illegal value",specialname(tag));
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
reclaimconstant(tmp);
2010-06-03 21:24:43 +08:00
break;
case _SUPERBLOCK_FLAG:
2010-06-03 21:24:43 +08:00
case _DEFLATE_FLAG:
case _QUANTIZEBG_FLAG:
case _QUANTIZEBR_FLAG:
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
tmp = nullconst();
tmp->nctype = NC_INT;
convert1(con,tmp);
if(tmp->nctype == NC_INT)
idata = tmp->value.int32v;
2010-06-03 21:24:43 +08:00
else
derror("%s: illegal value",specialname(tag));
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
reclaimconstant(tmp);
2010-06-03 21:24:43 +08:00
break;
case _CHUNKSIZES_FLAG:
case _FILLVALUE_FLAG:
/* Handle below */
break;
default: PANIC1("unexpected special tag: %d",tag);
}
2010-06-03 21:24:43 +08:00
if(tag == _FORMAT_FLAG) {
/* Watch out: this is a global attribute */
struct Kvalues* kvalue;
int found = 0;
2010-06-03 21:24:43 +08:00
/* Use the table in main.c */
for(kvalue = legalkinds; kvalue->name; kvalue++) {
if(sdata) {
if(strcmp(sdata, kvalue->name) == 0) {
globalspecials._Format = kvalue->k_flag;
/*Main.*/format_attribute = 1;
found = 1;
break;
}
}
2010-06-03 21:24:43 +08:00
}
if(!found)
derror("_Format: illegal value: %s",sdata);
} else if((GLOBAL_SPECIAL & tag) != 0) {
if(tag == _ISNETCDF4_FLAG)
globalspecials._IsNetcdf4 = tf;
else if(tag == _SUPERBLOCK_FLAG)
globalspecials._Superblock = idata;
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
else if(tag == _NCPROPS_FLAG) {
globalspecials._NCProperties = sdata;
sdata = NULL;
}
} else {
Specialdata* special;
/* Set up special info */
This PR adds EXPERIMENTAL support for accessing data in the cloud using a variant of the Zarr protocol and storage format. This enhancement is generically referred to as "NCZarr". The data model supported by NCZarr is netcdf-4 minus the user-defined types and the String type. In this sense it is similar to the CDF-5 data model. More detailed information about enabling and using NCZarr is described in the document NUG/nczarr.md and in a [Unidata Developer's blog entry](https://www.unidata.ucar.edu/blogs/developer/en/entry/overview-of-zarr-support-in). WARNING: this code has had limited testing, so do use this version for production work. Also, performance improvements are ongoing. Note especially the following platform matrix of successful tests: Platform | Build System | S3 support ------------------------------------ Linux+gcc | Automake | yes Linux+gcc | CMake | yes Visual Studio | CMake | no Additionally, and as a consequence of the addition of NCZarr, major changes have been made to the Filter API. NOTE: NCZarr does not yet support filters, but these changes are enablers for that support in the future. Note that it is possible (probable?) that there will be some accidental reversions if the changes here did not correctly mimic the existing filter testing. In any case, previously filter ids and parameters were of type unsigned int. In order to support the more general zarr filter model, this was all converted to char*. The old HDF5-specific, unsigned int operations are still supported but they are wrappers around the new, char* based nc_filterx_XXX functions. This entailed at least the following changes: 1. Added the files libdispatch/dfilterx.c and include/ncfilter.h 2. Some filterx utilities have been moved to libdispatch/daux.c 3. A new entry, "filter_actions" was added to the NCDispatch table and the version bumped. 4. An overly complex set of structs was created to support funnelling all of the filterx operations thru a single dispatch "filter_actions" entry. 5. Move common code to from libhdf5 to libsrc4 so that it is accessible to nczarr. Changes directly related to Zarr: 1. Modified CMakeList.txt and configure.ac to support both C and C++ -- this is in support of S3 support via the awd-sdk libraries. 2. Define a size64_t type to support nczarr. 3. More reworking of libdispatch/dinfermodel.c to support zarr and to regularize the structure of the fragments section of a URL. Changes not directly related to Zarr: 1. Make client-side filter registration be conditional, with default off. 2. Hack include/nc4internal.h to make some flags added by Ed be unique: e.g. NC_CREAT, NC_INDEF, etc. 3. cleanup include/nchttp.h and libdispatch/dhttp.c. 4. Misc. changes to support compiling under Visual Studio including: * Better testing under windows for dirent.h and opendir and closedir. 5. Misc. changes to the oc2 code to support various libcurl CURLOPT flags and to centralize error reporting. 6. By default, suppress the vlen tests that have unfixed memory leaks; add option to enable them. 7. Make part of the nc_test/test_byterange.sh test be contingent on remotetest.unidata.ucar.edu being accessible. Changes Left TO-DO: 1. fix provenance code, it is too HDF5 specific.
