nasm/include/nasm.h
H. Peter Anvin (Intel) d644119ded subsections: don't lose the offset in the parent section
We don't want to lose the offset into the parent section when we
create a subsection, at least not for the MachO backend which is
currently the only user of subsections. Allow ofmt->herelabel() to set
a flag to copy the section offset from the previous section.

Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
2018-06-27 20:20:21 -07:00

1269 lines
42 KiB
C

/* ----------------------------------------------------------------------- *
*
* Copyright 1996-2018 The NASM Authors - All Rights Reserved
* See the file AUTHORS included with the NASM distribution for
* the specific copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following
* conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ----------------------------------------------------------------------- */
/*
* nasm.h main header file for the Netwide Assembler: inter-module interface
*/
#ifndef NASM_NASM_H
#define NASM_NASM_H
#include "compiler.h"
#include <stdio.h>
#include <time.h>
#include "nasmlib.h"
#include "strlist.h"
#include "preproc.h"
#include "insnsi.h" /* For enum opcode */
#include "directiv.h" /* For enum directive */
#include "labels.h" /* For enum mangle_index, enum label_type */
#include "opflags.h"
#include "regs.h"
/* Time stamp for the official start of compilation */
struct compile_time {
time_t t;
bool have_local, have_gm, have_posix;
int64_t posix;
struct tm local;
struct tm gm;
};
extern struct compile_time official_compile_time;
#define NO_SEG INT32_C(-1) /* null segment value */
#define SEG_ABS 0x40000000L /* mask for far-absolute segments */
#define IDLEN_MAX 4096
#define DECOLEN_MAX 32
/*
* Name pollution problems: <time.h> on Digital UNIX pulls in some
* strange hardware header file which sees fit to define R_SP. We
* undefine it here so as not to break the enum below.
*/
#ifdef R_SP
#undef R_SP
#endif
/*
* We must declare the existence of this structure type up here,
* since we have to reference it before we define it...
*/
struct ofmt;
/*
* Values for the `type' parameter to an output function.
*/
enum out_type {
OUT_RAWDATA, /* Plain bytes */
OUT_RESERVE, /* Reserved bytes (RESB et al) */
OUT_ZERODATA, /* Initialized data, but all zero */
OUT_ADDRESS, /* An address (symbol value) */
OUT_RELADDR, /* A relative address */
OUT_SEGMENT, /* A segment number */
/*
* These values are used by the legacy backend interface only;
* see output/legacy.c for more information. These should never
* be used otherwise. Once all backends have been migrated to the
* new interface they should be removed.
*/
OUT_REL1ADR,
OUT_REL2ADR,
OUT_REL4ADR,
OUT_REL8ADR
};
enum out_sign {
OUT_WRAP, /* Undefined signedness (wraps) */
OUT_SIGNED, /* Value is signed */
OUT_UNSIGNED /* Value is unsigned */
};
/*
* The data we send down to the backend.
* XXX: We still want to push down the base address symbol if
* available, and replace the segment numbers with a structure.
*/
struct out_data {
int64_t offset; /* Offset within segment */
int32_t segment; /* Segment written to */
enum out_type type; /* See above */
enum out_sign sign; /* See above */
int inslen; /* Length of instruction */
int insoffs; /* Offset inside instruction */
int bits; /* Bits mode of compilation */
uint64_t size; /* Size of output */
const struct itemplate *itemp; /* Instruction template */
const void *data; /* Data for OUT_RAWDATA */
uint64_t toffset; /* Target address offset for relocation */
int32_t tsegment; /* Target segment for relocation */
int32_t twrt; /* Relocation with respect to */
int64_t relbase; /* Relative base for OUT_RELADDR */
};
/*
* And a label-definition function. The boolean parameter
* `is_norm' states whether the label is a `normal' label (which
* should affect the local-label system), or something odder like
* an EQU or a segment-base symbol, which shouldn't.
*/
typedef void (*ldfunc)(char *label, int32_t segment, int64_t offset,
char *special, bool is_norm);
/*
* Token types returned by the scanner, in addition to ordinary
* ASCII character values, and zero for end-of-string.
