nasm/output/outelf64.c
Michael Scherer 92cb18f2a8 outelf32/64: fix uninitialized rbtree
Fix crash caused by uninitialised memory that lead to dangling pointer
in the rbtree. This can be seen by compiling zsnes 1.50, with a file
that define many symbols, such as fxemu2c.asm.
2009-03-18 14:47:33 -07:00

2410 lines
76 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* outelf64.c output routines for the Netwide Assembler to produce
* ELF64 (x86_64 of course) object file format
*
* The Netwide Assembler is copyright (C) 1996 Simon Tatham and
* Julian Hall. All rights reserved. The software is
* redistributable under the license given in the file "LICENSE"
* distributed in the NASM archive.
*/
#include "compiler.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <inttypes.h>
#include "nasm.h"
#include "nasmlib.h"
#include "saa.h"
#include "raa.h"
#include "stdscan.h"
#include "outform.h"
#include "outlib.h"
#include "rbtree.h"
/* Definitions in lieu of elf.h */
#define SHT_NULL 0 /* Inactive section header */
#define SHT_PROGBITS 1 /* Program defined content */
#define SHT_RELA 4 /* Relocation entries with addends */
#define SHT_NOBITS 8 /* Section requires no space in file */
#define SHF_WRITE (1 << 0) /* Writable */
#define SHF_ALLOC (1 << 1) /* Occupies memory during execution */
#define SHF_EXECINSTR (1 << 2) /* Executable */
#define SHF_TLS (1 << 10) /* Section hold thread-local data. */
#define SHN_ABS 0xfff1 /* Associated symbol is absolute */
#define SHN_COMMON 0xfff2 /* Associated symbol is common */
#define R_X86_64_NONE 0 /* No reloc */
#define R_X86_64_64 1 /* Direct 64 bit */
#define R_X86_64_PC32 2 /* PC relative 32 bit signed */
#define R_X86_64_GOT32 3 /* 32 bit GOT entry */
#define R_X86_64_PLT32 4 /* 32 bit PLT address */
#define R_X86_64_COPY 5 /* Copy symbol at runtime */
#define R_X86_64_GLOB_DAT 6 /* Create GOT entry */
#define R_X86_64_JUMP_SLOT 7 /* Create PLT entry */
#define R_X86_64_RELATIVE 8 /* Adjust by program base */
#define R_X86_64_GOTPCREL 9 /* 32 bit signed PC relative
offset to GOT */
#define R_X86_64_32 10 /* Direct 32 bit zero extended */
#define R_X86_64_32S 11 /* Direct 32 bit sign extended */
#define R_X86_64_16 12 /* Direct 16 bit zero extended */
#define R_X86_64_PC16 13 /* 16 bit sign extended pc relative */
#define R_X86_64_8 14 /* Direct 8 bit sign extended */
#define R_X86_64_PC8 15 /* 8 bit sign extended pc relative */
#define R_X86_64_DTPMOD64 16 /* ID of module containing symbol */
#define R_X86_64_DTPOFF64 17 /* Offset in module's TLS block */
#define R_X86_64_TPOFF64 18 /* Offset in initial TLS block */
#define R_X86_64_TLSGD 19 /* 32 bit signed PC relative offset
to two GOT entries for GD symbol */
#define R_X86_64_TLSLD 20 /* 32 bit signed PC relative offset
to two GOT entries for LD symbol */
#define R_X86_64_DTPOFF32 21 /* Offset in TLS block */
#define R_X86_64_GOTTPOFF 22 /* 32 bit signed PC relative offset
to GOT entry for IE symbol */
#define R_X86_64_TPOFF32 23 /* Offset in initial TLS block */
#define R_X86_64_PC64 24 /* word64 S + A - P */
#define R_X86_64_GOTOFF64 25 /* word64 S + A - GOT */
#define R_X86_64_GOTPC32 26 /* word32 GOT + A - P */
#define R_X86_64_GOT64 27 /* word64 G + A */
#define R_X86_64_GOTPCREL64 28 /* word64 G + GOT - P + A */
#define R_X86_64_GOTPC64 29 /* word64 GOT - P + A */
#define R_X86_64_GOTPLT64 30 /* word64 G + A */
#define R_X86_64_PLTOFF64 31 /* word64 L - GOT + A */
#define R_X86_64_SIZE32 32 /* word32 Z + A */
#define R_X86_64_SIZE64 33 /* word64 Z + A */
#define R_X86_64_GOTPC32_TLSDESC 34 /* word32 */
#define R_X86_64_TLSDESC_CALL 35 /* none */
#define R_X86_64_TLSDESC 36 /* word64×2 */