2020-06-29 08:02:47 +08:00
special = &vsym->var.special;
if(tag == _FILLVALUE_FLAG) {
/* fillvalue must be a single value*/
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
if(!isconst && datalistlen(list) != 1)
derror("_FillValue: must be a single (possibly compound) value",
vsym->name);
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
if(isconst) {
list = const2list(con);
con = NULL;
}
/* check that the attribute value contains no fill values*/
if(containsfills(list)) {
derror("Attribute data may not contain fill values (i.e. _ )");
2010-06-03 21:24:43 +08:00
}
/* _FillValue is also a real attribute*/
if(vsym->objectclass != NC_VAR) {
derror("_FillValue attribute not associated with variable: %s",vsym->name);
}
if(tsym == NULL) tsym = vsym->typ.basetype;
Support MSYS2/Mingw platform re: The current netcdf-c release has some problems with the mingw platform on windows. Mostly they are path issues. Changes to support mingw+msys2: ------------------------------- * Enable option of looking into the windows registry to find the mingw root path. In aid of proper path handling. * Add mingw+msys as a specific platform in configure.ac and move testing of the platform to the front so it is available early. * Handle mingw X libncpoco (dynamic loader) properly even though mingw does not yet support it. * Handle mingw X plugins properly even though mingw does not yet support it. * Alias pwd='pwd -W' to better handle paths in shell scripts. * Plus a number of other minor compile irritations. * Disallow the use of multiple nc_open's on the same file for windows (and mingw) because windows does not seem to handle these properly. Not sure why we did not catch this earlier. * Add mountpoint info to dpathmgr.c to help support mingw. * Cleanup dpathmgr conversions. Known problems: --------------- * I have not been able to get shared libraries to work, so plugins/filters must be disabled. * There is some kind of problem with libcurl that I have not solved, so all uses of libcurl (currently DAP+Byterange) must be disabled. Misc. other fixes: ------------------ * Cleanup the relationship between ENABLE_PLUGINS and various other flags in CMakeLists.txt and configure.ac. * Re-arrange the TESTDIRS order in Makefile.am. * Add pseudo-breakpoint to nclog.[ch] for debugging. * Improve the documentation of the path manager code in ncpathmgr.h * Add better support for relative paths in dpathmgr.c * Default the mode args to NCfopen to include "b" (binary) for windows. * Add optional debugging output in various places. * Make sure that everything builds with plugins disabled. * Fix numerous (s)printf inconsistencies betweenb the format spec and the arguments.
2021-12-24 13:18:56 +08:00
#if 0 /* No longer require matching types */
else if(vsym->typ.basetype != tsym) {
derror("_FillValue attribute type does not match variable type: %s",vsym->name);
}
Support MSYS2/Mingw platform re: The current netcdf-c release has some problems with the mingw platform on windows. Mostly they are path issues. Changes to support mingw+msys2: ------------------------------- * Enable option of looking into the windows registry to find the mingw root path. In aid of proper path handling. * Add mingw+msys as a specific platform in configure.ac and move testing of the platform to the front so it is available early. * Handle mingw X libncpoco (dynamic loader) properly even though mingw does not yet support it. * Handle mingw X plugins properly even though mingw does not yet support it. * Alias pwd='pwd -W' to better handle paths in shell scripts. * Plus a number of other minor compile irritations. * Disallow the use of multiple nc_open's on the same file for windows (and mingw) because windows does not seem to handle these properly. Not sure why we did not catch this earlier. * Add mountpoint info to dpathmgr.c to help support mingw. * Cleanup dpathmgr conversions. Known problems: --------------- * I have not been able to get shared libraries to work, so plugins/filters must be disabled. * There is some kind of problem with libcurl that I have not solved, so all uses of libcurl (currently DAP+Byterange) must be disabled. Misc. other fixes: ------------------ * Cleanup the relationship between ENABLE_PLUGINS and various other flags in CMakeLists.txt and configure.ac. * Re-arrange the TESTDIRS order in Makefile.am. * Add pseudo-breakpoint to nclog.[ch] for debugging. * Improve the documentation of the path manager code in ncpathmgr.h * Add better support for relative paths in dpathmgr.c * Default the mode args to NCfopen to include "b" (binary) for windows. * Add optional debugging output in various places. * Make sure that everything builds with plugins disabled. * Fix numerous (s)printf inconsistencies betweenb the format spec and the arguments.
2021-12-24 13:18:56 +08:00
#endif
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
special->_Fillvalue = clonedatalist(list);
/* Create the corresponding attribute */
attr = makeattribute(install("_FillValue"),vsym,tsym,list,ATTRVAR);
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
list = NULL;
} else switch (tag) {
2015-08-16 06:26:35 +08:00
/* These will be output as attributes later */
case _STORAGE_FLAG:
if(!sdata)
derror("_Storage: illegal NULL value");
else if(strcmp(sdata,"contiguous") == 0)
special->_Storage = NC_CONTIGUOUS;
else if(strcmp(sdata,"compact") == 0)
special->_Storage = NC_COMPACT;
else if(strcmp(sdata,"chunked") == 0)
special->_Storage = NC_CHUNKED;
else
derror("_Storage: illegal value: %s",sdata);
special->flags |= _STORAGE_FLAG;
break;
case _FLETCHER32_FLAG:
special->_Fletcher32 = tf;
special->flags |= _FLETCHER32_FLAG;
break;
case _DEFLATE_FLAG:
special->_DeflateLevel = idata;
special->flags |= _DEFLATE_FLAG;
break;
case _QUANTIZEBG_FLAG:
special->_Quantizer = NC_QUANTIZE_BITGROOM;
special->_NSD = idata;
special->flags |= _QUANTIZEBG_FLAG;
break;
case _QUANTIZEBR_FLAG:
special->_Quantizer = NC_QUANTIZE_GRANULARBR;
special->_NSD = idata;
special->flags |= _QUANTIZEBR_FLAG;
break;
case _SHUFFLE_FLAG:
special->_Shuffle = tf;
special->flags |= _SHUFFLE_FLAG;
break;
case _ENDIAN_FLAG:
if(!sdata)
derror("_Endianness: illegal NULL value");
else if(strcmp(sdata,"little") == 0)