*/
enum token_type { /* token types, other than chars */
TOKEN_INVALID = -1, /* a placeholder value */
TOKEN_EOS = 0, /* end of string */
TOKEN_EQ = '=',
TOKEN_GT = '>',
TOKEN_LT = '<', /* aliases */
TOKEN_ID = 256, /* identifier */
TOKEN_NUM, /* numeric constant */
TOKEN_ERRNUM, /* malformed numeric constant */
TOKEN_STR, /* string constant */
TOKEN_ERRSTR, /* unterminated string constant */
TOKEN_FLOAT, /* floating-point constant */
TOKEN_REG, /* register name */
TOKEN_INSN, /* instruction name */
TOKEN_HERE, /* $ */
TOKEN_BASE, /* $$ */
TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
TOKEN_SHL, /* << */
TOKEN_SHR, /* >> */
TOKEN_SDIV, /* // */
TOKEN_SMOD, /* %% */
TOKEN_GE, /* >= */
TOKEN_LE, /* <= */
TOKEN_NE, /* <> (!= is same as <>) */
TOKEN_DBL_AND, /* && */
TOKEN_DBL_OR, /* || */
TOKEN_DBL_XOR, /* ^^ */
TOKEN_SEG, /* SEG */
TOKEN_WRT, /* WRT */
TOKEN_FLOATIZE, /* __floatX__ */
TOKEN_STRFUNC, /* __utf16*__, __utf32*__ */
TOKEN_IFUNC, /* __ilog2*__ */
TOKEN_DECORATOR, /* decorators such as {...} */
TOKEN_OPMASK /* translated token for opmask registers */
};
enum floatize {
FLOAT_8,
FLOAT_16,
FLOAT_32,
FLOAT_64,
FLOAT_80M,
FLOAT_80E,
FLOAT_128L,
FLOAT_128H
};
/* Must match the list in string_transform(), in strfunc.c */
enum strfunc {
STRFUNC_UTF16,
STRFUNC_UTF16LE,
STRFUNC_UTF16BE,
STRFUNC_UTF32,
STRFUNC_UTF32LE,
STRFUNC_UTF32BE
};
enum ifunc {
IFUNC_ILOG2E,
IFUNC_ILOG2W,
IFUNC_ILOG2F,
IFUNC_ILOG2C
};
size_t string_transform(char *, size_t, char **, enum strfunc);
/*
* The expression evaluator must be passed a scanner function; a
* standard scanner is provided as part of nasmlib.c. The
* preprocessor will use a different one. Scanners, and the
* token-value structures they return, look like this.
*
* The return value from the scanner is always a copy of the
* `t_type' field in the structure.
*/
struct tokenval {
char *t_charptr;
int64_t t_integer;
int64_t t_inttwo;
enum token_type t_type;
int8_t t_flag;
};
typedef int (*scanner)(void *private_data, struct tokenval *tv);
struct location {
int64_t offset;
int32_t segment;
int known;
};
extern struct location location;
/*
* Expression-evaluator datatype. Expressions, within the
* evaluator, are stored as an array of these beasts, terminated by
* a record with type==0. Mostly, it's a vector type: each type
* denotes some kind of a component, and the value denotes the
* multiple of that component present in the expression. The
* exception is the WRT type, whose `value' field denotes the
* segment to which the expression is relative. These segments will
* be segment-base types, i.e. either odd segment values or SEG_ABS
* types. So it is still valid to assume that anything with a
* `value' field of zero is insignificant.
*/
typedef struct {
int32_t type; /* a register, or EXPR_xxx */
int64_t value; /* must be >= 32 bits */
} expr;
/*
* Library routines to manipulate expression data types.
*/
bool is_reloc(const expr *vect);
bool is_simple(const expr *vect);
bool is_really_simple(const expr *vect);
bool is_unknown(const expr *vect);
bool is_just_unknown(const expr *vect);
int64_t reloc_value(const expr *vect);
int32_t reloc_seg(const expr *vect);
int32_t reloc_wrt(const expr *vect);
bool is_self_relative(const expr *vect);
void dump_expr(const expr *vect);
/*
* The evaluator can also return hints about which of two registers
* used in an expression should be the base register. See also the
* `operand' structure.
*/
struct eval_hints {
int64_t base;
int type;
};
/*
* The actual expression evaluator function looks like this. When
* called, it expects the first token of its expression to already
* be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
* it will start by calling the scanner.
*
* If a forward reference happens during evaluation, the evaluator
* must set `*fwref' to true if `fwref' is non-NULL.
*
* `critical' is non-zero if the expression may not contain forward
* references. The evaluator will report its own error if this
* occurs; if `critical' is 1, the error will be "symbol not
* defined before use", whereas if `critical' is 2, the error will
* be "symbol undefined".
*
* If `critical' has bit 8 set (in addition to its main value: 0x101
* and 0x102 correspond to 1 and 2) then an extended expression
* syntax is recognised, in which relational operators such as =, <
* and >= are accepted, as well as low-precedence logical operators
* &&, ^^ and ||.
*
* If `hints' is non-NULL, it gets filled in with some hints as to
* the base register in complex effective addresses.
*/
#define CRITICAL 0x100
typedef expr *(*evalfunc)(scanner sc, void *scprivate,
struct tokenval *tv, int *fwref, int critical,
struct eval_hints *hints);
/*
* Special values for expr->type.
* These come after EXPR_REG_END as defined in regs.h.
* Expr types : 0 ~ EXPR_REG_END, EXPR_UNKNOWN, EXPR_...., EXPR_RDSAE,
* EXPR_SEGBASE ~ EXPR_SEGBASE + SEG_ABS, ...
*/
#define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
#define EXPR_SIMPLE (EXPR_REG_END+2)
#define EXPR_WRT (EXPR_REG_END+3)
#define EXPR_RDSAE (EXPR_REG_END+4)
#define EXPR_SEGBASE (EXPR_REG_END+5)
/*
* preprocessors ought to look like this:
*/
struct preproc_ops {
/*
* Called once at the very start of assembly.
