nasm/float.c
H. Peter Anvin ea6e34db64 NASM 0.91
2002-04-30 20:51:32 +00:00

390 lines
9.0 KiB
C

/* float.c floating-point constant support for the Netwide Assembler
*
* The Netwide Assembler is copyright (C) 1996 Simon Tatham and
* Julian Hall. All rights reserved. The software is
* redistributable under the licence given in the file "Licence"
* distributed in the NASM archive.
*
* initial version 13/ix/96 by Simon Tatham
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "nasm.h"
#define TRUE 1
#define FALSE 0
#define MANT_WORDS 6 /* 64 bits + 32 for accuracy == 96 */
#define MANT_DIGITS 28 /* 29 digits don't fit in 96 bits */
/*
* guaranteed top bit of from is set
* => we only have to worry about _one_ bit shift to the left
*/
static int multiply(unsigned short *to, unsigned short *from) {
unsigned long temp[MANT_WORDS*2];
int i, j;
for (i=0; i<MANT_WORDS*2; i++)
temp[i] = 0;
for (i=0; i<MANT_WORDS; i++)
for (j=0; j<MANT_WORDS; j++) {
unsigned long n;
n = (unsigned long)to[i] * (unsigned long)from[j];
temp[i+j] += n >> 16;
temp[i+j+1] += n & 0xFFFF;
}
for (i=MANT_WORDS*2; --i ;) {
temp[i-1] += temp[i] >> 16;
temp[i] &= 0xFFFF;
}
if (temp[0] & 0x8000) {
for (i=0; i<MANT_WORDS; i++)
to[i] = temp[i] & 0xFFFF;
return 0;
} else {
for (i=0; i<MANT_WORDS; i++)
to[i] = (temp[i] << 1) + !!(temp[i+1] & 0x8000);
return -1;
}
}
static void flconvert(char *string, unsigned short *mant, long *exponent) {
char digits[MANT_DIGITS], *p, *q, *r;
unsigned short mult[MANT_WORDS], *m, bit;
long tenpwr, twopwr;
int extratwos, started, seendot;
p = digits;
tenpwr = 0;
started = seendot = FALSE;
while (*string && *string != 'E' && *string != 'e') {
if (*string == '.') {
if (!seendot)
seendot = TRUE;
else {
fprintf(stderr, "too many periods!\n");
return;
}
} else if (*string >= '0' && *string <= '9') {
if (*string == '0' && !started) {
if (seendot)
tenpwr--;
} else {
started = TRUE;
if (p < digits+sizeof(digits))
*p++ = *string - '0';
if (!seendot)
tenpwr++;
}
} else {
fprintf(stderr, "`%c' is invalid char\n", *string);
return;
}
string++;
}
if (*string) {
string++; /* eat the E */
tenpwr += atoi(string);
}
/*
* At this point, the memory interval [digits,p) contains a
* series of decimal digits zzzzzzz such that our number X
* satisfies
*
* X = 0.zzzzzzz * 10^tenpwr
*/
bit = 0x8000;
for (m=mant; m<mant+MANT_WORDS; m++)
*m = 0;
m = mant;
q = digits;
started = FALSE;
twopwr = 0;
while (m < mant+MANT_WORDS) {
unsigned short carry = 0;
while (p > q && !p[-1])
p--;
if (p <= q)
break;
for (r = p; r-- > q ;) {
int i;
i = 2 * *r + carry;
if (i >= 10)
carry = 1, i -= 10;
else
carry = 0;
*r = i;
}
if (carry)
*m |= bit, started = TRUE;
if (started) {
if (bit == 1)
bit = 0x8000, m++;
else
bit >>= 1;
} else
twopwr--;
}
twopwr += tenpwr;
/*
* At this point the `mant' array contains the first six
* fractional places of a base-2^16 real number, which when
* multiplied by 2^twopwr and 5^tenpwr gives X. So now we
* really do multiply by 5^tenpwr.
*/
if (tenpwr < 0) {
for (m=mult; m<mult+MANT_WORDS; m++)
*m = 0xCCCC;
extratwos = -2;
tenpwr = -tenpwr;
} else if (tenpwr > 0) {
mult[0] = 0xA000;
for (m=mult+1; m<mult+MANT_WORDS; m++)
*m = 0;
extratwos = 3;
} else
extratwos = 0;
while (tenpwr) {
if (tenpwr & 1)
twopwr += extratwos + multiply (mant, mult);
extratwos = extratwos * 2 + multiply (mult, mult);
tenpwr >>= 1;
}
/*
* Conversion is done. The elements of `mant' contain the first
* fractional places of a base-2^16 real number in [0.5,1)
* which we can multiply by 2^twopwr to get X. Or, of course,
* it contains zero.
*/
*exponent = twopwr;
}
/*
* Shift a mantissa to the right by i (i < 16) bits.
*/
static void shr(unsigned short *mant, int i) {
unsigned short n = 0, m;
int j;
for (j=0; j<MANT_WORDS; j++) {
m = (mant[j] << (16-i)) & 0xFFFF;
mant[j] = (mant[j] >> i) | n;
n = m;
}
}
/*
* Round a mantissa off after i words.