#define ET_REL 1 /* Relocatable file */
#define EM_X86_64 62 /* AMD x86-64 architecture */
#define STT_NOTYPE 0 /* Symbol type is unspecified */
#define STT_OBJECT 1 /* Symbol is a data object */
#define STT_FUNC 2 /* Symbol is a code object */
#define STT_SECTION 3 /* Symbol associated with a section */
#define STT_FILE 4 /* Symbol's name is file name */
#define STT_COMMON 5 /* Symbol is a common data object */
#define STT_TLS 6 /* Symbol is thread-local data object*/
#define STT_NUM 7 /* Number of defined types. */
/* Definitions in lieu of dwarf.h */
#define DW_TAG_compile_unit 0x11
#define DW_TAG_subprogram 0x2e
#define DW_AT_name 0x03
#define DW_AT_stmt_list 0x10
#define DW_AT_low_pc 0x11
#define DW_AT_high_pc 0x12
#define DW_AT_language 0x13
#define DW_AT_producer 0x25
#define DW_AT_frame_base 0x40
#define DW_FORM_addr 0x01
#define DW_FORM_data2 0x05
#define DW_FORM_data4 0x06
#define DW_FORM_string 0x08
#define DW_LNS_extended_op 0
#define DW_LNS_advance_pc 2
#define DW_LNS_advance_line 3
#define DW_LNS_set_file 4
#define DW_LNE_end_sequence 1
#define DW_LNE_set_address 2
#define DW_LNE_define_file 3
#define DW_LANG_Mips_Assembler 0x8001
#define SOC(ln,aa) ln - line_base + (line_range * aa) + opcode_base
typedef uint32_t Elf64_Word;
typedef uint64_t Elf64_Xword;
typedef uint64_t Elf64_Addr;
typedef uint64_t Elf64_Off;
typedef struct
{
Elf64_Word sh_name; /* Section name (string tbl index) */
Elf64_Word sh_type; /* Section type */
Elf64_Xword sh_flags; /* Section flags */
Elf64_Addr sh_addr; /* Section virtual addr at execution */
Elf64_Off sh_offset; /* Section file offset */
Elf64_Xword sh_size; /* Section size in bytes */
Elf64_Word sh_link; /* Link to another section */
Elf64_Word sh_info; /* Additional section information */
Elf64_Xword sh_addralign; /* Section alignment */
Elf64_Xword sh_entsize; /* Entry size if section holds table */
} Elf64_Shdr;
#ifdef OF_ELF64
struct Reloc {
struct Reloc *next;
int64_t address; /* relative to _start_ of section */
int64_t symbol; /* symbol index */
int64_t offset; /* symbol addend */
int type; /* type of relocation */
};
struct Symbol {
struct rbtree symv; /* symbol value and rbtree of globals */
int32_t strpos; /* string table position of name */
int32_t section; /* section ID of the symbol */
int type; /* symbol type */
int other; /* symbol visibility */
int32_t size; /* size of symbol */
int32_t globnum; /* symbol table offset if global */
struct Symbol *nextfwd; /* list of unresolved-size symbols */
char *name; /* used temporarily if in above list */
};
struct Section {
struct SAA *data;
uint64_t len, size;
uint32_t nrelocs;
int32_t index; /* index into sects array */
uint32_t type; /* SHT_PROGBITS or SHT_NOBITS */
uint64_t align; /* alignment: power of two */
uint64_t flags; /* section flags */
char *name;
struct SAA *rel;
uint64_t rellen;
struct Reloc *head, **tail;
struct rbtree *gsyms; /* global symbols in section */
};
#define SECT_DELTA 32
static struct Section **sects;
static int nsects, sectlen;
#define SHSTR_DELTA 256
static char *shstrtab;
static int shstrtablen, shstrtabsize;
static struct SAA *syms;
static uint32_t nlocals, nglobs;
static int32_t def_seg;
static struct RAA *bsym;
static struct SAA *strs;
static uint32_t strslen;
static FILE *elffp;
static efunc error;
static evalfunc evaluate;
static struct Symbol *fwds;
static char elf_module[FILENAME_MAX];
static uint8_t elf_osabi = 0; /* Default OSABI = 0 (System V or Linux) */
static uint8_t elf_abiver = 0; /* Current ABI version */
extern struct ofmt of_elf64;
#define SHN_UNDEF 0
#define SYM_GLOBAL 0x10
#define STV_DEFAULT 0