*/
void (*init)(void);
/*
* Called at the start of a pass; given a file name, the number
* of the pass, an error reporting function, an evaluator
* function, and a listing generator to talk to.
*/
void (*reset)(const char *file, int pass, StrList **deplist);
/*
* Called to fetch a line of preprocessed source. The line
* returned has been malloc'ed, and so should be freed after
* use.
*/
char *(*getline)(void);
/* Called at the end of a pass */
void (*cleanup)(int pass);
/* Additional macros specific to output format */
void (*extra_stdmac)(macros_t *macros);
/* Early definitions and undefinitions for macros */
void (*pre_define)(char *definition);
void (*pre_undefine)(char *definition);
/* Include file from command line */
void (*pre_include)(char *fname);
/* Add a command from the command line */
void (*pre_command)(const char *what, char *str);
/* Include path from command line */
void (*include_path)(char *path);
/* Unwind the macro stack when printing an error message */
void (*error_list_macros)(int severity);
};
extern const struct preproc_ops nasmpp;
extern const struct preproc_ops preproc_nop;
/* List of dependency files */
extern StrList *depend_list;
/*
* Some lexical properties of the NASM source language, included
* here because they are shared between the parser and preprocessor.
*/
/*
* isidstart matches any character that may start an identifier, and isidchar
* matches any character that may appear at places other than the start of an
* identifier. E.g. a period may only appear at the start of an identifier
* (for local labels), whereas a number may appear anywhere *but* at the
* start.
* isbrcchar matches any character that may placed inside curly braces as a
* decorator. E.g. {rn-sae}, {1to8}, {k1}{z}
*/
#define isidstart(c) (nasm_isalpha(c) || \
(c) == '_' || \
(c) == '.' || \
(c) == '?' || \
(c) == '@')
#define isidchar(c) (isidstart(c) || \
nasm_isdigit(c) || \
(c) == '$' || \
(c) == '#' || \
(c) == '~')
#define isbrcchar(c) (isidchar(c) || \
(c) == '-')
/* Ditto for numeric constants. */
#define isnumstart(c) (nasm_isdigit(c) || (c) == '$')
#define isnumchar(c) (nasm_isalnum(c) || (c) == '_')
/*
* inline function to skip past an identifier; returns the first character past
* the identifier if valid, otherwise NULL.
*/
static inline char *nasm_skip_identifier(const char *str)
{
const char *p = str;
if (!isidstart(*p++)) {
p = NULL;
} else {
while (isidchar(*p++))
;
}
return (char *)p;
}
/*
* Data-type flags that get passed to listing-file routines.
*/
enum {
LIST_READ,
LIST_MACRO,
LIST_MACRO_NOLIST,
LIST_INCLUDE,
LIST_INCBIN,
LIST_TIMES
};
/*
* -----------------------------------------------------------
* Format of the `insn' structure returned from `parser.c' and
* passed into `assemble.c'
* -----------------------------------------------------------
*/
/* Verify value to be a valid register */
static inline bool is_register(int reg)
{
return reg >= EXPR_REG_START && reg < REG_ENUM_LIMIT;
}
enum ccode { /* condition code names */
C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
C_none = -1
};
/*
* token flags
*/
#define TFLAG_BRC (1 << 0) /* valid only with braces. {1to8}, {rd-sae}, ...*/
#define TFLAG_BRC_OPT (1 << 1) /* may or may not have braces. opmasks {k1} */
#define TFLAG_BRC_ANY (TFLAG_BRC | TFLAG_BRC_OPT)
#define TFLAG_BRDCAST (1 << 2) /* broadcasting decorator */
#define TFLAG_WARN (1 << 3) /* warning only, treat as ID */
static inline uint8_t get_cond_opcode(enum ccode c)
{
static const uint8_t ccode_opcodes[] = {
0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xf, 0xd, 0xc, 0xe, 0x6, 0x2,
0x3, 0x7, 0x3, 0x5, 0xe, 0xc, 0xd, 0xf, 0x1, 0xb, 0x9, 0x5,
0x0, 0xa, 0xa, 0xb, 0x8, 0x4
};
return ccode_opcodes[(int)c];
}
/*
* REX flags
*/
#define REX_MASK 0x4f /* Actual REX prefix bits */
#define REX_B 0x01 /* ModRM r/m extension */
#define REX_X 0x02 /* SIB index extension */
#define REX_R 0x04 /* ModRM reg extension */
#define REX_W 0x08 /* 64-bit operand size */
#define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
#define REX_P 0x40 /* REX prefix present/required */