special->_Endianness = 1;
else if(strcmp(sdata,"big") == 0)
special->_Endianness = 2;
else
derror("_Endianness: illegal value: %s",sdata);
special->flags |= _ENDIAN_FLAG;
break;
case _NOFILL_FLAG:
special->_Fill = (1 - tf); /* negate */
special->flags |= _NOFILL_FLAG;
break;
case _CHUNKSIZES_FLAG: {
int i;
list = (isconst ? const2list(con) : list);
special->nchunks = list->length;
2017-10-31 05:52:08 +08:00
special->_ChunkSizes = (size_t*)ecalloc(sizeof(size_t)*special->nchunks);
for(i=0;i<special->nchunks;i++) {
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
tmp = nullconst();
tmp->nctype = NC_INT;
convert1(list->data[i],tmp);
if(tmp->nctype == NC_INT) {
special->_ChunkSizes[i] = (size_t)tmp->value.int32v;
} else {
efree(special->_ChunkSizes);
derror("%s: illegal value",specialname(tag));
}
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
reclaimconstant(tmp);
}
special->flags |= _CHUNKSIZES_FLAG;
/* Chunksizes => storage == chunked */
special->flags |= _STORAGE_FLAG;
special->_Storage = NC_CHUNKED;
} break;
case _FILTER_FLAG:
#ifdef USE_NETCDF4
/* Parse the filter spec */
if(parsefilterflag(sdata,special) == NC_NOERR)
special->flags |= _FILTER_FLAG;
else {
2019-09-18 10:27:43 +08:00
derror("_Filter: unparsable filter spec: %s",sdata);
}
#else
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
derror("%s: the filter attribute requires netcdf-4 to be enabled",specialname(tag));
Add filter support to NCZarr Filter support has three goals: 1. Use the existing HDF5 filter implementations, 2. Allow filter metadata to be stored in the NumCodecs metadata format used by Zarr, 3. Allow filters to be used even when HDF5 is disabled Detailed usage directions are define in docs/filters.md. For now, the existing filter API is left in place. So filters are defined using ''nc_def_var_filter'' using the HDF5 style where the id and parameters are unsigned integers. This is a big change since filters affect many parts of the code. In the following, the terms "compressor" and "filter" and "codec" are generally used synonomously. ### Filter-Related Changes: * In order to support dynamic loading of shared filter libraries, a new library was added in the libncpoco directory; it helps to isolate dynamic loading across multiple platforms. * Provide a json parsing library for use by plugins; this is created by merging libdispatch/ncjson.c with include/ncjson.h. * Add a new _Codecs attribute to allow clients to see what codecs are being used; let ncdump -s print it out. * Provide special headers to help support compilation of HDF5 filters when HDF5 is not enabled: netcdf_filter_hdf5_build.h and netcdf_filter_build.h. * Add a number of new test to test the new nczarr filters. * Let ncgen parse _Codecs attribute, although it is ignored. ### Plugin directory changes: * Add support for the Blosc compressor; this is essential because it is the most common compressor used in Zarr datasets. This also necessitated adding a CMake FindBlosc.cmake file * Add NCZarr support for the big-four filters provided by HDF5: shuffle, fletcher32, deflate (zlib), and szip * Add a Codec defaulter (see docs/filters.md) for the big four filters. * Make plugins work with windows by properly adding __declspec declaration. ### Misc. Non-Filter Changes * Replace most uses of USE_NETCDF4 (deprecated) with USE_HDF5. * Improve support for caching * More fixes for path conversion code * Fix misc. memory leaks * Add new utility -- ncdump/ncpathcvt -- that does more or less the same thing as cygpath. * Add a number of new test to test the non-filter fixes. * Update the parsers * Convert most instances of '#ifdef _MSC_VER' to '#ifdef _WIN32'
2021-09-03 07:04:26 +08:00
#endif
break;
case _CODECS_FLAG:
#ifdef USE_NETCDF4
/* Parse the codec spec */
if(parsecodecsflag(sdata,special) == NC_NOERR)
special->flags |= _CODECS_FLAG;
else {
derror("_Codecs: unparsable codec spec: %s",sdata);
}
#else
derror("%s: the _Codecs attribute requires netcdf-4 to be enabled",specialname(tag));
#endif
break;
default: PANIC1("makespecial: illegal token: %d",tag);
}
}
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
if(sdata) efree(sdata);
if(con) reclaimconstant(con);
if(list) reclaimdatalist(list);
2010-06-03 21:24:43 +08:00
return attr;
}
static Symbol*
makeattribute(Symbol* asym,
Symbol* vsym,
Symbol* tsym,
Datalist* data,
Attrkind kind) /* global var or unknown*/
{
asym->objectclass = NC_ATT;
asym->data = data;
switch (kind) {
case ATTRVAR:
asym->att.var = vsym;
asym->typ.basetype = tsym;
listpush(attdefs,(void*)asym);
addtogroup(asym);
2010-06-03 21:24:43 +08:00
break;
case ATTRGLOBAL:
asym->att.var = NULL; /* NULL => NC_GLOBAL*/
asym->typ.basetype = tsym;
listpush(gattdefs,(void*)asym);
addtogroup(asym);
2010-06-03 21:24:43 +08:00
break;
default: PANIC1("unexpected attribute type: %d",kind);
}
/* finally; check that the attribute value contains no fill values*/
if(containsfills(data)) {
derror("Attribute data may not contain fill values (i.e. _ ): %s",asym->name);
}
return asym;
}
static long long
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
extractint(NCConstant* con)
{
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
switch (con->nctype) {
case NC_BYTE: return (long long)(con->value.int8v);
case NC_SHORT: return (long long)(con->value.int16v);
case NC_INT: return (long long)(con->value.int32v);
case NC_UBYTE: return (long long)(con->value.uint8v);
case NC_USHORT: return (long long)(con->value.uint16v);
case NC_UINT: return (long long)(con->value.uint32v);
case NC_INT64: return (long long)(con->value.int64v);
default:
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
derror("Not a signed integer type: %d",con->nctype);
break;
}
return 0;
}
2010-06-03 21:24:43 +08:00
static int
containsfills(Datalist* list)
{
if(list != NULL) {
int i;
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
NCConstant** cons = list->data;
for(i=0;i<list->length;i++) {
if(cons[i]->nctype == NC_COMPOUND) {
if(containsfills(cons[i]->value.compoundv)) return 1;
} else if(cons[i]->nctype == NC_FILLVALUE)
2017-11-01 04:03:57 +08:00
return 1;
}
2010-06-03 21:24:43 +08:00
}
return 0;
}
/*
Try to infer the file type from the
kinds of constructs used in the cdl file.
