nasm/nasmlib.c
H. Peter Anvin edc510a115 nasmlib: fix nasm_str[n]icmp()
Fix nasm_str[n]icmp() on platforms which don't have this function
natively.

XXX: Given the new nasm_tolower() implementation, we should consider
if this might actually be a faster function than the platform-native
one.
2008-06-28 18:31:08 -07:00

640 lines
14 KiB
C

/* nasmlib.c library routines for the Netwide Assembler
*
* The Netwide Assembler is copyright (C) 1996 Simon Tatham and
* Julian Hall. All rights reserved. The software is
* redistributable under the license given in the file "LICENSE"
* distributed in the NASM archive.
*/
#include "compiler.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <inttypes.h>
#include "nasm.h"
#include "nasmlib.h"
#include "insns.h"
int globalbits = 0; /* defined in nasm.h, works better here for ASM+DISASM */
efunc nasm_malloc_error; /* Exported for the benefit of vsnprintf.c */
#ifdef LOGALLOC
static FILE *logfp;
#endif
/*
* Prepare a table of tolower() results. This avoids function calls
* on some platforms.
*/
unsigned char nasm_tolower_tab[256];
void tolower_init(void)
{
int i;
for (i = 0; i < 256; i++)
nasm_tolower_tab[i] = tolower(i);
}
void nasm_set_malloc_error(efunc error)
{
nasm_malloc_error = error;
#ifdef LOGALLOC
logfp = fopen("malloc.log", "w");
setvbuf(logfp, NULL, _IOLBF, BUFSIZ);
fprintf(logfp, "null pointer is %p\n", NULL);
#endif
}
#ifdef LOGALLOC
void *nasm_malloc_log(char *file, int line, size_t size)
#else
void *nasm_malloc(size_t size)
#endif
{
void *p = malloc(size);
if (!p)
nasm_malloc_error(ERR_FATAL | ERR_NOFILE, "out of memory");
#ifdef LOGALLOC
else
fprintf(logfp, "%s %d malloc(%ld) returns %p\n",
file, line, (long)size, p);
#endif
return p;
}
#ifdef LOGALLOC
void *nasm_zalloc_log(char *file, int line, size_t size)
#else
void *nasm_zalloc(size_t size)
#endif
{
void *p = calloc(size, 1);
if (!p)
nasm_malloc_error(ERR_FATAL | ERR_NOFILE, "out of memory");
#ifdef LOGALLOC
else
fprintf(logfp, "%s %d calloc(%ld, 1) returns %p\n",
file, line, (long)size, p);
#endif
return p;
}
#ifdef LOGALLOC
void *nasm_realloc_log(char *file, int line, void *q, size_t size)
#else
void *nasm_realloc(void *q, size_t size)
#endif
{
void *p = q ? realloc(q, size) : malloc(size);
if (!p)
nasm_malloc_error(ERR_FATAL | ERR_NOFILE, "out of memory");
#ifdef LOGALLOC
else if (q)
fprintf(logfp, "%s %d realloc(%p,%ld) returns %p\n",
file, line, q, (long)size, p);
else
fprintf(logfp, "%s %d malloc(%ld) returns %p\n",
file, line, (long)size, p);
#endif
return p;
}
#ifdef LOGALLOC
void nasm_free_log(char *file, int line, void *q)
#else
void nasm_free(void *q)
#endif
{
if (q) {
#ifdef LOGALLOC
fprintf(logfp, "%s %d free(%p)\n", file, line, q);
#endif
free(q);
}
}
#ifdef LOGALLOC
char *nasm_strdup_log(char *file, int line, const char *s)
#else
char *nasm_strdup(const char *s)
#endif
{
char *p;
int size = strlen(s) + 1;
p = malloc(size);
if (!p)
nasm_malloc_error(ERR_FATAL | ERR_NOFILE, "out of memory");
#ifdef LOGALLOC
else
fprintf(logfp, "%s %d strdup(%ld) returns %p\n",
file, line, (long)size, p);
#endif
strcpy(p, s);
return p;
}
#ifdef LOGALLOC
char *nasm_strndup_log(char *file, int line, char *s, size_t len)
#else
char *nasm_strndup(char *s, size_t len)
#endif
{
char *p;
int size = len + 1;
p = malloc(size);
if (!p)
nasm_malloc_error(ERR_FATAL | ERR_NOFILE, "out of memory");
#ifdef LOGALLOC
else
fprintf(logfp, "%s %d strndup(%ld) returns %p\n",
file, line, (long)size, p);
#endif
strncpy(p, s, len);
p[len] = '\0';
return p;
}
#ifndef nasm_stricmp
int nasm_stricmp(const char *s1, const char *s2)
{
unsigned char c1, c2;
int d;
while (1) {
c1 = nasm_tolower(*s1++);
c2 = nasm_tolower(*s2++);
d = c1-c2;
if (d)
return d;
if (!c1)
break;
}
return 0;
}
#endif
#ifndef nasm_strnicmp
int nasm_strnicmp(const char *s1, const char *s2, size_t n)
{
unsigned char c1, c2;
int d;
while (n--) {
c1 = nasm_tolower(*s1++);
c2 = nasm_tolower(*s2++);
d = c1-c2;
if (d)
return d;
if (!c1)
break;
}
return 0;
}
#endif
int nasm_memicmp(const char *s1, const char *s2, size_t n)
{
unsigned char c1, c2;
int d;
while (n--) {
c1 = nasm_tolower(*s1++);
c2 = nasm_tolower(*s2++);
d = c1-c2;
if (d)
return d;
}
return 0;
}
#ifndef nasm_strsep
char *nasm_strsep(char **stringp, const char *delim)
{
char *s = *stringp;
char *e;
if (!s)
return NULL;
e = strpbrk(s, delim);
if (e)
