mirror of
https://github.com/netwide-assembler/nasm.git
synced 2024-11-21 03:14:19 +08:00
e20ca02cfb
There are two instructions (VGATHERQPS, VPGATHERQD) where the only separation between two forms is the vector length given to the vector SIB. This means the *matcher* has to be able to distinguish instructions by vector SIB length and the matcher only operates on the operands and the instruction flags, not on the bytecode. Export the vector index-ness into the operand flags and add to the matcher. This resolves BR 3392260. Reported-by: Agner <agner@anger.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
1000 lines
36 KiB
C
1000 lines
36 KiB
C
/* ----------------------------------------------------------------------- *
|
|
*
|
|
* Copyright 1996-2013 The NASM Authors - All Rights Reserved
|
|
* See the file AUTHORS included with the NASM distribution for
|
|
* the specific copyright holders.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
|
|
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* ----------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* parser.c source line parser for the Netwide Assembler
|
|
*/
|
|
|
|
#include "compiler.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stddef.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include <inttypes.h>
|
|
|
|
#include "nasm.h"
|
|
#include "insns.h"
|
|
#include "nasmlib.h"
|
|
#include "stdscan.h"
|
|
#include "eval.h"
|
|
#include "parser.h"
|
|
#include "float.h"
|
|
#include "tables.h"
|
|
|
|
extern int in_abs_seg; /* ABSOLUTE segment flag */
|
|
extern int32_t abs_seg; /* ABSOLUTE segment */
|
|
extern int32_t abs_offset; /* ABSOLUTE segment offset */
|
|
|
|
static int is_comma_next(void);
|
|
|
|
static int i;
|
|
static struct tokenval tokval;
|
|
static struct location *location; /* Pointer to current line's segment,offset */
|
|
|
|
void parser_global_info(struct location * locp)
|
|
{
|
|
location = locp;
|
|
}
|
|
|
|
static int prefix_slot(int prefix)
|
|
{
|
|
switch (prefix) {
|
|
case P_WAIT:
|
|
return PPS_WAIT;
|
|
case R_CS:
|
|
case R_DS:
|
|
case R_SS:
|
|
case R_ES:
|
|
case R_FS:
|
|
case R_GS:
|
|
return PPS_SEG;
|
|
case P_LOCK:
|
|
return PPS_LOCK;
|
|
case P_REP:
|
|
case P_REPE:
|
|
case P_REPZ:
|
|
case P_REPNE:
|
|
case P_REPNZ:
|
|
case P_XACQUIRE:
|
|
case P_XRELEASE:
|
|
return PPS_REP;
|
|
case P_O16:
|
|
case P_O32:
|
|
case P_O64:
|
|
case P_OSP:
|
|
return PPS_OSIZE;
|
|
case P_A16:
|
|
case P_A32:
|
|
case P_A64:
|
|
case P_ASP:
|
|
return PPS_ASIZE;
|
|
default:
|
|
nasm_error(ERR_PANIC, "Invalid value %d passed to prefix_slot()", prefix);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
static void process_size_override(insn *result, int operand)
|
|
{
|
|
if (tasm_compatible_mode) {
|
|
switch ((int)tokval.t_integer) {
|
|
/* For TASM compatibility a size override inside the
|
|
* brackets changes the size of the operand, not the
|
|
* address type of the operand as it does in standard
|
|
* NASM syntax. Hence:
|
|
*
|
|
* mov eax,[DWORD val]
|
|
*
|
|
* is valid syntax in TASM compatibility mode. Note that
|
|
* you lose the ability to override the default address
|
|
* type for the instruction, but we never use anything
|
|
* but 32-bit flat model addressing in our code.