#define REX_H 0x80 /* High register present, REX forbidden */
#define REX_V 0x0100 /* Instruction uses VEX/XOP instead of REX */
#define REX_NH 0x0200 /* Instruction which doesn't use high regs */
#define REX_EV 0x0400 /* Instruction uses EVEX instead of REX */
/*
* EVEX bit field
*/
#define EVEX_P0MM 0x0f /* EVEX P[3:0] : Opcode map */
#define EVEX_P0RP 0x10 /* EVEX P[4] : High-16 reg */
#define EVEX_P0X 0x40 /* EVEX P[6] : High-16 rm */
#define EVEX_P1PP 0x03 /* EVEX P[9:8] : Legacy prefix */
#define EVEX_P1VVVV 0x78 /* EVEX P[14:11] : NDS register */
#define EVEX_P1W 0x80 /* EVEX P[15] : Osize extension */
#define EVEX_P2AAA 0x07 /* EVEX P[18:16] : Embedded opmask */
#define EVEX_P2VP 0x08 /* EVEX P[19] : High-16 NDS reg */
#define EVEX_P2B 0x10 /* EVEX P[20] : Broadcast / RC / SAE */
#define EVEX_P2LL 0x60 /* EVEX P[22:21] : Vector length */
#define EVEX_P2RC EVEX_P2LL /* EVEX P[22:21] : Rounding control */
#define EVEX_P2Z 0x80 /* EVEX P[23] : Zeroing/Merging */
/*
* REX_V "classes" (prefixes which behave like VEX)
*/
enum vex_class {
RV_VEX = 0, /* C4/C5 */
RV_XOP = 1, /* 8F */
RV_EVEX = 2 /* 62 */
};
/*
* Note that because segment registers may be used as instruction
* prefixes, we must ensure the enumerations for prefixes and
* register names do not overlap.
*/
enum prefixes { /* instruction prefixes */
P_none = 0,
PREFIX_ENUM_START = REG_ENUM_LIMIT,
P_A16 = PREFIX_ENUM_START,
P_A32,
P_A64,
P_ASP,
P_LOCK,
P_O16,
P_O32,
P_O64,
P_OSP,
P_REP,
P_REPE,
P_REPNE,
P_REPNZ,
P_REPZ,
P_TIMES,
P_WAIT,
P_XACQUIRE,
P_XRELEASE,
P_BND,
P_NOBND,
P_EVEX,
P_VEX3,
P_VEX2,
PREFIX_ENUM_LIMIT
};
enum extop_type { /* extended operand types */
EOT_NOTHING,
EOT_DB_STRING, /* Byte string */
EOT_DB_STRING_FREE, /* Byte string which should be nasm_free'd*/
EOT_DB_NUMBER /* Integer */
};
enum ea_flags { /* special EA flags */
EAF_BYTEOFFS = 1, /* force offset part to byte size */
EAF_WORDOFFS = 2, /* force offset part to [d]word size */
EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
EAF_REL = 8, /* IP-relative addressing */
EAF_ABS = 16, /* non-IP-relative addressing */
EAF_FSGS = 32, /* fs/gs segment override present */
EAF_MIB = 64 /* mib operand */
};
enum eval_hint { /* values for `hinttype' */
EAH_NOHINT = 0, /* no hint at all - our discretion */
EAH_MAKEBASE = 1, /* try to make given reg the base */
EAH_NOTBASE = 2, /* try _not_ to make reg the base */
EAH_SUMMED = 3 /* base and index are summed into index */
};
typedef struct operand { /* operand to an instruction */
opflags_t type; /* type of operand */
int disp_size; /* 0 means default; 16; 32; 64 */
enum reg_enum basereg;
enum reg_enum indexreg; /* address registers */
int scale; /* index scale */
int hintbase;
enum eval_hint hinttype; /* hint as to real base register */
int32_t segment; /* immediate segment, if needed */
int64_t offset; /* any immediate number */
int32_t wrt; /* segment base it's relative to */
int eaflags; /* special EA flags */
int opflags; /* see OPFLAG_* defines below */
decoflags_t decoflags; /* decorator flags such as {...} */
} operand;
#define OPFLAG_FORWARD 1 /* operand is a forward reference */
#define OPFLAG_EXTERN 2 /* operand is an external reference */
#define OPFLAG_UNKNOWN 4 /* operand is an unknown reference
(always a forward reference also) */
#define OPFLAG_RELATIVE 8 /* operand is self-relative, e.g. [foo - $]
where foo is not in the current segment */
typedef struct extop { /* extended operand */
struct extop *next; /* linked list */
char *stringval; /* if it's a string, then here it is */
size_t stringlen; /* ... and here's how long it is */
int64_t offset; /* ... it's given here ... */
int32_t segment; /* if it's a number/address, then... */
int32_t wrt; /* ... and here */
bool relative; /* self-relative expression */
enum extop_type type; /* defined above */
} extop;
enum ea_type {
EA_INVALID, /* Not a valid EA at all */
EA_SCALAR, /* Scalar EA */
EA_XMMVSIB, /* XMM vector EA */
EA_YMMVSIB, /* YMM vector EA */
EA_ZMMVSIB /* ZMM vector EA */
};
/*
* Prefix positions: each type of prefix goes in a specific slot.