*e++ = '\0';
*stringp = e;
return s;
}
#endif
#define lib_isnumchar(c) (nasm_isalnum(c) || (c) == '$' || (c) == '_')
#define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
static int radix_letter(char c)
{
switch (c) {
case 'b': case 'B':
case 'y': case 'Y':
return 2; /* Binary */
case 'o': case 'O':
case 'q': case 'Q':
return 8; /* Octal */
case 'h': case 'H':
case 'x': case 'X':
return 16; /* Hexadecimal */
case 'd': case 'D':
case 't': case 'T':
return 10; /* Decimal */
default:
return 0; /* Not a known radix letter */
}
}
int64_t readnum(char *str, bool *error)
{
char *r = str, *q;
int32_t pradix, sradix, radix;
int plen, slen, len;
uint64_t result, checklimit;
int digit, last;
bool warn = false;
int sign = 1;
*error = false;
while (nasm_isspace(*r))
r++; /* find start of number */
/*
* If the number came from make_tok_num (as a result of an %assign), it
* might have a '-' built into it (rather than in a preceeding token).
*/
if (*r == '-') {
r++;
sign = -1;
}
q = r;
while (lib_isnumchar(*q))
q++; /* find end of number */
len = q-r;
if (!len) {
/* Not numeric */
*error = true;
return 0;
}
/*
* Handle radix formats:
*
* 0<radix-letter><string>
* $<string> (hexadecimal)
* <string><radix-letter>
*/
pradix = sradix = 0;
plen = slen = 0;
if (len > 2 && *r == '0' && (pradix = radix_letter(r[1])) != 0)
plen = 2;
else if (len > 1 && *r == '$')
pradix = 16, plen = 1;
if (len > 1 && (sradix = radix_letter(q[-1])) != 0)
slen = 1;
if (pradix > sradix) {
radix = pradix;
r += plen;
} else if (sradix > pradix) {
radix = sradix;
q -= slen;
} else {
/* Either decimal, or invalid -- if invalid, we'll trip up
further down. */
radix = 10;
}
/*
* `checklimit' must be 2**64 / radix. We can't do that in
* 64-bit arithmetic, which we're (probably) using, so we
* cheat: since we know that all radices we use are even, we
* can divide 2**63 by radix/2 instead.
*/
checklimit = 0x8000000000000000ULL / (radix >> 1);
/*
* Calculate the highest allowable value for the last digit of a
* 64-bit constant... in radix 10, it is 6, otherwise it is 0
*/
last = (radix == 10 ? 6 : 0);
result = 0;
while (*r && r < q) {
if (*r != '_') {
if (*r < '0' || (*r > '9' && *r < 'A')
|| (digit = numvalue(*r)) >= radix) {
*error = true;
return 0;
}
if (result > checklimit ||
(result == checklimit && digit >= last)) {
warn = true;
}
result = radix * result + digit;
}
r++;
}
if (warn)
nasm_malloc_error(ERR_WARNING | ERR_PASS1 | ERR_WARN_NOV,
"numeric constant %s does not fit in 64 bits",
str);
return result * sign;
}
int64_t readstrnum(char *str, int length, bool *warn)
{
int64_t charconst = 0;
int i;
*warn = false;
str += length;
if (globalbits == 64) {
for (i = 0; i < length; i++) {
if (charconst & 0xFF00000000000000ULL)
*warn = true;
charconst = (charconst << 8) + (uint8_t)*--str;
}
} else {
for (i = 0; i < length; i++) {
if (charconst & 0xFF000000UL)
*warn = true;
charconst = (charconst << 8) + (uint8_t)*--str;
}
}
return charconst;
}
static int32_t next_seg;
void seg_init(void)
{
next_seg = 0;
}
int32_t seg_alloc(void)
{
return (next_seg += 2) - 2;
}
#ifdef WORDS_LITTLEENDIAN
void fwriteint16_t(uint16_t data, FILE * fp)
{
fwrite(&data, 1, 2, fp);
}
void fwriteint32_t(uint32_t data, FILE * fp)
{
fwrite(&data, 1, 4, fp);
}
void fwriteint64_t(uint64_t data, FILE * fp)
{
fwrite(&data, 1, 8, fp);
}
void fwriteaddr(uint64_t data, int size, FILE * fp)
{
fwrite(&data, 1, size, fp);
}
#else /* not WORDS_LITTLEENDIAN */
void fwriteint16_t(uint16_t data, FILE * fp)
{
char buffer[2], *p = buffer;
WRITESHORT(p, data);
fwrite(buffer, 1, 2, fp);
}
void fwriteint32_t(uint32_t data, FILE * fp)
{
char buffer[4], *p = buffer;
WRITELONG(p, data);
fwrite(buffer, 1, 4, fp);
}
void fwriteint64_t(uint64_t data, FILE * fp)
{
char buffer[8], *p = buffer;
WRITEDLONG(p, data);
fwrite(buffer, 1, 8, fp);
}
void fwriteaddr(uint64_t data, int size, FILE * fp)
{
char buffer[8], *p = buffer;
WRITEADDR(p, data, size);
fwrite(buffer, 1, size, fp);
}
#endif
void standard_extension(char *inname, char *outname, char *extension,
efunc error)
{
char *p, *q;
if (*outname) /* file name already exists, */
return; /* so do nothing */
q = inname;
p = outname;
while (*q)
*p++ = *q++; /* copy, and find end of string */
*p = '\0'; /* terminate it */
while (p > outname && *--p != '.') ; /* find final period (or whatever) */
if (*p != '.')