*/
static void
vercheck(int tid)
{
switch (tid) {
case NC_UBYTE: markcdf4("netCDF4/5 type: UBYTE"); break;
case NC_USHORT: markcdf4("netCDF4/5 type: USHORT"); break;
case NC_UINT: markcdf4("netCDF4/5 type: UINT"); break;
case NC_INT64: markcdf4("netCDF4/5 type: INT64"); break;
case NC_UINT64: markcdf4("netCDF4/5 type: UINT64"); break;
case NC_STRING: markcdf4("netCDF4 type: STRING"); break;
case NC_VLEN: markcdf4("netCDF4 type: VLEN"); break;
case NC_OPAQUE: markcdf4("netCDF4 type: OPAQUE"); break;
case NC_ENUM: markcdf4("netCDF4 type: ENUM"); break;
case NC_COMPOUND: markcdf4("netCDF4 type: COMPOUND"); break;
default: break;
}
}
const char*
specialname(int tag)
{
struct Specialtoken* spp = specials;
for(;spp->name;spp++) {
if(spp->tag == tag)
return spp->name;
}
return "<unknown>";
}
#ifdef USE_NETCDF4
/*
Parse a filter spec string and store it in special
*/
static int
parsefilterflag(const char* sdata, Specialdata* special)
{
int stat = NC_NOERR;
if(sdata == NULL || strlen(sdata) == 0) return NC_EINVAL;
Mostly revert the filter code to reduce its complexity of use. re: https://github.com/Unidata/netcdf-c/issues/1836 Revert the internal filter code to simplify it. From the user's point of view, the only visible changes should be: 1. The functions that convert text to filter specs have had their signature reverted and have been moved to netcdf_aux.h 2. Some filter API functions now return NC_ENOFILTER when inquiry is made about some filter. Internally,the dispatch table has been modified to get rid of the filter_actions entry and associated complex structures. It has been replaced with inq_var_filter_ids and inq_var_filter_info entries and the dispatch table version has been bumped to 3. Corresponding NOOP and NOTNC4 functions were added to libdispatch/dnotnc4.c. Also, the filter_action entries in dispatch tables were replaced for all dispatch code bases (HDF5, DAP2, etc). This should only impact UDF users. In the process, it became clear that the form of the filters field in NC_VAR_INFO_T was format dependent, so I converted it to be of type void* and pushed its management into the various dispatch code bases. Specifically libhdf5 and libnczarr now manage the filters field in their own way. The auxilliary functions for parsing textual filter specifications were moved to netcdf_aux.h and were renamed to the following: * ncaux_h5filterspec_parse * ncaux_h5filterspec_parselist * ncaux_h5filterspec_free * ncaux_h5filter_fix8 Misc. Other Changes: 1. Document NUG/filters.md updated to reflect the changes above. 2. All the old data types (structs and enums) used by filter_actions actions were deleted. The exception is the NC_H5_Filterspec because it is needed by ncaux_h5filterspec_parselist. 3. Clientside filters were removed -- another enhancement for which no-one ever asked. 4. The ability to remove filters was itself removed. 5. Some functionality needed by nczarr was moved from libhdf5 to libsrc4 e.g. nc4_find_default_chunksizes 6. All the filterx code was removed 7. ncfilter.h and nc4filter.c no longer used Misc. Unrelated Changes: 1. The nczarr_test makefile clean was leaving some directories; so add clean-local to take care of them.
2020-09-28 02:43:46 +08:00
stat = ncaux_h5filterspec_parselist(sdata, NULL, &special->nfilters, &special->_Filters);
if(stat)
derror("Malformed filter spec: %s",sdata);
Add support for multiple filters per variable. re: https://github.com/Unidata/netcdf-c/issues/1584 Support has been added for multiple filters per variable. This affects a number of components in netcdf. The new APIs are documented in NUG/filters.md. The primary changes are: * A set of new functions are provided (see __include/netcdf_filter.h__). - Obtain a list of the filters associated with a variable - Obtain the parameters for a specific filter. * The existing __nc_inq_var_filter__ function now returns info about the first defined filter. * The utilities (ncgen, ncdump, and nccopy) now support an extended format for specifying a sequence of filters. The general form is __<filter>|<filter>..._. * The ncdump **_Filter** attribute now dumps a list of all the filters associated with a variable using the above new format. * Filter specifications can now use a filter name instead of number for filters known to the netcdf library, which in turn is taken from the HDF5 filter registration page. * New errors are defined: NC_EFILTER and NC_ENOFILTER. The latter is returned if an attempt is made to access an unknown filter. * Internally, the dispatch table has been extended to add a function to handle all of the filter functions. * New, filter-related, tests were added to nc_test4. * A new plugin was added to the plugins directory to help with testing. Notes: 1. The shuffle and fletcher32 filters are not part of the multifilter system. Misc. changes: 1. A debug module was added to libhdf5 to help catch error locations.