|
|
*/
|
|
case S_BYTE:
|
|
result->oprs[operand].type |= BITS8;
|
|
break;
|
|
case S_WORD:
|
|
result->oprs[operand].type |= BITS16;
|
|
break;
|
|
case S_DWORD:
|
|
case S_LONG:
|
|
result->oprs[operand].type |= BITS32;
|
|
break;
|
|
case S_QWORD:
|
|
result->oprs[operand].type |= BITS64;
|
|
break;
|
|
case S_TWORD:
|
|
result->oprs[operand].type |= BITS80;
|
|
break;
|
|
case S_OWORD:
|
|
result->oprs[operand].type |= BITS128;
|
|
break;
|
|
default:
|
|
nasm_error(ERR_NONFATAL,
|
|
"invalid operand size specification");
|
|
break;
|
|
}
|
|
} else {
|
|
/* Standard NASM compatible syntax */
|
|
switch ((int)tokval.t_integer) {
|
|
case S_NOSPLIT:
|
|
result->oprs[operand].eaflags |= EAF_TIMESTWO;
|
|
break;
|
|
case S_REL:
|
|
result->oprs[operand].eaflags |= EAF_REL;
|
|
break;
|
|
case S_ABS:
|
|
result->oprs[operand].eaflags |= EAF_ABS;
|
|
break;
|
|
case S_BYTE:
|
|
result->oprs[operand].disp_size = 8;
|
|
result->oprs[operand].eaflags |= EAF_BYTEOFFS;
|
|
break;
|
|
case P_A16:
|
|
case P_A32:
|
|
case P_A64:
|
|
if (result->prefixes[PPS_ASIZE] &&
|
|
result->prefixes[PPS_ASIZE] != tokval.t_integer)
|
|
nasm_error(ERR_NONFATAL,
|
|
"conflicting address size specifications");
|
|
else
|
|
result->prefixes[PPS_ASIZE] = tokval.t_integer;
|
|
break;
|
|
case S_WORD:
|
|
result->oprs[operand].disp_size = 16;
|
|
result->oprs[operand].eaflags |= EAF_WORDOFFS;
|
|
break;
|
|
case S_DWORD:
|
|
case S_LONG:
|
|
result->oprs[operand].disp_size = 32;
|
|
result->oprs[operand].eaflags |= EAF_WORDOFFS;
|
|
break;
|
|
case S_QWORD:
|
|
result->oprs[operand].disp_size = 64;
|
|
result->oprs[operand].eaflags |= EAF_WORDOFFS;
|
|
break;
|
|
default:
|
|
nasm_error(ERR_NONFATAL, "invalid size specification in"
|
|
" effective address");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
insn *parse_line(int pass, char *buffer, insn *result, ldfunc ldef)
|
|
{
|
|
bool insn_is_label = false;
|
|
struct eval_hints hints;
|
|
int operand;
|
|
int critical;
|
|
bool first;
|
|
bool recover;
|
|
|
|
restart_parse:
|
|
first = true;
|
|
result->forw_ref = false;
|
|
|
|
stdscan_reset();
|
|
stdscan_set(buffer);
|
|
i = stdscan(NULL, &tokval);
|
|
|
|
result->label = NULL; /* Assume no label */
|
|
result->eops = NULL; /* must do this, whatever happens */
|
|
result->operands = 0; /* must initialize this */
|
|
|
|
/* Ignore blank lines */
|
|
if (i == TOKEN_EOS) {
|
|
result->opcode = I_none;
|
|
return result;
|
|
}
|
|
|
|
if (i != TOKEN_ID &&
|
|
i != TOKEN_INSN &&
|
|
i != TOKEN_PREFIX &&
|
|
(i != TOKEN_REG || !IS_SREG(tokval.t_integer))) {
|
|
nasm_error(ERR_NONFATAL,
|
|
"label or instruction expected at start of line");
|
|
result->opcode = I_none;
|
|
return result;
|
|
}
|
|
|
|
if (i == TOKEN_ID || (insn_is_label && i == TOKEN_INSN)) {
|
|
/* there's a label here */
|
|
first = false;
|
|
result->label = tokval.t_charptr;
|
|
i = stdscan(NULL, &tokval);
|
|
if (i == ':') { /* skip over the optional colon */
|
|
i = stdscan(NULL, &tokval);
|
|
} else if (i == 0) {
|
|
nasm_error(ERR_WARNING | ERR_WARN_OL | ERR_PASS1,
|
|
"label alone on a line without a colon might be in error");
|
|
}
|
|
if (i != TOKEN_INSN || tokval.t_integer != I_EQU) {
|
|
/*
|
|
* FIXME: location->segment could be NO_SEG, in which case
|
|
* it is possible we should be passing 'abs_seg'. Look into this.
|
|
* Work out whether that is *really* what we should be doing.
|
|
* Generally fix things. I think this is right as it is, but
|
|
* am still not certain.
|
|
*/
|
|
ldef(result->label, in_abs_seg ? abs_seg : location->segment,
|
|
location->offset, NULL, true, false);
|
|
}
|
|
}
|
|
|
|
/* Just a label here */
|
|
if (i == TOKEN_EOS) {
|
|
result->opcode = I_none;
|
|
return result;
|
|
}
|
|
|
|
nasm_build_assert(P_none != 0);
|
|
memset(result->prefixes, P_none, sizeof(result->prefixes));
|
|
result->times = 1L;
|
|
|
|
while (i == TOKEN_PREFIX ||
|
|
(i == TOKEN_REG && IS_SREG(tokval.t_integer))) {
|
|
first = false;
|
|
|
|
/*
|
|
* Handle special case: the TIMES prefix.