* This affects the final ordering of the assembled output, which
* shouldn't matter to the processor, but if you have stylistic
* preferences, you can change this. REX prefixes are handled
* differently for the time being.
*
* LOCK and REP used to be one slot; this is no longer the case since
* the introduction of HLE.
*/
enum prefix_pos {
PPS_WAIT, /* WAIT (technically not a prefix!) */
PPS_REP, /* REP/HLE prefix */
PPS_LOCK, /* LOCK prefix */
PPS_SEG, /* Segment override prefix */
PPS_OSIZE, /* Operand size prefix */
PPS_ASIZE, /* Address size prefix */
PPS_VEX, /* VEX type */
MAXPREFIX /* Total number of prefix slots */
};
/*
* Tuple types that are used when determining Disp8*N eligibility
* The order must match with a hash %tuple_codes in insns.pl
*/
enum ttypes {
FV = 001,
HV = 002,
FVM = 003,
T1S8 = 004,
T1S16 = 005,
T1S = 006,
T1F32 = 007,
T1F64 = 010,
T2 = 011,
T4 = 012,
T8 = 013,
HVM = 014,
QVM = 015,
OVM = 016,
M128 = 017,
DUP = 020
};
/* EVEX.L'L : Vector length on vector insns */
enum vectlens {
VL128 = 0,
VL256 = 1,
VL512 = 2,
VLMAX = 3
};
/* If you need to change this, also change it in insns.pl */
#define MAX_OPERANDS 5
typedef struct insn { /* an instruction itself */
char *label; /* the label defined, or NULL */
int prefixes[MAXPREFIX]; /* instruction prefixes, if any */
enum opcode opcode; /* the opcode - not just the string */
enum ccode condition; /* the condition code, if Jcc/SETcc */
int operands; /* how many operands? 0-3 (more if db et al) */
int addr_size; /* address size */
operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
extop *eops; /* extended operands */
int eops_float; /* true if DD and floating */
int32_t times; /* repeat count (TIMES prefix) */
bool forw_ref; /* is there a forward reference? */
bool rex_done; /* REX prefix emitted? */
int rex; /* Special REX Prefix */
int vexreg; /* Register encoded in VEX prefix */
int vex_cm; /* Class and M field for VEX prefix */
int vex_wlp; /* W, P and L information for VEX prefix */
uint8_t evex_p[3]; /* EVEX.P0: [RXB,R',00,mm], P1: [W,vvvv,1,pp] */
/* EVEX.P2: [z,L'L,b,V',aaa] */
enum ttypes evex_tuple; /* Tuple type for compressed Disp8*N */
int evex_rm; /* static rounding mode for AVX512 (EVEX) */
int8_t evex_brerop; /* BR/ER/SAE operand position */
} insn;
/* Instruction flags type: IF_* flags are defined in insns.h */
typedef uint64_t iflags_t;
/*
* What to return from a directive- or pragma-handling function.
* Currently DIRR_OK and DIRR_ERROR are treated the same way;
* in both cases the backend is expected to produce the appropriate
* error message on its own.
*
* DIRR_BADPARAM causes a generic error message to be printed. Note
* that it is an error, not a warning, even in the case of pragmas;
* don't use it where forward compatiblity would be compromised
* (instead consider adding a DIRR_WARNPARAM.)
*/
enum directive_result {
DIRR_UNKNOWN, /* Directive not handled by backend */
DIRR_OK, /* Directive processed */
DIRR_ERROR, /* Directive processed unsuccessfully */
DIRR_BADPARAM /* Print bad argument error message */
};
/*
* A pragma facility: this structure is used to request passing a
* parsed pragma directive for a specific facility. If the handler is
* NULL then this pragma facility is recognized but ignored; pragma
* processing stops at that point.
*
* Note that the handler is passed a pointer to the facility structure
* as part of the struct pragma.
*/
struct pragma;
typedef enum directive_result (*pragma_handler)(const struct pragma *);
struct pragma_facility {
const char *name;
pragma_handler handler;
};
/*
* This structure defines how a pragma directive is passed to a
* facility. This structure may be augmented in the future.
*
* Any facility MAY, but is not required to, add its operations
* keywords or a subset thereof into asm/directiv.dat, in which case
* the "opcode" field will be set to the corresponding D_ constant
* from directiv.h; otherwise it will be D_unknown.
*/
struct pragma {
const struct pragma_facility *facility;
const char *facility_name; /* Facility name exactly as entered by user */
const char *opname; /* First word after the facility name */
const char *tail; /* Anything after the operation */
enum directive opcode; /* Operation as a D_ directives constant */
};
/*
* These are semi-arbitrary limits to keep the assembler from going
* into a black hole on certain kinds of bugs. They can be overridden
* by command-line options or %pragma.