2020-02-17 03:59:33 +08:00
#ifdef GENDEBUG1
printfilters(special->nfilters,special->_Filters);
#endif
return stat;
}
Add filter support to NCZarr Filter support has three goals: 1. Use the existing HDF5 filter implementations, 2. Allow filter metadata to be stored in the NumCodecs metadata format used by Zarr, 3. Allow filters to be used even when HDF5 is disabled Detailed usage directions are define in docs/filters.md. For now, the existing filter API is left in place. So filters are defined using ''nc_def_var_filter'' using the HDF5 style where the id and parameters are unsigned integers. This is a big change since filters affect many parts of the code. In the following, the terms "compressor" and "filter" and "codec" are generally used synonomously. ### Filter-Related Changes: * In order to support dynamic loading of shared filter libraries, a new library was added in the libncpoco directory; it helps to isolate dynamic loading across multiple platforms. * Provide a json parsing library for use by plugins; this is created by merging libdispatch/ncjson.c with include/ncjson.h. * Add a new _Codecs attribute to allow clients to see what codecs are being used; let ncdump -s print it out. * Provide special headers to help support compilation of HDF5 filters when HDF5 is not enabled: netcdf_filter_hdf5_build.h and netcdf_filter_build.h. * Add a number of new test to test the new nczarr filters. * Let ncgen parse _Codecs attribute, although it is ignored. ### Plugin directory changes: * Add support for the Blosc compressor; this is essential because it is the most common compressor used in Zarr datasets. This also necessitated adding a CMake FindBlosc.cmake file * Add NCZarr support for the big-four filters provided by HDF5: shuffle, fletcher32, deflate (zlib), and szip * Add a Codec defaulter (see docs/filters.md) for the big four filters. * Make plugins work with windows by properly adding __declspec declaration. ### Misc. Non-Filter Changes * Replace most uses of USE_NETCDF4 (deprecated) with USE_HDF5. * Improve support for caching * More fixes for path conversion code * Fix misc. memory leaks * Add new utility -- ncdump/ncpathcvt -- that does more or less the same thing as cygpath. * Add a number of new test to test the non-filter fixes. * Update the parsers * Convert most instances of '#ifdef _MSC_VER' to '#ifdef _WIN32'
2021-09-03 07:04:26 +08:00
/*
Store a Codecs spec string in special
*/
static int
parsecodecsflag(const char* sdata, Specialdata* special)
{
int stat = NC_NOERR;
if(sdata == NULL || strlen(sdata) == 0) return NC_EINVAL;
if((special->_Codecs = strdup(sdata))==NULL)
return NC_ENOMEM;
return stat;
}
#endif
2011-09-16 00:57:16 +08:00
/*
2011-09-17 02:36:08 +08:00
Since the arguments are all simple constants,
2011-09-16 00:57:16 +08:00
we can evaluate the function immediately
and return its value.
2011-09-17 02:36:08 +08:00
Note that currently, only a single value can
be returned.
2011-09-16 00:57:16 +08:00
*/
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
static NCConstant*
2011-09-16 00:57:16 +08:00
evaluate(Symbol* fcn, Datalist* arglist)
{
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
NCConstant* result = nullconst();
2011-09-16 00:57:16 +08:00
/* prepare the result */
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
result->lineno = fcn->lineno;
2011-09-16 00:57:16 +08:00
if(strcasecmp(fcn->name,"time") == 0) {
2011-09-17 02:36:08 +08:00
char* timekind = NULL;
char* timevalue = NULL;
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
result->nctype = NC_DOUBLE;
result->value.doublev = 0;
2011-09-17 02:36:08 +08:00
/* int time([string],string) */
switch (arglist->length) {
case 2:
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
if(arglist->data[1]->nctype != NC_STRING) {
2011-09-17 02:36:08 +08:00
derror("Expected function signature: time([string,]string)");
2011-09-16 00:57:16 +08:00
goto done;
}
2011-09-17 02:36:08 +08:00
/* fall thru */
case 1:
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
if(arglist->data[0]->nctype != NC_STRING) {
2011-09-17 02:36:08 +08:00
derror("Expected function signature: time([string,]string)");
2011-09-16 00:57:16 +08:00
goto done;
}
2011-09-17 02:36:08 +08:00
break;
case 0:
default:
2011-09-17 02:36:08 +08:00
derror("Expected function signature: time([string,]string)");
goto done;
2011-09-16 00:57:16 +08:00
}
2011-09-17 02:36:08 +08:00
if(arglist->length == 2) {
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
timekind = arglist->data[0]->value.stringv.stringv;
timevalue = arglist->data[1]->value.stringv.stringv;
2011-09-17 02:36:08 +08:00
} else
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
timevalue = arglist->data[0]->value.stringv.stringv;
2011-09-17 02:36:08 +08:00
if(timekind == NULL) { /* use cd time as the default */
cdCompTime comptime;
CdTime cdtime;
cdCalenType timetype = cdStandard;
cdChar2Comp(timetype,timevalue,&comptime);
/* convert comptime to cdTime */
cdtime.year = comptime.year;
2011-09-17 02:36:08 +08:00
cdtime.month = comptime.month;
cdtime.day = comptime.day;
2011-09-17 02:36:08 +08:00
cdtime.hour = comptime.hour;
cdtime.baseYear = 1970;
cdtime.timeType = CdChron;
/* convert to double value */
Fix more memory leaks in netcdf-c library This is a follow up to PR https://github.com/Unidata/netcdf-c/pull/1173 Sorry that it is so big, but leak suppression can be complex. This PR fixes all remaining memory leaks -- as determined by -fsanitize=address, and with the exceptions noted below. Unfortunately. there remains a significant leak that I cannot solve. It involves vlens, and it is unclear if the leak is occurring in the netcdf-c library or the HDF5 library. I have added a check_PROGRAM to the ncdump directory to show the problem. The program is called tst_vlen_demo.c To exercise it, build the netcdf library with -fsanitize=address enabled. Then go into ncdump and do a "make clean check". This should build tst_vlen_demo without actually executing it. Then do the command "./tst_vlen_demo" to see the output of the memory checker. Note the the lost malloc is deep in the HDF5 library (in H5Tvlen.c). I am temporarily working around this error in the following way. 1. I modified several test scripts to not execute known vlen tests that fail as described above. 2. Added an environment variable called NC_VLEN_NOTEST. If set, then those specific tests are suppressed. This should mean that the --disable-utilities option to ./configure should not need to be set to get a memory leak clean build. This should allow for detection of any new leaks. Note: I used an environment variable rather than a ./configure option to control the vlen tests. This is because it is temporary (I hope) and because it is a bit tricky for shell scripts to access ./configure options. Finally, as before, this only been tested with netcdf-4 and hdf5 support.