|
|
*/
|
|
if (i == TOKEN_PREFIX && tokval.t_integer == P_TIMES) {
|
|
expr *value;
|
|
|
|
i = stdscan(NULL, &tokval);
|
|
value = evaluate(stdscan, NULL, &tokval, NULL, pass0, nasm_error, NULL);
|
|
i = tokval.t_type;
|
|
if (!value) { /* but, error in evaluator */
|
|
result->opcode = I_none; /* unrecoverable parse error: */
|
|
return result; /* ignore this instruction */
|
|
}
|
|
if (!is_simple(value)) {
|
|
nasm_error(ERR_NONFATAL,
|
|
"non-constant argument supplied to TIMES");
|
|
result->times = 1L;
|
|
} else {
|
|
result->times = value->value;
|
|
if (value->value < 0 && pass0 == 2) {
|
|
nasm_error(ERR_NONFATAL, "TIMES value %"PRId64" is negative",
|
|
value->value);
|
|
result->times = 0;
|
|
}
|
|
}
|
|
} else {
|
|
int slot = prefix_slot(tokval.t_integer);
|
|
if (result->prefixes[slot]) {
|
|
if (result->prefixes[slot] == tokval.t_integer)
|
|
nasm_error(ERR_WARNING | ERR_PASS1,
|
|
"instruction has redundant prefixes");
|
|
else
|
|
nasm_error(ERR_NONFATAL,
|
|
"instruction has conflicting prefixes");
|
|
}
|
|
result->prefixes[slot] = tokval.t_integer;
|
|
i = stdscan(NULL, &tokval);
|
|
}
|
|
}
|
|
|
|
if (i != TOKEN_INSN) {
|
|
int j;
|
|
enum prefixes pfx;
|
|
|
|
for (j = 0; j < MAXPREFIX; j++) {
|
|
if ((pfx = result->prefixes[j]) != P_none)
|
|
break;
|
|
}
|
|
|
|
if (i == 0 && pfx != P_none) {
|
|
/*
|
|
* Instruction prefixes are present, but no actual
|
|
* instruction. This is allowed: at this point we
|
|
* invent a notional instruction of RESB 0.
|
|
*/
|
|
result->opcode = I_RESB;
|
|
result->operands = 1;
|
|
result->oprs[0].type = IMMEDIATE;
|
|
result->oprs[0].offset = 0L;
|
|
result->oprs[0].segment = result->oprs[0].wrt = NO_SEG;
|
|
return result;
|
|
} else {
|
|
nasm_error(ERR_NONFATAL, "parser: instruction expected");
|
|
result->opcode = I_none;
|
|
return result;
|
|
}
|
|
}
|
|
|
|
result->opcode = tokval.t_integer;
|
|
result->condition = tokval.t_inttwo;
|
|
|
|
/*
|
|
* INCBIN cannot be satisfied with incorrectly
|
|
* evaluated operands, since the correct values _must_ be known
|
|
* on the first pass. Hence, even in pass one, we set the
|
|
* `critical' flag on calling evaluate(), so that it will bomb
|
|
* out on undefined symbols.
|
|
*/
|
|
if (result->opcode == I_INCBIN) {
|
|
critical = (pass0 < 2 ? 1 : 2);
|
|
|
|
} else
|
|
critical = (pass == 2 ? 2 : 0);
|
|
|
|
if (result->opcode == I_DB || result->opcode == I_DW ||
|
|
result->opcode == I_DD || result->opcode == I_DQ ||
|
|
result->opcode == I_DT || result->opcode == I_DO ||
|
|
result->opcode == I_DY || result->opcode == I_INCBIN) {
|
|
extop *eop, **tail = &result->eops, **fixptr;
|
|
int oper_num = 0;
|
|
int32_t sign;
|
|
|
|
result->eops_float = false;
|
|
|
|
/*
|
|
* Begin to read the DB/DW/DD/DQ/DT/DO/INCBIN operands.
|
|
*/
|
|
while (1) {
|
|
i = stdscan(NULL, &tokval);
|
|
if (i == TOKEN_EOS)
|
|
break;
|
|
else if (first && i == ':') {
|
|
insn_is_label = true;
|
|
goto restart_parse;
|
|
}
|
|
first = false;
|
|
fixptr = tail;
|
|
eop = *tail = nasm_malloc(sizeof(extop));
|
|
tail = &eop->next;
|
|
eop->next = NULL;
|
|
eop->type = EOT_NOTHING;
|
|
oper_num++;
|
|
sign = +1;
|
|
|
|
/*
|
|
* is_comma_next() here is to distinguish this from
|
|
* a string used as part of an expression...