#define STV_INTERNAL 1
#define STV_HIDDEN 2
#define STV_PROTECTED 3
#define GLOBAL_TEMP_BASE 1048576 /* bigger than any reasonable sym id */
#define SEG_ALIGN 16 /* alignment of sections in file */
#define SEG_ALIGN_1 (SEG_ALIGN-1)
#define TY_DEBUGSYMLIN 0x40 /* internal call to debug_out */
static struct ELF_SECTDATA {
void *data;
int64_t len;
bool is_saa;
} *elf_sects;
static int elf_nsect, nsections;
static int64_t elf_foffs;
static void elf_write(void);
static void elf_sect_write(struct Section *, const void *, size_t);
static void elf_sect_writeaddr(struct Section *, int64_t, size_t);
static void elf_section_header(int, int, uint64_t, void *, bool, uint64_t, int, int,
int, int);
static void elf_write_sections(void);
static struct SAA *elf_build_symtab(int32_t *, int32_t *);
static struct SAA *elf_build_reltab(uint64_t *, struct Reloc *);
static void add_sectname(char *, char *);
/* type values for stabs debugging sections */
#define N_SO 0x64 /* ID for main source file */
#define N_SOL 0x84 /* ID for sub-source file */
#define N_BINCL 0x82 /* not currently used */
#define N_EINCL 0xA2 /* not currently used */
#define N_SLINE 0x44
struct stabentry {
uint32_t n_strx;
uint8_t n_type;
uint8_t n_other;
uint16_t n_desc;
uint32_t n_value;
};
struct erel {
int offset, info;
};
struct symlininfo {
int offset;
int section; /* index into sects[] */
int segto; /* internal section number */
char *name; /* shallow-copied pointer of section name */
};
struct linelist {
struct symlininfo info;
int line;
char *filename;
struct linelist *next;
struct linelist *last;
};
struct sectlist {
struct SAA *psaa;
int section;
int line;
int offset;
int file;
struct sectlist *next;
struct sectlist *last;
};
/* common debug variables */
static int currentline = 1;
static int debug_immcall = 0;
/* stabs debug variables */
static struct linelist *stabslines = 0;
static int numlinestabs = 0;
static char *stabs_filename = 0;
static int symtabsection;
static uint8_t *stabbuf = 0, *stabstrbuf = 0, *stabrelbuf = 0;
static int stablen, stabstrlen, stabrellen;
/* dwarf debug variables */
static struct linelist *dwarf_flist = 0, *dwarf_clist = 0, *dwarf_elist = 0;
static struct sectlist *dwarf_fsect = 0, *dwarf_csect = 0, *dwarf_esect = 0;
static int dwarf_numfiles = 0, dwarf_nsections;
static uint8_t *arangesbuf = 0, *arangesrelbuf = 0, *pubnamesbuf = 0, *infobuf = 0, *inforelbuf = 0,
*abbrevbuf = 0, *linebuf = 0, *linerelbuf = 0, *framebuf = 0, *locbuf = 0;
static int8_t line_base = -5, line_range = 14, opcode_base = 13;
static int arangeslen, arangesrellen, pubnameslen, infolen, inforellen,
abbrevlen, linelen, linerellen, framelen, loclen;
static int64_t dwarf_infosym, dwarf_abbrevsym, dwarf_linesym;
static struct dfmt df_dwarf;
static struct dfmt df_stabs;
static struct Symbol *lastsym;
/* common debugging routines */
void debug64_typevalue(int32_t);
void debug64_init(struct ofmt *, void *, FILE *, efunc);
void debug64_deflabel(char *, int32_t, int64_t, int, char *);
void debug64_directive(const char *, const char *);
/* stabs debugging routines */
void stabs64_linenum(const char *filename, int32_t linenumber, int32_t);
void stabs64_output(int, void *);
void stabs64_generate(void);
void stabs64_cleanup(void);
/* dwarf debugging routines */
void dwarf64_linenum(const char *filename, int32_t linenumber, int32_t);
void dwarf64_output(int, void *);
void dwarf64_generate(void);
void dwarf64_cleanup(void);
void dwarf64_findfile(const char *);
void dwarf64_findsect(const int);
/*
* Special section numbers which are used to define ELF special
* symbols, which can be used with WRT to provide PIC relocation
* types.