2018-11-16 01:00:38 +08:00
Cdh2e(&cdtime,&result->value.doublev);
2011-09-17 02:36:08 +08:00
} else {
derror("Time conversion '%s' not supported",timekind);
goto done;
}
} else { /* Unknown function */
2011-09-16 00:57:16 +08:00
derror("Unknown function name: %s",fcn->name);
goto done;
}
done:
return result;
}
Add support for multiple filters per variable. re: https://github.com/Unidata/netcdf-c/issues/1584 Support has been added for multiple filters per variable. This affects a number of components in netcdf. The new APIs are documented in NUG/filters.md. The primary changes are: * A set of new functions are provided (see __include/netcdf_filter.h__). - Obtain a list of the filters associated with a variable - Obtain the parameters for a specific filter. * The existing __nc_inq_var_filter__ function now returns info about the first defined filter. * The utilities (ncgen, ncdump, and nccopy) now support an extended format for specifying a sequence of filters. The general form is __<filter>|<filter>..._. * The ncdump **_Filter** attribute now dumps a list of all the filters associated with a variable using the above new format. * Filter specifications can now use a filter name instead of number for filters known to the netcdf library, which in turn is taken from the HDF5 filter registration page. * New errors are defined: NC_EFILTER and NC_ENOFILTER. The latter is returned if an attempt is made to access an unknown filter. * Internally, the dispatch table has been extended to add a function to handle all of the filter functions. * New, filter-related, tests were added to nc_test4. * A new plugin was added to the plugins directory to help with testing. Notes: 1. The shuffle and fletcher32 filters are not part of the multifilter system. Misc. changes: 1. A debug module was added to libhdf5 to help catch error locations.
2020-02-17 03:59:33 +08:00
#ifdef GENDEBUG1
static void
printfilters(int nfilters, NC_FilterSpec** filters)
Add support for multiple filters per variable. re: https://github.com/Unidata/netcdf-c/issues/1584 Support has been added for multiple filters per variable. This affects a number of components in netcdf. The new APIs are documented in NUG/filters.md. The primary changes are: * A set of new functions are provided (see __include/netcdf_filter.h__). - Obtain a list of the filters associated with a variable - Obtain the parameters for a specific filter. * The existing __nc_inq_var_filter__ function now returns info about the first defined filter. * The utilities (ncgen, ncdump, and nccopy) now support an extended format for specifying a sequence of filters. The general form is __<filter>|<filter>..._. * The ncdump **_Filter** attribute now dumps a list of all the filters associated with a variable using the above new format. * Filter specifications can now use a filter name instead of number for filters known to the netcdf library, which in turn is taken from the HDF5 filter registration page. * New errors are defined: NC_EFILTER and NC_ENOFILTER. The latter is returned if an attempt is made to access an unknown filter. * Internally, the dispatch table has been extended to add a function to handle all of the filter functions. * New, filter-related, tests were added to nc_test4. * A new plugin was added to the plugins directory to help with testing. Notes: 1. The shuffle and fletcher32 filters are not part of the multifilter system. Misc. changes: 1. A debug module was added to libhdf5 to help catch error locations.