|
|
*/
|
|
if (i == TOKEN_STR && is_comma_next()) {
|
|
eop->type = EOT_DB_STRING;
|
|
eop->stringval = tokval.t_charptr;
|
|
eop->stringlen = tokval.t_inttwo;
|
|
i = stdscan(NULL, &tokval); /* eat the comma */
|
|
} else if (i == TOKEN_STRFUNC) {
|
|
bool parens = false;
|
|
const char *funcname = tokval.t_charptr;
|
|
enum strfunc func = tokval.t_integer;
|
|
i = stdscan(NULL, &tokval);
|
|
if (i == '(') {
|
|
parens = true;
|
|
i = stdscan(NULL, &tokval);
|
|
}
|
|
if (i != TOKEN_STR) {
|
|
nasm_error(ERR_NONFATAL,
|
|
"%s must be followed by a string constant",
|
|
funcname);
|
|
eop->type = EOT_NOTHING;
|
|
} else {
|
|
eop->type = EOT_DB_STRING_FREE;
|
|
eop->stringlen =
|
|
string_transform(tokval.t_charptr, tokval.t_inttwo,
|
|
&eop->stringval, func);
|
|
if (eop->stringlen == (size_t)-1) {
|
|
nasm_error(ERR_NONFATAL, "invalid string for transform");
|
|
eop->type = EOT_NOTHING;
|
|
}
|
|
}
|
|
if (parens && i && i != ')') {
|
|
i = stdscan(NULL, &tokval);
|
|
if (i != ')') {
|
|
nasm_error(ERR_NONFATAL, "unterminated %s function",
|
|
funcname);
|
|
}
|
|
}
|
|
if (i && i != ',')
|
|
i = stdscan(NULL, &tokval);
|
|
} else if (i == '-' || i == '+') {
|
|
char *save = stdscan_get();
|
|
int token = i;
|
|
sign = (i == '-') ? -1 : 1;
|
|
i = stdscan(NULL, &tokval);
|
|
if (i != TOKEN_FLOAT) {
|
|
stdscan_set(save);
|
|
i = tokval.t_type = token;
|
|
goto is_expression;
|
|
} else {
|
|
goto is_float;
|
|
}
|
|
} else if (i == TOKEN_FLOAT) {
|
|
is_float:
|
|
eop->type = EOT_DB_STRING;
|
|
result->eops_float = true;
|
|
|
|
eop->stringlen = idata_bytes(result->opcode);
|
|
if (eop->stringlen > 16) {
|
|
nasm_error(ERR_NONFATAL, "floating-point constant"
|
|
" encountered in DY instruction");
|
|
eop->stringlen = 0;
|
|
} else if (eop->stringlen < 1) {
|
|
nasm_error(ERR_NONFATAL, "floating-point constant"
|
|
" encountered in unknown instruction");
|
|
/*
|
|
* fix suggested by Pedro Gimeno... original line was:
|
|
* eop->type = EOT_NOTHING;
|
|
*/
|
|
eop->stringlen = 0;
|
|
}
|
|
|
|
eop = nasm_realloc(eop, sizeof(extop) + eop->stringlen);
|
|
tail = &eop->next;
|
|
*fixptr = eop;
|
|
eop->stringval = (char *)eop + sizeof(extop);
|
|
if (!eop->stringlen ||
|
|
!float_const(tokval.t_charptr, sign,
|
|
(uint8_t *)eop->stringval,
|
|
eop->stringlen, nasm_error))
|
|
eop->type = EOT_NOTHING;
|
|
i = stdscan(NULL, &tokval); /* eat the comma */
|
|
} else {
|
|
/* anything else, assume it is an expression */
|
|
expr *value;
|
|
|
|
is_expression:
|
|
value = evaluate(stdscan, NULL, &tokval, NULL,
|
|
critical, nasm_error, NULL);
|
|
i = tokval.t_type;
|
|
if (!value) { /* error in evaluator */
|
|
result->opcode = I_none; /* unrecoverable parse error: */
|
|
return result; /* ignore this instruction */
|
|
}
|
|
if (is_unknown(value)) {
|
|
eop->type = EOT_DB_NUMBER;
|
|
eop->offset = 0; /* doesn't matter what we put */
|
|
eop->segment = eop->wrt = NO_SEG; /* likewise */
|
|
} else if (is_reloc(value)) {
|
|
eop->type = EOT_DB_NUMBER;
|
|
eop->offset = reloc_value(value);
|
|
eop->segment = reloc_seg(value);
|
|
eop->wrt = reloc_wrt(value);
|
|
} else {
|
|
nasm_error(ERR_NONFATAL,
|
|
"operand %d: expression is not simple"
|
|
" or relocatable", oper_num);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We're about to call stdscan(), which will eat the
|
|
* comma that we're currently sitting on between
|
|
* arguments. However, we'd better check first that it
|
|
* _is_ a comma.
|
|
*/
|
|
if (i == TOKEN_EOS) /* also could be EOL */
|
|
break;
|
|
if (i != ',') {
|
|
nasm_error(ERR_NONFATAL, "comma expected after operand %d",
|
|
oper_num);
|
|
result->opcode = I_none;/* unrecoverable parse error: */
|
|
return result; /* ignore this instruction */
|
|
}
|
|
}
|
|
|
|
if (result->opcode == I_INCBIN) {
|
|
/*
|
|
* Correct syntax for INCBIN is that there should be
|
|
* one string operand, followed by one or two numeric
|
|
* operands.