*/
static int32_t elf_gotpc_sect, elf_gotoff_sect;
static int32_t elf_got_sect, elf_plt_sect;
static int32_t elf_sym_sect;
static int32_t elf_gottpoff_sect;
static void elf_init(FILE * fp, efunc errfunc, ldfunc ldef, evalfunc eval)
{
maxbits = 64;
elffp = fp;
error = errfunc;
evaluate = eval;
(void)ldef; /* placate optimisers */
sects = NULL;
nsects = sectlen = 0;
syms = saa_init((int32_t)sizeof(struct Symbol));
nlocals = nglobs = 0;
bsym = raa_init();
strs = saa_init(1L);
saa_wbytes(strs, "\0", 1L);
saa_wbytes(strs, elf_module, (int32_t)(strlen(elf_module) + 1));
strslen = 2 + strlen(elf_module);
shstrtab = NULL;
shstrtablen = shstrtabsize = 0;;
add_sectname("", "");
fwds = NULL;
elf_gotpc_sect = seg_alloc();
ldef("..gotpc", elf_gotpc_sect + 1, 0L, NULL, false, false, &of_elf64,
error);
elf_gotoff_sect = seg_alloc();
ldef("..gotoff", elf_gotoff_sect + 1, 0L, NULL, false, false, &of_elf64,
error);
elf_got_sect = seg_alloc();
ldef("..got", elf_got_sect + 1, 0L, NULL, false, false, &of_elf64,
error);
elf_plt_sect = seg_alloc();
ldef("..plt", elf_plt_sect + 1, 0L, NULL, false, false, &of_elf64,
error);
elf_sym_sect = seg_alloc();
ldef("..sym", elf_sym_sect + 1, 0L, NULL, false, false, &of_elf64,
error);
elf_gottpoff_sect = seg_alloc();
ldef("..gottpoff", elf_gottpoff_sect + 1, 0L, NULL, false, false, &of_elf64,
error);
def_seg = seg_alloc();
}
static void elf_cleanup(int debuginfo)
{
struct Reloc *r;
int i;
(void)debuginfo;
elf_write();
fclose(elffp);
for (i = 0; i < nsects; i++) {
if (sects[i]->type != SHT_NOBITS)
saa_free(sects[i]->data);
if (sects[i]->head)
saa_free(sects[i]->rel);
while (sects[i]->head) {
r = sects[i]->head;
sects[i]->head = sects[i]->head->next;
nasm_free(r);
}
}
nasm_free(sects);
saa_free(syms);
raa_free(bsym);
saa_free(strs);
if (of_elf64.current_dfmt) {
of_elf64.current_dfmt->cleanup();
}
}
/* add entry to the elf .shstrtab section */
static void add_sectname(char *firsthalf, char *secondhalf)
{
int len = strlen(firsthalf) + strlen(secondhalf);
while (shstrtablen + len + 1 > shstrtabsize)
shstrtab = nasm_realloc(shstrtab, (shstrtabsize += SHSTR_DELTA));
strcpy(shstrtab + shstrtablen, firsthalf);
strcat(shstrtab + shstrtablen, secondhalf);
shstrtablen += len + 1;
}
static int elf_make_section(char *name, int type, int flags, int align)
{
struct Section *s;
s = nasm_malloc(sizeof(*s));
if (type != SHT_NOBITS)
s->data = saa_init(1L);
s->head = NULL;
s->tail = &s->head;
s->len = s->size = 0;
s->nrelocs = 0;
if (!strcmp(name, ".text"))
s->index = def_seg;
else
s->index = seg_alloc();
add_sectname("", name);
s->name = nasm_malloc(1 + strlen(name));
strcpy(s->name, name);
s->type = type;
s->flags = flags;
s->align = align;
s->gsyms = NULL;
if (nsects >= sectlen)
sects =
nasm_realloc(sects, (sectlen += SECT_DELTA) * sizeof(*sects));
sects[nsects++] = s;
return nsects - 1;
}
static int32_t elf_section_names(char *name, int pass, int *bits)
{
char *p;
unsigned flags_and, flags_or;
uint64_t type, align;
int i;
/*
* Default is 64 bits.