while (*p)
p++; /* go back to end if none found */
if (!strcmp(p, extension)) { /* is the extension already there? */
if (*extension)
error(ERR_WARNING | ERR_NOFILE,
"file name already ends in `%s': "
"output will be in `nasm.out'", extension);
else
error(ERR_WARNING | ERR_NOFILE,
"file name already has no extension: "
"output will be in `nasm.out'");
strcpy(outname, "nasm.out");
} else
strcpy(p, extension);
}
/*
* Common list of prefix names
*/
static const char *prefix_names[] = {
"a16", "a32", "lock", "o16", "o32", "rep", "repe", "repne",
"repnz", "repz", "times"
};
const char *prefix_name(int token)
{
unsigned int prefix = token-PREFIX_ENUM_START;
if (prefix > elements(prefix_names))
return NULL;
return prefix_names[prefix];
}
/*
* Binary search.
*/
int bsi(const char *string, const char **array, int size)
{
int i = -1, j = size; /* always, i < index < j */
while (j - i >= 2) {
int k = (i + j) / 2;
int l = strcmp(string, array[k]);
if (l < 0) /* it's in the first half */
j = k;
else if (l > 0) /* it's in the second half */
i = k;
else /* we've got it :) */
return k;
}
return -1; /* we haven't got it :( */
}
int bsii(const char *string, const char **array, int size)
{
int i = -1, j = size; /* always, i < index < j */
while (j - i >= 2) {
int k = (i + j) / 2;
int l = nasm_stricmp(string, array[k]);
if (l < 0) /* it's in the first half */
j = k;
else if (l > 0) /* it's in the second half */
i = k;
else /* we've got it :) */
return k;
}
return -1; /* we haven't got it :( */
}
static char *file_name = NULL;
static int32_t line_number = 0;
char *src_set_fname(char *newname)
{
char *oldname = file_name;
file_name = newname;
return oldname;
}
int32_t src_set_linnum(int32_t newline)
{
int32_t oldline = line_number;
line_number = newline;
return oldline;
}
int32_t src_get_linnum(void)
{
return line_number;
}
int src_get(int32_t *xline, char **xname)
{
if (!file_name || !*xname || strcmp(*xname, file_name)) {
nasm_free(*xname);
*xname = file_name ? nasm_strdup(file_name) : NULL;
*xline = line_number;
return -2;
}
if (*xline != line_number) {
int32_t tmp = line_number - *xline;
*xline = line_number;
return tmp;
}
return 0;
}
char *nasm_strcat(char *one, char *two)
{
char *rslt;
int l1 = strlen(one);
rslt = nasm_malloc(l1 + strlen(two) + 1);
strcpy(rslt, one);
strcpy(rslt + l1, two);
return rslt;
}
void null_debug_init(struct ofmt *of, void *id, FILE * fp, efunc error)
{
(void)of;
(void)id;
(void)fp;
(void)error;
}
void null_debug_linenum(const char *filename, int32_t linenumber, int32_t segto)
{
(void)filename;
(void)linenumber;
(void)segto;
}
void null_debug_deflabel(char *name, int32_t segment, int64_t offset,
int is_global, char *special)
{
(void)name;
(void)segment;
(void)offset;
(void)is_global;
(void)special;
}
void null_debug_routine(const char *directive, const char *params)
{
(void)directive;
(void)params;
}
void null_debug_typevalue(int32_t type)
{
(void)type;
}
void null_debug_output(int type, void *param)
{
(void)type;
(void)param;
}
void null_debug_cleanup(void)
{
}
struct dfmt null_debug_form = {
"Null debug format",
"null",
null_debug_init,
null_debug_linenum,
null_debug_deflabel,
null_debug_routine,
null_debug_typevalue,
null_debug_output,
null_debug_cleanup
};
struct dfmt *null_debug_arr[2] = { &null_debug_form, NULL };