|
|
*/
|
|
if (!result->eops || result->eops->type != EOT_DB_STRING)
|
|
nasm_error(ERR_NONFATAL, "`incbin' expects a file name");
|
|
else if (result->eops->next &&
|
|
result->eops->next->type != EOT_DB_NUMBER)
|
|
nasm_error(ERR_NONFATAL, "`incbin': second parameter is"
|
|
" non-numeric");
|
|
else if (result->eops->next && result->eops->next->next &&
|
|
result->eops->next->next->type != EOT_DB_NUMBER)
|
|
nasm_error(ERR_NONFATAL, "`incbin': third parameter is"
|
|
" non-numeric");
|
|
else if (result->eops->next && result->eops->next->next &&
|
|
result->eops->next->next->next)
|
|
nasm_error(ERR_NONFATAL,
|
|
"`incbin': more than three parameters");
|
|
else
|
|
return result;
|
|
/*
|
|
* If we reach here, one of the above errors happened.
|
|
* Throw the instruction away.
|
|
*/
|
|
result->opcode = I_none;
|
|
return result;
|
|
} else /* DB ... */ if (oper_num == 0)
|
|
nasm_error(ERR_WARNING | ERR_PASS1,
|
|
"no operand for data declaration");
|
|
else
|
|
result->operands = oper_num;
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Now we begin to parse the operands. There may be up to four
|
|
* of these, separated by commas, and terminated by a zero token.
|
|
*/
|
|
|
|
for (operand = 0; operand < MAX_OPERANDS; operand++) {
|
|
expr *value; /* used most of the time */
|
|
int mref; /* is this going to be a memory ref? */
|
|
int bracket; /* is it a [] mref, or a & mref? */
|
|
int setsize = 0;
|
|
|
|
result->oprs[operand].disp_size = 0; /* have to zero this whatever */
|
|
result->oprs[operand].eaflags = 0; /* and this */
|
|
result->oprs[operand].opflags = 0;
|
|
|
|
i = stdscan(NULL, &tokval);
|
|
if (i == TOKEN_EOS)
|
|
break; /* end of operands: get out of here */
|
|
else if (first && i == ':') {
|
|
insn_is_label = true;
|
|
goto restart_parse;
|
|
}
|
|
first = false;
|
|
result->oprs[operand].type = 0; /* so far, no override */
|
|
while (i == TOKEN_SPECIAL) { /* size specifiers */
|
|
switch ((int)tokval.t_integer) {
|
|
case S_BYTE:
|
|
if (!setsize) /* we want to use only the first */
|
|
result->oprs[operand].type |= BITS8;
|
|
setsize = 1;
|
|
break;
|
|
case S_WORD:
|
|
if (!setsize)
|
|
result->oprs[operand].type |= BITS16;
|
|
setsize = 1;
|
|
break;
|
|
case S_DWORD:
|
|
case S_LONG:
|
|
if (!setsize)
|
|
result->oprs[operand].type |= BITS32;
|
|
setsize = 1;
|
|
break;
|
|
case S_QWORD:
|
|
if (!setsize)
|
|
result->oprs[operand].type |= BITS64;
|
|
setsize = 1;
|
|
break;
|
|
case S_TWORD:
|
|
if (!setsize)
|
|
result->oprs[operand].type |= BITS80;
|
|
setsize = 1;
|
|
break;
|
|
case S_OWORD:
|
|
if (!setsize)
|
|
result->oprs[operand].type |= BITS128;
|
|
setsize = 1;
|
|
break;
|
|
case S_YWORD:
|
|
if (!setsize)
|
|
result->oprs[operand].type |= BITS256;
|
|
setsize = 1;
|
|
break;
|
|
case S_TO:
|
|
result->oprs[operand].type |= TO;
|
|
break;
|
|
case S_STRICT:
|
|
result->oprs[operand].type |= STRICT;
|
|
break;
|
|
case S_FAR:
|
|
result->oprs[operand].type |= FAR;
|
|
break;
|
|
case S_NEAR:
|
|
result->oprs[operand].type |= NEAR;
|
|
break;
|
|
case S_SHORT:
|
|
result->oprs[operand].type |= SHORT;
|
|
break;
|
|
default:
|
|
nasm_error(ERR_NONFATAL, "invalid operand size specification");
|
|
}
|
|
i = stdscan(NULL, &tokval);
|
|
}
|
|
|
|
if (i == '[' || i == '&') { /* memory reference */
|
|
mref = true;
|
|
bracket = (i == '[');
|
|
i = stdscan(NULL, &tokval); /* then skip the colon */
|
|
while (i == TOKEN_SPECIAL || i == TOKEN_PREFIX) {
|
|
process_size_override(result, operand);
|
|
i = stdscan(NULL, &tokval);
|
|
}
|
|
} else { /* immediate operand, or register */
|
|
mref = false;
|
|
bracket = false; /* placate optimisers */
|
|
}
|
|
|
|
if ((result->oprs[operand].type & FAR) && !mref &&
|
|
result->opcode != I_JMP && result->opcode != I_CALL) {
|
|
nasm_error(ERR_NONFATAL, "invalid use of FAR operand specifier");
|
|
}
|
|
|
|
value = evaluate(stdscan, NULL, &tokval,
|
|
&result->oprs[operand].opflags,
|
|
critical, nasm_error, &hints);
|
|
i = tokval.t_type;
|
|
if (result->oprs[operand].opflags & OPFLAG_FORWARD) {
|
|
result->forw_ref = true;
|
|
}
|
|
if (!value) { /* nasm_error in evaluator */
|
|
result->opcode = I_none; /* unrecoverable parse error: */
|
|
return result; /* ignore this instruction */
|
|
}
|
|
if (i == ':' && mref) { /* it was seg:offset */
|
|
/*
|
|
* Process the segment override.