*/
if (!name) {
*bits = 64;
return def_seg;
}
p = name;
while (*p && !nasm_isspace(*p))
p++;
if (*p)
*p++ = '\0';
flags_and = flags_or = type = align = 0;
while (*p && nasm_isspace(*p))
p++;
while (*p) {
char *q = p;
while (*p && !nasm_isspace(*p))
p++;
if (*p)
*p++ = '\0';
while (*p && nasm_isspace(*p))
p++;
if (!nasm_strnicmp(q, "align=", 6)) {
align = atoi(q + 6);
if (align == 0)
align = 1;
if ((align - 1) & align) { /* means it's not a power of two */
error(ERR_NONFATAL, "section alignment %d is not"
" a power of two", align);
align = 1;
}
} else if (!nasm_stricmp(q, "alloc")) {
flags_and |= SHF_ALLOC;
flags_or |= SHF_ALLOC;
} else if (!nasm_stricmp(q, "noalloc")) {
flags_and |= SHF_ALLOC;
flags_or &= ~SHF_ALLOC;
} else if (!nasm_stricmp(q, "exec")) {
flags_and |= SHF_EXECINSTR;
flags_or |= SHF_EXECINSTR;
} else if (!nasm_stricmp(q, "noexec")) {
flags_and |= SHF_EXECINSTR;
flags_or &= ~SHF_EXECINSTR;
} else if (!nasm_stricmp(q, "write")) {
flags_and |= SHF_WRITE;
flags_or |= SHF_WRITE;
} else if (!nasm_stricmp(q, "tls")) {
flags_and |= SHF_TLS;
flags_or |= SHF_TLS;
} else if (!nasm_stricmp(q, "nowrite")) {
flags_and |= SHF_WRITE;
flags_or &= ~SHF_WRITE;
} else if (!nasm_stricmp(q, "progbits")) {
type = SHT_PROGBITS;
} else if (!nasm_stricmp(q, "nobits")) {
type = SHT_NOBITS;
} else if (pass == 1) error(ERR_WARNING, "Unknown section attribute '%s' ignored on"
" declaration of section `%s'", q, name);
}
if (!strcmp(name, ".comment") ||
!strcmp(name, ".shstrtab") ||
!strcmp(name, ".symtab") || !strcmp(name, ".strtab")) {
error(ERR_NONFATAL, "attempt to redefine reserved section"
"name `%s'", name);
return NO_SEG;
}
for (i = 0; i < nsects; i++)
if (!strcmp(name, sects[i]->name))
break;
if (i == nsects) {
if (!strcmp(name, ".text"))
i = elf_make_section(name, SHT_PROGBITS,
SHF_ALLOC | SHF_EXECINSTR, 16);
else if (!strcmp(name, ".rodata"))
i = elf_make_section(name, SHT_PROGBITS, SHF_ALLOC, 4);
else if (!strcmp(name, ".data"))
i = elf_make_section(name, SHT_PROGBITS,
SHF_ALLOC | SHF_WRITE, 4);
else if (!strcmp(name, ".bss"))
i = elf_make_section(name, SHT_NOBITS,
SHF_ALLOC | SHF_WRITE, 4);
else if (!strcmp(name, ".tdata"))
i = elf_make_section(name, SHT_PROGBITS,
SHF_ALLOC | SHF_WRITE | SHF_TLS, 4);
else if (!strcmp(name, ".tbss"))
i = elf_make_section(name, SHT_NOBITS,
SHF_ALLOC | SHF_WRITE | SHF_TLS, 4);
else
i = elf_make_section(name, SHT_PROGBITS, SHF_ALLOC, 1);
if (type)
sects[i]->type = type;
if (align)
sects[i]->align = align;
sects[i]->flags &= ~flags_and;
sects[i]->flags |= flags_or;
} else if (pass == 1) {
if ((type && sects[i]->type != type)
|| (align && sects[i]->align != align)
|| (flags_and && ((sects[i]->flags & flags_and) != flags_or)))
error(ERR_WARNING, "incompatible section attributes ignored on"
" redeclaration of section `%s'", name);
}
return sects[i]->index;
}
static void elf_deflabel(char *name, int32_t segment, int64_t offset,
int is_global, char *special)
{
int pos = strslen;
struct Symbol *sym;
bool special_used = false;
#if defined(DEBUG) && DEBUG>2
fprintf(stderr,
" elf_deflabel: %s, seg=%x, off=%x, is_global=%d, %s\n",
name, segment, offset, is_global, special);
#endif
if (name[0] == '.' && name[1] == '.' && name[2] != '@') {
/*
* This is a NASM special symbol. We never allow it into
* the ELF symbol table, even if it's a valid one. If it
* _isn't_ a valid one, we should barf immediately.