*/
enum nasm_limit {
LIMIT_PASSES,
LIMIT_STALLED,
LIMIT_MACROS,
LIMIT_REP,
LIMIT_EVAL,
LIMIT_LINES
};
#define LIMIT_MAX LIMIT_LINES
extern int64_t nasm_limit[LIMIT_MAX+1];
extern enum directive_result nasm_set_limit(const char *, const char *);
/*
* The data structure defining an output format driver, and the
* interfaces to the functions therein.
*/
struct ofmt {
/*
* This is a short (one-liner) description of the type of
* output generated by the driver.
*/
const char *fullname;
/*
* This is a single keyword used to select the driver.
*/
const char *shortname;
/*
* Default output filename extension, or a null string
*/
const char *extension;
/*
* Output format flags.
*/
#define OFMT_TEXT 1 /* Text file format */
#define OFMT_KEEP_ADDR 2 /* Keep addr; no conversion to data */
unsigned int flags;
int maxbits; /* Maximum segment bits supported */
/*
* this is a pointer to the first element of the debug information
*/
const struct dfmt * const *debug_formats;
/*
* the default debugging format if -F is not specified
*/
const struct dfmt *default_dfmt;
/*
* This, if non-NULL, is a NULL-terminated list of `char *'s
* pointing to extra standard macros supplied by the object
* format (e.g. a sensible initial default value of __SECT__,
* and user-level equivalents for any format-specific
* directives).
*/
macros_t *stdmac;
/*
* This procedure is called at the start of an output session to set
* up internal parameters.
*/
void (*init)(void);
/*
* This procedure is called at the start of each pass.
*/
void (*reset)(void);
/*
* This is the modern output function, which gets passed
* a struct out_data with much more information. See the
* definition of struct out_data.
*/
void (*output)(const struct out_data *data);
/*
* This procedure is called by assemble() to write actual
* generated code or data to the object file. Typically it
* doesn't have to actually _write_ it, just store it for
* later.
*
* The `type' argument specifies the type of output data, and
* usually the size as well: its contents are described below.
*
* This is used for backends which have not yet been ported to
* the new interface, and should be NULL on ported backends.
* To use this entry point, set the output pointer to
* nasm_do_legacy_output.
*/
void (*legacy_output)(int32_t segto, const void *data,
enum out_type type, uint64_t size,
int32_t segment, int32_t wrt);
/*
* This procedure is called once for every symbol defined in
* the module being assembled. It gives the name and value of
* the symbol, in NASM's terms, and indicates whether it has
* been declared to be global. Note that the parameter "name",
* when passed, will point to a piece of static storage
* allocated inside the label manager - it's safe to keep using
* that pointer, because the label manager doesn't clean up
* until after the output driver has.
*
* Values of `is_global' are: 0 means the symbol is local; 1
* means the symbol is global; 2 means the symbol is common (in
* which case `offset' holds the _size_ of the variable).
* Anything else is available for the output driver to use
* internally.
*
* This routine explicitly _is_ allowed to call the label
* manager to define further symbols, if it wants to, even
* though it's been called _from_ the label manager. That much
* re-entrancy is guaranteed in the label manager. However, the
* label manager will in turn call this routine, so it should
* be prepared to be re-entrant itself.
*
* The `special' parameter contains special information passed
* through from the command that defined the label: it may have
* been an EXTERN, a COMMON or a GLOBAL. The distinction should
* be obvious to the output format from the other parameters.
*/
void (*symdef)(char *name, int32_t segment, int64_t offset,
int is_global, char *special);
/*
* This procedure is called when the source code requests a
* segment change. It should return the corresponding segment
* _number_ for the name, or NO_SEG if the name is not a valid
* segment name.
*
* It may also be called with NULL, in which case it is to
* return the _default_ section number for starting assembly in.
*
* It is allowed to modify the string it is given a pointer to.
*
* It is also allowed to specify a default instruction size for
* the segment, by setting `*bits' to 16 or 32. Or, if it
* doesn't wish to define a default, it can leave `bits' alone.
*/
int32_t (*section)(char *name, int pass, int *bits);
/*
* This function is called when a label is defined
* in the source code. It is allowed to change the section
* number as a result, but not the bits value.
* This is *only* called if the symbol defined is at the
* current offset, i.e. "foo:" or "foo equ $".
* The offset isn't passed; and may not be stable at this point.
* The subsection number is a field available for use by the
* backend. It is initialized to NO_SEG.
*
* If "copyoffset" is set by the backend then the offset is
* copied from the previous segment, otherwise the new segment
* is treated as a new segment the normal way.
*/
int32_t (*herelabel)(const char *name, enum label_type type,
int32_t seg, int32_t *subsection,
bool *copyoffset);
/*
* This procedure is called to modify section alignment,
* note there is a trick, the alignment can only increase
*/
void (*sectalign)(int32_t seg, unsigned int value);
/*
* This procedure is called to modify the segment base values
* returned from the SEG operator. It is given a segment base
* value (i.e. a segment value with the low bit set), and is
* required to produce in return a segment value which may be
* different. It can map segment bases to absolute numbers by
* means of returning SEG_ABS types.