|
|
*/
|
|
if (value[1].type != 0 ||
|
|
value->value != 1 ||
|
|
!IS_SREG(value->type))
|
|
nasm_error(ERR_NONFATAL, "invalid segment override");
|
|
else if (result->prefixes[PPS_SEG])
|
|
nasm_error(ERR_NONFATAL,
|
|
"instruction has conflicting segment overrides");
|
|
else {
|
|
result->prefixes[PPS_SEG] = value->type;
|
|
if (IS_FSGS(value->type))
|
|
result->oprs[operand].eaflags |= EAF_FSGS;
|
|
}
|
|
|
|
i = stdscan(NULL, &tokval); /* then skip the colon */
|
|
while (i == TOKEN_SPECIAL || i == TOKEN_PREFIX) {
|
|
process_size_override(result, operand);
|
|
i = stdscan(NULL, &tokval);
|
|
}
|
|
value = evaluate(stdscan, NULL, &tokval,
|
|
&result->oprs[operand].opflags,
|
|
critical, nasm_error, &hints);
|
|
i = tokval.t_type;
|
|
if (result->oprs[operand].opflags & OPFLAG_FORWARD) {
|
|
result->forw_ref = true;
|
|
}
|
|
/* and get the offset */
|
|
if (!value) { /* but, error in evaluator */
|
|
result->opcode = I_none; /* unrecoverable parse error: */
|
|
return result; /* ignore this instruction */
|
|
}
|
|
}
|
|
|
|
recover = false;
|
|
if (mref && bracket) { /* find ] at the end */
|
|
if (i != ']') {
|
|
nasm_error(ERR_NONFATAL, "parser: expecting ]");
|
|
recover = true;
|
|
} else { /* we got the required ] */
|
|
i = stdscan(NULL, &tokval);
|
|
if (i != 0 && i != ',') {
|
|
nasm_error(ERR_NONFATAL, "comma or end of line expected");
|
|
recover = true;
|
|
}
|
|
}
|
|
} else { /* immediate operand */
|
|
if (i != 0 && i != ',' && i != ':') {
|
|
nasm_error(ERR_NONFATAL, "comma, colon or end of line expected");
|
|
recover = true;
|
|
} else if (i == ':') {
|
|
result->oprs[operand].type |= COLON;
|
|
}
|
|
}
|
|
if (recover) {
|
|
do { /* error recovery */
|
|
i = stdscan(NULL, &tokval);
|
|
} while (i != 0 && i != ',');
|
|
}
|
|
|
|
/*
|
|
* now convert the exprs returned from evaluate()
|
|
* into operand descriptions...