2020-02-17 03:59:33 +08:00
{
int i;
fprintf(stderr,"xxx: nfilters=%lu: ",(unsigned long)nfilters);
for(i=0;i<nfilters;i++) {
int k;
This PR adds EXPERIMENTAL support for accessing data in the cloud using a variant of the Zarr protocol and storage format. This enhancement is generically referred to as "NCZarr". The data model supported by NCZarr is netcdf-4 minus the user-defined types and the String type. In this sense it is similar to the CDF-5 data model. More detailed information about enabling and using NCZarr is described in the document NUG/nczarr.md and in a [Unidata Developer's blog entry](https://www.unidata.ucar.edu/blogs/developer/en/entry/overview-of-zarr-support-in). WARNING: this code has had limited testing, so do use this version for production work. Also, performance improvements are ongoing. Note especially the following platform matrix of successful tests: Platform | Build System | S3 support ------------------------------------ Linux+gcc | Automake | yes Linux+gcc | CMake | yes Visual Studio | CMake | no Additionally, and as a consequence of the addition of NCZarr, major changes have been made to the Filter API. NOTE: NCZarr does not yet support filters, but these changes are enablers for that support in the future. Note that it is possible (probable?) that there will be some accidental reversions if the changes here did not correctly mimic the existing filter testing. In any case, previously filter ids and parameters were of type unsigned int. In order to support the more general zarr filter model, this was all converted to char*. The old HDF5-specific, unsigned int operations are still supported but they are wrappers around the new, char* based nc_filterx_XXX functions. This entailed at least the following changes: 1. Added the files libdispatch/dfilterx.c and include/ncfilter.h 2. Some filterx utilities have been moved to libdispatch/daux.c 3. A new entry, "filter_actions" was added to the NCDispatch table and the version bumped. 4. An overly complex set of structs was created to support funnelling all of the filterx operations thru a single dispatch "filter_actions" entry. 5. Move common code to from libhdf5 to libsrc4 so that it is accessible to nczarr. Changes directly related to Zarr: 1. Modified CMakeList.txt and configure.ac to support both C and C++ -- this is in support of S3 support via the awd-sdk libraries. 2. Define a size64_t type to support nczarr. 3. More reworking of libdispatch/dinfermodel.c to support zarr and to regularize the structure of the fragments section of a URL. Changes not directly related to Zarr: 1. Make client-side filter registration be conditional, with default off. 2. Hack include/nc4internal.h to make some flags added by Ed be unique: e.g. NC_CREAT, NC_INDEF, etc. 3. cleanup include/nchttp.h and libdispatch/dhttp.c. 4. Misc. changes to support compiling under Visual Studio including: * Better testing under windows for dirent.h and opendir and closedir. 5. Misc. changes to the oc2 code to support various libcurl CURLOPT flags and to centralize error reporting. 6. By default, suppress the vlen tests that have unfixed memory leaks; add option to enable them. 7. Make part of the nc_test/test_byterange.sh test be contingent on remotetest.unidata.ucar.edu being accessible. Changes Left TO-DO: 1. fix provenance code, it is too HDF5 specific.
2020-06-29 08:02:47 +08:00
NC_Filterspec* sp = filters[i];
Add support for multiple filters per variable. re: https://github.com/Unidata/netcdf-c/issues/1584 Support has been added for multiple filters per variable. This affects a number of components in netcdf. The new APIs are documented in NUG/filters.md. The primary changes are: * A set of new functions are provided (see __include/netcdf_filter.h__). - Obtain a list of the filters associated with a variable - Obtain the parameters for a specific filter. * The existing __nc_inq_var_filter__ function now returns info about the first defined filter. * The utilities (ncgen, ncdump, and nccopy) now support an extended format for specifying a sequence of filters. The general form is __<filter>|<filter>..._. * The ncdump **_Filter** attribute now dumps a list of all the filters associated with a variable using the above new format. * Filter specifications can now use a filter name instead of number for filters known to the netcdf library, which in turn is taken from the HDF5 filter registration page. * New errors are defined: NC_EFILTER and NC_ENOFILTER. The latter is returned if an attempt is made to access an unknown filter. * Internally, the dispatch table has been extended to add a function to handle all of the filter functions. * New, filter-related, tests were added to nc_test4. * A new plugin was added to the plugins directory to help with testing. Notes: 1. The shuffle and fletcher32 filters are not part of the multifilter system. Misc. changes: 1. A debug module was added to libhdf5 to help catch error locations.
2020-02-17 03:59:33 +08:00
fprintf(stderr,"{");
fprintf(stderr,"filterid=%llu format=%d nparams=%lu params=%p",
Add support for multiple filters per variable. re: https://github.com/Unidata/netcdf-c/issues/1584 Support has been added for multiple filters per variable. This affects a number of components in netcdf. The new APIs are documented in NUG/filters.md. The primary changes are: * A set of new functions are provided (see __include/netcdf_filter.h__). - Obtain a list of the filters associated with a variable - Obtain the parameters for a specific filter. * The existing __nc_inq_var_filter__ function now returns info about the first defined filter. * The utilities (ncgen, ncdump, and nccopy) now support an extended format for specifying a sequence of filters. The general form is __<filter>|<filter>..._. * The ncdump **_Filter** attribute now dumps a list of all the filters associated with a variable using the above new format. * Filter specifications can now use a filter name instead of number for filters known to the netcdf library, which in turn is taken from the HDF5 filter registration page. * New errors are defined: NC_EFILTER and NC_ENOFILTER. The latter is returned if an attempt is made to access an unknown filter. * Internally, the dispatch table has been extended to add a function to handle all of the filter functions. * New, filter-related, tests were added to nc_test4. * A new plugin was added to the plugins directory to help with testing. Notes: 1. The shuffle and fletcher32 filters are not part of the multifilter system. Misc. changes: 1. A debug module was added to libhdf5 to help catch error locations.