*
* It should return NO_SEG if the segment base cannot be
* determined; the evaluator (which calls this routine) is
* responsible for throwing an error condition if that occurs
* in pass two or in a critical expression.
*/
int32_t (*segbase)(int32_t segment);
/*
* This procedure is called to allow the output driver to
* process its own specific directives. When called, it has the
* directive word in `directive' and the parameter string in
* `value'. It is called in both assembly passes, and `pass'
* will be either 1 or 2.
*
* The following values are (currently) possible for
* directive_result:
*
* 0 - DIRR_UNKNOWN - directive not recognized by backend
* 1 - DIRR_OK - directive processed ok
* 2 - DIRR_ERROR - backend printed its own error message
* 3 - DIRR_BADPARAM - print the generic message
* "invalid parameter to [*] directive"
*/
enum directive_result
(*directive)(enum directive directive, char *value, int pass);
/*
* This procedure is called after assembly finishes, to allow
* the output driver to clean itself up and free its memory.
* Typically, it will also be the point at which the object
* file actually gets _written_.
*
* One thing the cleanup routine should always do is to close
* the output file pointer.
*/
void (*cleanup)(void);
/*
* List of pragma facility names that apply to this backend.
*/
const struct pragma_facility *pragmas;
};
/*
* Output format driver alias
*/
struct ofmt_alias {
const char *shortname;
const char *fullname;
const struct ofmt *ofmt;
};
extern const struct ofmt *ofmt;
extern FILE *ofile;
/*
* ------------------------------------------------------------
* The data structure defining a debug format driver, and the
* interfaces to the functions therein.
* ------------------------------------------------------------
*/
struct dfmt {
/*
* This is a short (one-liner) description of the type of
* output generated by the driver.
*/
const char *fullname;
/*
* This is a single keyword used to select the driver.
*/
const char *shortname;
/*
* init - called initially to set up local pointer to object format.
*/
void (*init)(void);
/*
* linenum - called any time there is output with a change of
* line number or file.
*/
void (*linenum)(const char *filename, int32_t linenumber, int32_t segto);
/*
* debug_deflabel - called whenever a label is defined. Parameters
* are the same as to 'symdef()' in the output format. This function
* is called after the output format version.
*/
void (*debug_deflabel)(char *name, int32_t segment, int64_t offset,
int is_global, char *special);
/*
* debug_directive - called whenever a DEBUG directive other than 'LINE'
* is encountered. 'directive' contains the first parameter to the
* DEBUG directive, and params contains the rest. For example,
* 'DEBUG VAR _somevar:int' would translate to a call to this
* function with 'directive' equal to "VAR" and 'params' equal to
* "_somevar:int".
*/
void (*debug_directive)(const char *directive, const char *params);
/*
* typevalue - called whenever the assembler wishes to register a type
* for the last defined label. This routine MUST detect if a type was
* already registered and not re-register it.
*/
void (*debug_typevalue)(int32_t type);
/*
* debug_output - called whenever output is required
* 'type' is the type of info required, and this is format-specific
*/
void (*debug_output)(int type, void *param);
/*
* cleanup - called after processing of file is complete
*/
void (*cleanup)(void);
/*
* List of pragma facility names that apply to this backend.
*/
const struct pragma_facility *pragmas;
};
extern const struct dfmt *dfmt;
/*
* The type definition macros
* for debugging
*
* low 3 bits: reserved
* next 5 bits: type
* next 24 bits: number of elements for arrays (0 for labels)
*/
#define TY_UNKNOWN 0x00
#define TY_LABEL 0x08
#define TY_BYTE 0x10
#define TY_WORD 0x18
#define TY_DWORD 0x20
#define TY_FLOAT 0x28
#define TY_QWORD 0x30
#define TY_TBYTE 0x38
#define TY_OWORD 0x40
#define TY_YWORD 0x48
#define TY_ZWORD 0x50
#define TY_COMMON 0xE0
#define TY_SEG 0xE8
#define TY_EXTERN 0xF0
#define TY_EQU 0xF8
#define TYM_TYPE(x) ((x) & 0xF8)
#define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