|
|
*/
|
|
|
|
if (mref) { /* it's a memory reference */
|
|
expr *e = value;
|
|
int b, i, s; /* basereg, indexreg, scale */
|
|
int64_t o; /* offset */
|
|
|
|
b = i = -1, o = s = 0;
|
|
result->oprs[operand].hintbase = hints.base;
|
|
result->oprs[operand].hinttype = hints.type;
|
|
|
|
if (e->type && e->type <= EXPR_REG_END) { /* this bit's a register */
|
|
bool is_gpr = is_class(REG_GPR,nasm_reg_flags[e->type]);
|
|
|
|
if (is_gpr && e->value == 1)
|
|
b = e->type; /* It can be basereg */
|
|
else /* No, it has to be indexreg */
|
|
i = e->type, s = e->value;
|
|
e++;
|
|
}
|
|
if (e->type && e->type <= EXPR_REG_END) { /* it's a 2nd register */
|
|
bool is_gpr = is_class(REG_GPR,nasm_reg_flags[e->type]);
|
|
|
|
if (b != -1) /* If the first was the base, ... */
|
|
i = e->type, s = e->value; /* second has to be indexreg */
|
|
|
|
else if (!is_gpr || e->value != 1) {
|
|
/* If both want to be index */
|
|
nasm_error(ERR_NONFATAL,
|
|
"invalid effective address: two index registers");
|
|
result->opcode = I_none;
|
|
return result;
|
|
} else
|
|
b = e->type;
|
|
e++;
|
|
}
|
|
if (e->type != 0) { /* is there an offset? */
|
|
if (e->type <= EXPR_REG_END) { /* in fact, is there an error? */
|
|
nasm_error(ERR_NONFATAL,
|
|
"beroset-p-603-invalid effective address");
|
|
result->opcode = I_none;
|
|
return result;
|
|
} else {
|
|
if (e->type == EXPR_UNKNOWN) {
|
|
result->oprs[operand].opflags |= OPFLAG_UNKNOWN;
|
|
o = 0; /* doesn't matter what */
|
|
result->oprs[operand].wrt = NO_SEG; /* nor this */
|
|
result->oprs[operand].segment = NO_SEG; /* or this */
|
|
while (e->type)
|
|
e++; /* go to the end of the line */
|
|
} else {
|
|
if (e->type == EXPR_SIMPLE) {
|
|
o = e->value;
|
|
e++;
|
|
}
|
|
if (e->type == EXPR_WRT) {
|
|
result->oprs[operand].wrt = e->value;
|
|
e++;
|
|
} else
|
|
result->oprs[operand].wrt = NO_SEG;
|
|
/*
|
|
* Look for a segment base type.
|
|
*/
|
|
if (e->type && e->type < EXPR_SEGBASE) {
|
|
nasm_error(ERR_NONFATAL,
|
|
"beroset-p-630-invalid effective address");
|
|
result->opcode = I_none;
|
|
return result;
|
|
}
|
|
while (e->type && e->value == 0)
|
|
e++;
|
|
if (e->type && e->value != 1) {
|
|
nasm_error(ERR_NONFATAL,
|
|
"beroset-p-637-invalid effective address");
|
|
result->opcode = I_none;
|
|
return result;
|
|
}
|
|
if (e->type) {
|
|
result->oprs[operand].segment =
|
|
e->type - EXPR_SEGBASE;
|
|
e++;
|
|
} else
|
|
result->oprs[operand].segment = NO_SEG;
|
|
while (e->type && e->value == 0)
|
|
e++;
|
|
if (e->type) {
|
|
nasm_error(ERR_NONFATAL,
|
|
"beroset-p-650-invalid effective address");
|
|
result->opcode = I_none;
|
|
return result;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
o = 0;
|
|
result->oprs[operand].wrt = NO_SEG;
|
|
result->oprs[operand].segment = NO_SEG;
|
|
}
|
|
|
|
if (e->type != 0) { /* there'd better be nothing left! */
|
|
nasm_error(ERR_NONFATAL,
|
|
"beroset-p-663-invalid effective address");
|
|
result->opcode = I_none;
|
|
return result;
|
|
}
|
|
|
|
/* It is memory, but it can match any r/m operand */
|
|
result->oprs[operand].type |= MEMORY_ANY;
|
|
|
|
if (b == -1 && (i == -1 || s == 0)) {
|
|
int is_rel = globalbits == 64 &&
|
|
!(result->oprs[operand].eaflags & EAF_ABS) &&
|
|
((globalrel &&
|
|
!(result->oprs[operand].eaflags & EAF_FSGS)) ||
|
|
(result->oprs[operand].eaflags & EAF_REL));
|
|
|
|
result->oprs[operand].type |= is_rel ? IP_REL : MEM_OFFS;
|
|
}
|
|
|
|
if (i != -1) {
|
|
opflags_t iclass = nasm_reg_flags[i];
|
|
|
|
if (is_class(XMMREG,iclass))
|
|
result->oprs[operand].type |= XMEM;
|
|
else if (is_class(YMMREG,iclass))
|
|
result->oprs[operand].type |= YMEM;
|
|
}
|
|
|
|
result->oprs[operand].basereg = b;
|
|
result->oprs[operand].indexreg = i;
|
|
result->oprs[operand].scale = s;
|
|
result->oprs[operand].offset = o;