*/
static int round(unsigned short *mant, int i) {
if (mant[i] & 0x8000) {
do {
++mant[--i];
mant[i] &= 0xFFFF;
} while (i > 0 && !mant[i]);
return !i && !mant[i];
}
return 0;
}
#define put(a,b) ( (*(a)=(b)), ((a)[1]=(b)>>8) )
static int to_double(char *str, long sign, unsigned char *result,
efunc error) {
unsigned short mant[MANT_WORDS];
long exponent;
sign = (sign < 0 ? 0x8000L : 0L);
flconvert (str, mant, &exponent);
if (mant[0] & 0x8000) {
/*
* Non-zero.
*/
exponent--;
if (exponent >= -1022 && exponent <= 1024) {
/*
* Normalised.
*/
exponent += 1023;
shr(mant, 11);
round(mant, 4);
if (mant[0] & 0x20) /* did we scale up by one? */
shr(mant, 1), exponent++;
mant[0] &= 0xF; /* remove leading one */
put(result+6,(exponent << 4) | mant[0] | sign);
put(result+4,mant[1]);
put(result+2,mant[2]);
put(result+0,mant[3]);
} else if (exponent < -1022 && exponent >= -1074) {
/*
* Denormal.
*/
int shift = -(exponent+1011);
int sh = shift % 16, wds = shift / 16;
shr(mant, sh);
if (round(mant, 4-wds) || (sh>0 && (mant[0]&(0x8000>>(sh-1))))) {
shr(mant, 1);
if (sh==0)
mant[0] |= 0x8000;
exponent++;
}
put(result+6,(wds == 0 ? mant[0] : 0) | sign);
put(result+4,(wds <= 1 ? mant[1-wds] : 0));
put(result+2,(wds <= 2 ? mant[2-wds] : 0));
put(result+0,(wds <= 3 ? mant[3-wds] : 0));
} else {
if (exponent > 0) {
error(ERR_NONFATAL, "overflow in floating-point constant");
return 0;
} else
memset (result, 0, 8);
}
} else {
/*
* Zero.
*/
memset (result, 0, 8);
}
return 1; /* success */
}
static int to_float(char *str, long sign, unsigned char *result,
efunc error) {
unsigned short mant[MANT_WORDS];
long exponent;
sign = (sign < 0 ? 0x8000L : 0L);
flconvert (str, mant, &exponent);
if (mant[0] & 0x8000) {
/*
* Non-zero.
*/
exponent--;
if (exponent >= -126 && exponent <= 128) {
/*
* Normalised.
*/
exponent += 127;
shr(mant, 8);
round(mant, 2);
if (mant[0] & 0x100) /* did we scale up by one? */
shr(mant, 1), exponent++;
mant[0] &= 0x7F; /* remove leading one */
put(result+2,(exponent << 7) | mant[0] | sign);
put(result+0,mant[1]);
} else if (exponent < -126 && exponent >= -149) {
/*
* Denormal.
*/
int shift = -(exponent+118);
int sh = shift % 16, wds = shift / 16;
shr(mant, sh);
if (round(mant, 2-wds) || (sh>0 && (mant[0]&(0x8000>>(sh-1))))) {
shr(mant, 1);
if (sh==0)
mant[0] |= 0x8000;
exponent++;
}
put(result+2,(wds == 0 ? mant[0] : 0) | sign);
put(result+0,(wds <= 1 ? mant[1-wds] : 0));
} else {
if (exponent > 0) {
error(ERR_NONFATAL, "overflow in floating-point constant");
return 0;
} else
memset (result, 0, 4);
}
} else {
memset (result, 0, 4);
}
return 1;
}
static int to_ldoub(char *str, long sign, unsigned char *result,
efunc error) {
unsigned short mant[MANT_WORDS];
long exponent;
sign = (sign < 0 ? 0x8000L : 0L);
flconvert (str, mant, &exponent);
if (mant[0] & 0x8000) {
/*
* Non-zero.
*/
exponent--;
if (exponent >= -16383 && exponent <= 16384) {
/*
* Normalised.
*/
exponent += 16383;
if (round(mant, 4)) /* did we scale up by one? */
shr(mant, 1), mant[0] |= 0x8000, exponent++;
put(result+8,exponent | sign);
put(result+6,mant[0]);
put(result+4,mant[1]);
put(result+2,mant[2]);
put(result+0,mant[3]);
} else if (exponent < -16383 && exponent >= -16446) {
/*
* Denormal.
*/
int shift = -(exponent+16383);
int sh = shift % 16, wds = shift / 16;
shr(mant, sh);
if (round(mant, 4-wds) || (sh>0 && (mant[0]&(0x8000>>(sh-1))))) {
shr(mant, 1);
if (sh==0)
mant[0] |= 0x8000;
exponent++;
}
put(result+8,sign);
put(result+6,(wds == 0 ? mant[0] : 0));
put(result+4,(wds <= 1 ? mant[1-wds] : 0));
put(result+2,(wds <= 2 ? mant[2-wds] : 0));
put(result+0,(wds <= 3 ? mant[3-wds] : 0));
} else {
if (exponent > 0) {
error(ERR_NONFATAL, "overflow in floating-point constant");
return 0;
} else
memset (result, 0, 10);
}
} else {
/*
* Zero.
*/
memset (result, 0, 10);
}
return 1;
}
int float_const (char *number, long sign, unsigned char *result, int bytes,
efunc error) {
if (bytes == 4)
return to_float (number, sign, result, error);
else if (bytes == 8)
return to_double (number, sign, result, error);
else if (bytes == 10)
return to_ldoub (number, sign, result, error);
else {
error(ERR_PANIC, "strange value %d passed to float_const", bytes);
return 0;
}
}