2020-02-17 03:59:33 +08:00
sp->filterid,sp->format,(unsigned long)sp->nparams,sp->params);
This PR adds EXPERIMENTAL support for accessing data in the cloud using a variant of the Zarr protocol and storage format. This enhancement is generically referred to as "NCZarr". The data model supported by NCZarr is netcdf-4 minus the user-defined types and the String type. In this sense it is similar to the CDF-5 data model. More detailed information about enabling and using NCZarr is described in the document NUG/nczarr.md and in a [Unidata Developer's blog entry](https://www.unidata.ucar.edu/blogs/developer/en/entry/overview-of-zarr-support-in). WARNING: this code has had limited testing, so do use this version for production work. Also, performance improvements are ongoing. Note especially the following platform matrix of successful tests: Platform | Build System | S3 support ------------------------------------ Linux+gcc | Automake | yes Linux+gcc | CMake | yes Visual Studio | CMake | no Additionally, and as a consequence of the addition of NCZarr, major changes have been made to the Filter API. NOTE: NCZarr does not yet support filters, but these changes are enablers for that support in the future. Note that it is possible (probable?) that there will be some accidental reversions if the changes here did not correctly mimic the existing filter testing. In any case, previously filter ids and parameters were of type unsigned int. In order to support the more general zarr filter model, this was all converted to char*. The old HDF5-specific, unsigned int operations are still supported but they are wrappers around the new, char* based nc_filterx_XXX functions. This entailed at least the following changes: 1. Added the files libdispatch/dfilterx.c and include/ncfilter.h 2. Some filterx utilities have been moved to libdispatch/daux.c 3. A new entry, "filter_actions" was added to the NCDispatch table and the version bumped. 4. An overly complex set of structs was created to support funnelling all of the filterx operations thru a single dispatch "filter_actions" entry. 5. Move common code to from libhdf5 to libsrc4 so that it is accessible to nczarr. Changes directly related to Zarr: 1. Modified CMakeList.txt and configure.ac to support both C and C++ -- this is in support of S3 support via the awd-sdk libraries. 2. Define a size64_t type to support nczarr. 3. More reworking of libdispatch/dinfermodel.c to support zarr and to regularize the structure of the fragments section of a URL. Changes not directly related to Zarr: 1. Make client-side filter registration be conditional, with default off. 2. Hack include/nc4internal.h to make some flags added by Ed be unique: e.g. NC_CREAT, NC_INDEF, etc. 3. cleanup include/nchttp.h and libdispatch/dhttp.c. 4. Misc. changes to support compiling under Visual Studio including: * Better testing under windows for dirent.h and opendir and closedir. 5. Misc. changes to the oc2 code to support various libcurl CURLOPT flags and to centralize error reporting. 6. By default, suppress the vlen tests that have unfixed memory leaks; add option to enable them. 7. Make part of the nc_test/test_byterange.sh test be contingent on remotetest.unidata.ucar.edu being accessible. Changes Left TO-DO: 1. fix provenance code, it is too HDF5 specific.
2020-06-29 08:02:47 +08:00
if(sp->nparams > 0 && sp->params != NULL) {
Add support for multiple filters per variable. re: https://github.com/Unidata/netcdf-c/issues/1584 Support has been added for multiple filters per variable. This affects a number of components in netcdf. The new APIs are documented in NUG/filters.md. The primary changes are: * A set of new functions are provided (see __include/netcdf_filter.h__). - Obtain a list of the filters associated with a variable - Obtain the parameters for a specific filter. * The existing __nc_inq_var_filter__ function now returns info about the first defined filter. * The utilities (ncgen, ncdump, and nccopy) now support an extended format for specifying a sequence of filters. The general form is __<filter>|<filter>..._. * The ncdump **_Filter** attribute now dumps a list of all the filters associated with a variable using the above new format. * Filter specifications can now use a filter name instead of number for filters known to the netcdf library, which in turn is taken from the HDF5 filter registration page. * New errors are defined: NC_EFILTER and NC_ENOFILTER. The latter is returned if an attempt is made to access an unknown filter. * Internally, the dispatch table has been extended to add a function to handle all of the filter functions. * New, filter-related, tests were added to nc_test4. * A new plugin was added to the plugins directory to help with testing. Notes: 1. The shuffle and fletcher32 filters are not part of the multifilter system. Misc. changes: 1. A debug module was added to libhdf5 to help catch error locations.
2020-02-17 03:59:33 +08:00
fprintf(stderr," params={");
for(k=0;k<sp->nparams;k++) {
if(i==0) fprintf(stderr,",");
fprintf(stderr,"%u",sp->params[i]);
Add support for multiple filters per variable. re: https://github.com/Unidata/netcdf-c/issues/1584 Support has been added for multiple filters per variable. This affects a number of components in netcdf. The new APIs are documented in NUG/filters.md. The primary changes are: * A set of new functions are provided (see __include/netcdf_filter.h__). - Obtain a list of the filters associated with a variable - Obtain the parameters for a specific filter. * The existing __nc_inq_var_filter__ function now returns info about the first defined filter. * The utilities (ncgen, ncdump, and nccopy) now support an extended format for specifying a sequence of filters. The general form is __<filter>|<filter>..._. * The ncdump **_Filter** attribute now dumps a list of all the filters associated with a variable using the above new format. * Filter specifications can now use a filter name instead of number for filters known to the netcdf library, which in turn is taken from the HDF5 filter registration page. * New errors are defined: NC_EFILTER and NC_ENOFILTER. The latter is returned if an attempt is made to access an unknown filter. * Internally, the dispatch table has been extended to add a function to handle all of the filter functions. * New, filter-related, tests were added to nc_test4. * A new plugin was added to the plugins directory to help with testing. Notes: 1. The shuffle and fletcher32 filters are not part of the multifilter system. Misc. changes: 1. A debug module was added to libhdf5 to help catch error locations.
2020-02-17 03:59:33 +08:00
}
fprintf(stderr,"}");
} else
fprintf(stderr,"params=NULL");
fprintf(stderr,"}");
}
fprintf(stderr,"\n");
fflush(stderr);
}
#endif