|
|
} else { /* it's not a memory reference */
|
|
if (is_just_unknown(value)) { /* it's immediate but unknown */
|
|
result->oprs[operand].type |= IMMEDIATE;
|
|
result->oprs[operand].opflags |= OPFLAG_UNKNOWN;
|
|
result->oprs[operand].offset = 0; /* don't care */
|
|
result->oprs[operand].segment = NO_SEG; /* don't care again */
|
|
result->oprs[operand].wrt = NO_SEG; /* still don't care */
|
|
|
|
if(optimizing >= 0 && !(result->oprs[operand].type & STRICT)) {
|
|
/* Be optimistic */
|
|
result->oprs[operand].type |=
|
|
UNITY | SBYTEWORD | SBYTEDWORD | UDWORD | SDWORD;
|
|
}
|
|
} else if (is_reloc(value)) { /* it's immediate */
|
|
result->oprs[operand].type |= IMMEDIATE;
|
|
result->oprs[operand].offset = reloc_value(value);
|
|
result->oprs[operand].segment = reloc_seg(value);
|
|
result->oprs[operand].wrt = reloc_wrt(value);
|
|
|
|
if (is_simple(value)) {
|
|
uint64_t n = reloc_value(value);
|
|
if (n == 1)
|
|
result->oprs[operand].type |= UNITY;
|
|
if (optimizing >= 0 &&
|
|
!(result->oprs[operand].type & STRICT)) {
|
|
if ((uint32_t) (n + 128) <= 255)
|
|
result->oprs[operand].type |= SBYTEDWORD;
|
|
if ((uint16_t) (n + 128) <= 255)
|
|
result->oprs[operand].type |= SBYTEWORD;
|
|
if (n <= 0xFFFFFFFF)
|
|
result->oprs[operand].type |= UDWORD;
|
|
if (n + 0x80000000 <= 0xFFFFFFFF)
|
|
result->oprs[operand].type |= SDWORD;
|
|
}
|
|
}
|
|
} else { /* it's a register */
|
|
opflags_t rs;
|
|
|
|
if (value->type >= EXPR_SIMPLE || value->value != 1) {
|
|
nasm_error(ERR_NONFATAL, "invalid operand type");
|
|
result->opcode = I_none;
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* check that its only 1 register, not an expression...
|
|
*/
|
|
for (i = 1; value[i].type; i++)
|
|
if (value[i].value) {
|
|
nasm_error(ERR_NONFATAL, "invalid operand type");
|
|
result->opcode = I_none;
|
|
return result;
|
|
}
|
|
|
|
/* clear overrides, except TO which applies to FPU regs */
|
|
if (result->oprs[operand].type & ~TO) {
|
|
/*
|
|
* we want to produce a warning iff the specified size
|
|
* is different from the register size
|
|
*/
|
|
rs = result->oprs[operand].type & SIZE_MASK;
|
|
} else
|
|
rs = 0;
|
|
|
|
result->oprs[operand].type &= TO;
|
|
result->oprs[operand].type |= REGISTER;
|
|
result->oprs[operand].type |= nasm_reg_flags[value->type];
|
|
result->oprs[operand].basereg = value->type;
|
|
|
|
if (rs && (result->oprs[operand].type & SIZE_MASK) != rs)
|
|
nasm_error(ERR_WARNING | ERR_PASS1,
|
|
"register size specification ignored");
|
|
}
|
|
}
|
|
}
|
|
|
|
result->operands = operand; /* set operand count */
|
|
|
|
/* clear remaining operands */
|
|
while (operand < MAX_OPERANDS)
|
|
result->oprs[operand++].type = 0;
|
|
|
|
/*
|
|
* Transform RESW, RESD, RESQ, REST, RESO, RESY into RESB.
|
|
*/
|
|
switch (result->opcode) {
|
|
case I_RESW:
|
|
result->opcode = I_RESB;
|
|
result->oprs[0].offset *= 2;
|
|
break;
|
|
case I_RESD:
|
|
result->opcode = I_RESB;
|
|
result->oprs[0].offset *= 4;
|
|
break;
|
|
case I_RESQ:
|
|
result->opcode = I_RESB;
|
|
result->oprs[0].offset *= 8;
|
|
break;
|
|
case I_REST:
|
|
result->opcode = I_RESB;
|
|
result->oprs[0].offset *= 10;
|
|
break;
|
|
case I_RESO:
|
|
result->opcode = I_RESB;
|
|
result->oprs[0].offset *= 16;
|
|
break;
|
|
case I_RESY:
|
|
result->opcode = I_RESB;
|
|
result->oprs[0].offset *= 32;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static int is_comma_next(void)
|
|
{
|
|
struct tokenval tv;
|
|
char *p;
|
|
int i;
|
|
|
|
p = stdscan_get();
|
|
i = stdscan(NULL, &tv);
|
|
stdscan_set(p);
|
|
|
|
return (i == ',' || i == ';' || !i);
|
|
}
|
|
|
|
void cleanup_insn(insn * i)
|
|
{
|
|
extop *e;
|
|
|
|
while ((e = i->eops)) {
|
|
i->eops = e->next;
|
|
if (e->type == EOT_DB_STRING_FREE)
|
|
nasm_free(e->stringval);
|
|
nasm_free(e);
|
|
}
|
|
}
|