#define TYS_ELEMENTS(x) ((x) << 8)
enum special_tokens {
SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
S_ABS = SPECIAL_ENUM_START,
S_BYTE,
S_DWORD,
S_FAR,
S_LONG,
S_NEAR,
S_NOSPLIT,
S_OWORD,
S_QWORD,
S_REL,
S_SHORT,
S_STRICT,
S_TO,
S_TWORD,
S_WORD,
S_YWORD,
S_ZWORD,
SPECIAL_ENUM_LIMIT
};
enum decorator_tokens {
DECORATOR_ENUM_START = SPECIAL_ENUM_LIMIT,
BRC_1TO2 = DECORATOR_ENUM_START,
BRC_1TO4,
BRC_1TO8,
BRC_1TO16,
BRC_RN,
BRC_RD,
BRC_RU,
BRC_RZ,
BRC_SAE,
BRC_Z,
DECORATOR_ENUM_LIMIT
};
/*
* AVX512 Decorator (decoflags_t) bits distribution (counted from 0)
* 3 2 1
* 10987654321098765432109876543210
* |
* | word boundary
* ............................1111 opmask
* ...........................1.... zeroing / merging
* ..........................1..... broadcast
* .........................1...... static rounding
* ........................1....... SAE
* ......................11........ broadcast element size
* ....................11.......... number of broadcast elements
*/
#define OP_GENVAL(val, bits, shift) (((val) & ((UINT64_C(1) << (bits)) - 1)) << (shift))
/*
* Opmask register number
* identical to EVEX.aaa
*
* Bits: 0 - 3
*/
#define OPMASK_SHIFT (0)
#define OPMASK_BITS (4)
#define OPMASK_MASK OP_GENMASK(OPMASK_BITS, OPMASK_SHIFT)
#define GEN_OPMASK(bit) OP_GENBIT(bit, OPMASK_SHIFT)
#define VAL_OPMASK(val) OP_GENVAL(val, OPMASK_BITS, OPMASK_SHIFT)
/*
* zeroing / merging control available
* matching to EVEX.z
*
* Bits: 4
*/
#define Z_SHIFT (4)
#define Z_BITS (1)
#define Z_MASK OP_GENMASK(Z_BITS, Z_SHIFT)
#define GEN_Z(bit) OP_GENBIT(bit, Z_SHIFT)
/*
* broadcast - Whether this operand can be broadcasted
*
* Bits: 5
*/
#define BRDCAST_SHIFT (5)
#define BRDCAST_BITS (1)
#define BRDCAST_MASK OP_GENMASK(BRDCAST_BITS, BRDCAST_SHIFT)
#define GEN_BRDCAST(bit) OP_GENBIT(bit, BRDCAST_SHIFT)
/*
* Whether this instruction can have a static rounding mode.
* It goes with the last simd operand because the static rounding mode
* decorator is located between the last simd operand and imm8 (if any).
*
* Bits: 6
*/
#define STATICRND_SHIFT (6)
#define STATICRND_BITS (1)
#define STATICRND_MASK OP_GENMASK(STATICRND_BITS, STATICRND_SHIFT)
#define GEN_STATICRND(bit) OP_GENBIT(bit, STATICRND_SHIFT)
/*
* SAE(Suppress all exception) available
*
* Bits: 7
*/
#define SAE_SHIFT (7)
#define SAE_BITS (1)
#define SAE_MASK OP_GENMASK(SAE_BITS, SAE_SHIFT)
#define GEN_SAE(bit) OP_GENBIT(bit, SAE_SHIFT)
/*
* Broadcasting element size.
*
* Bits: 8 - 9
*/
#define BRSIZE_SHIFT (8)
#define BRSIZE_BITS (2)
#define BRSIZE_MASK OP_GENMASK(BRSIZE_BITS, BRSIZE_SHIFT)
#define GEN_BRSIZE(bit) OP_GENBIT(bit, BRSIZE_SHIFT)
#define BR_BITS32 GEN_BRSIZE(0)
#define BR_BITS64 GEN_BRSIZE(1)
/*
* Number of broadcasting elements
*
* Bits: 10 - 11
*/
#define BRNUM_SHIFT (10)
#define BRNUM_BITS (2)
#define BRNUM_MASK OP_GENMASK(BRNUM_BITS, BRNUM_SHIFT)
#define VAL_BRNUM(val) OP_GENVAL(val, BRNUM_BITS, BRNUM_SHIFT)
#define BR_1TO2 VAL_BRNUM(0)
#define BR_1TO4 VAL_BRNUM(1)
#define BR_1TO8 VAL_BRNUM(2)
#define BR_1TO16 VAL_BRNUM(3)
#define MASK OPMASK_MASK /* Opmask (k1 ~ 7) can be used */
#define Z Z_MASK
#define B32 (BRDCAST_MASK|BR_BITS32) /* {1to16} : broadcast 32b * 16 to zmm(512b) */
#define B64 (BRDCAST_MASK|BR_BITS64) /* {1to8} : broadcast 64b * 8 to zmm(512b) */
#define ER STATICRND_MASK /* ER(Embedded Rounding) == Static rounding mode */
#define SAE SAE_MASK /* SAE(Suppress All Exception) */
/*
* Global modes
*/
/*
* This declaration passes the "pass" number to all other modules
* "pass0" assumes the values: 0, 0, ..., 0, 1, 2
* where 0 = optimizing pass
* 1 = pass 1
* 2 = pass 2
*/
extern int pass0;
extern int64_t passn; /* Actual pass number */
extern bool tasm_compatible_mode;
extern int optimizing;
extern int globalbits; /* 16, 32 or 64-bit mode */
extern int globalrel; /* default to relative addressing? */
extern int globalbnd; /* default to using bnd prefix? */
extern const char *inname; /* primary input filename */
extern const char *outname; /* output filename */
/*
* Switch to a different segment and return the current offset
*/
int64_t switch_segment(int32_t segment);
#endif