*/
if (strcmp(name, "..gotpc") && strcmp(name, "..gotoff") &&
strcmp(name, "..got") && strcmp(name, "..plt") &&
strcmp(name, "..sym") && strcmp(name, "..gottpoff"))
error(ERR_NONFATAL, "unrecognised special symbol `%s'", name);
return;
}
if (is_global == 3) {
struct Symbol **s;
/*
* Fix up a forward-reference symbol size from the first
* pass.
*/
for (s = &fwds; *s; s = &(*s)->nextfwd)
if (!strcmp((*s)->name, name)) {
struct tokenval tokval;
expr *e;
char *p = special;
while (*p && !nasm_isspace(*p))
p++;
while (*p && nasm_isspace(*p))
p++;
stdscan_reset();
stdscan_bufptr = p;
tokval.t_type = TOKEN_INVALID;
e = evaluate(stdscan, NULL, &tokval, NULL, 1, error, NULL);
if (e) {
if (!is_simple(e))
error(ERR_NONFATAL, "cannot use relocatable"
" expression as symbol size");
else
(*s)->size = reloc_value(e);
}
/*
* Remove it from the list of unresolved sizes.
*/
nasm_free((*s)->name);
*s = (*s)->nextfwd;
return;
}
return; /* it wasn't an important one */
}
saa_wbytes(strs, name, (int32_t)(1 + strlen(name)));
strslen += 1 + strlen(name);
lastsym = sym = saa_wstruct(syms);
memset(&sym->symv, 0, sizeof(struct rbtree));
sym->strpos = pos;
sym->type = is_global ? SYM_GLOBAL : 0;
sym->other = STV_DEFAULT;
sym->size = 0;
if (segment == NO_SEG)
sym->section = SHN_ABS;
else {
int i;
sym->section = SHN_UNDEF;
if (nsects == 0 && segment == def_seg) {
int tempint;
if (segment != elf_section_names(".text", 2, &tempint))
error(ERR_PANIC,
"strange segment conditions in ELF driver");
sym->section = nsects;
} else {
for (i = 0; i < nsects; i++)
if (segment == sects[i]->index) {
sym->section = i + 1;
break;
}
}
}
if (is_global == 2) {
sym->size = offset;
sym->symv.key = 0;
sym->section = SHN_COMMON;
/*
* We have a common variable. Check the special text to see
* if it's a valid number and power of two; if so, store it
* as the alignment for the common variable.
*/
if (special) {
bool err;
sym->symv.key = readnum(special, &err);
if (err)
error(ERR_NONFATAL, "alignment constraint `%s' is not a"
" valid number", special);
else if ((sym->symv.key | (sym->symv.key - 1))
!= 2 * sym->symv.key - 1)
error(ERR_NONFATAL, "alignment constraint `%s' is not a"
" power of two", special);
}
special_used = true;
} else
sym->symv.key = (sym->section == SHN_UNDEF ? 0 : offset);
if (sym->type == SYM_GLOBAL) {
/*
* If sym->section == SHN_ABS, then the first line of the
* else section would cause a core dump, because its a reference
* beyond the end of the section array.
* This behaviour is exhibited by this code:
* GLOBAL crash_nasm
* crash_nasm equ 0
* To avoid such a crash, such requests are silently discarded.
* This may not be the best solution.
*/
if (sym->section == SHN_UNDEF || sym->section == SHN_COMMON) {
bsym = raa_write(bsym, segment, nglobs);
} else if (sym->section != SHN_ABS) {
/*
* This is a global symbol; so we must add it to the rbtree
* of global symbols in its section.
*
* In addition, we check the special text for symbol
* type and size information.
*/
sects[sym->section-1]->gsyms =
rb_insert(sects[sym->section-1]->gsyms, &sym->symv);
if (special) {
int n = strcspn(special, " \t");
if (!nasm_strnicmp(special, "function", n))
sym->type |= STT_FUNC;
else if (!nasm_strnicmp(special, "data", n) ||
!nasm_strnicmp(special, "object", n))
sym->type |= STT_OBJECT;
else if (!nasm_strnicmp(special, "notype", n))
sym->type |= STT_NOTYPE;
else
error(ERR_NONFATAL, "unrecognised symbol type `%.*s'",
n, special);
special += n;
while (nasm_isspace(*special))
++special;
if (*special) {
n = strcspn(special, " \t");
if (!nasm_strnicmp(special, "default", n))
sym->other = STV_DEFAULT;
else if (!nasm_strnicmp(special, "internal", n))
sym->other = STV_INTERNAL;
else if (!nasm_strnicmp(special, "hidden", n))
sym->other = STV_HIDDEN;
else if (!nasm_strnicmp(special, "protected", n))
sym->other = STV_PROTECTED;
else
n = 0;
special += n;
}
if (*special) {
struct tokenval tokval;
expr *e;
int fwd = 0;
char *saveme = stdscan_bufptr; /* bugfix? fbk 8/10/00 */
while (special[n] && nasm_isspace(special[n]))
n++;
/*
* We have a size expression; attempt to
* evaluate it.
*/
stdscan_reset();
stdscan_bufptr = special + n;
tokval.t_type = TOKEN_INVALID;
e = evaluate(stdscan, NULL, &tokval, &fwd, 0, error,
NULL);
if (fwd) {
sym->nextfwd = fwds;
fwds = sym;
sym->name = nasm_strdup(name);
} else if (e) {
if (!is_simple(e))
error(ERR_NONFATAL, "cannot use relocatable"
" expression as symbol size");
else
sym->size = reloc_value(e);
}
stdscan_bufptr = saveme; /* bugfix? fbk 8/10/00 */
}
special_used = true;
}
/*
* If TLS segment, mark symbol accordingly.
*/
if (sects[sym->section - 1]->flags & SHF_TLS) {
sym->type &= 0xf0;
sym->type |= STT_TLS;
}
}
sym->globnum = nglobs;
nglobs++;
} else
nlocals++;
if (special && !special_used)
error(ERR_NONFATAL, "no special symbol features supported here");
}
static void elf_add_reloc(struct Section *sect, int32_t segment,
int64_t offset, int type)
{
struct Reloc *r;
r = *sect->tail = nasm_malloc(sizeof(struct Reloc));
sect->tail = &r->next;
r->next = NULL;
r->address = sect->len;
r->offset = offset;
if (segment == NO_SEG)
r->symbol = 0;
else {
int i;
r->symbol = 0;
for (i = 0; i < nsects; i++)
if (segment == sects[i]->index)
r->symbol = i + 2;
if (!r->symbol)
r->symbol = GLOBAL_TEMP_BASE + raa_read(bsym, segment);
}
r->type = type;
sect->nrelocs++;
}
/*
* This routine deals with ..got and ..sym relocations: the more
* complicated kinds. In shared-library writing, some relocations
* with respect to global symbols must refer to the precise symbol
* rather than referring to an offset from the base of the section
* _containing_ the symbol. Such relocations call to this routine,
* which searches the symbol list for the symbol in question.
*
* R_386_GOT32 references require the _exact_ symbol address to be
* used; R_386_32 references can be at an offset from the symbol.
* The boolean argument `exact' tells us this.
*
* Return value is the adjusted value of `addr', having become an
* offset from the symbol rather than the section. Should always be
* zero when returning from an exact call.
*
* Limitation: if you define two symbols at the same place,
* confusion will occur.
*
* Inefficiency: we search, currently, using a linked list which
* isn't even necessarily sorted.
*/
static void elf_add_gsym_reloc(struct Section *sect,
int32_t segment, uint64_t offset, int64_t pcrel,
int type, bool exact)
{
struct Reloc *r;
struct Section *s;
struct Symbol *sym;
struct rbtree *srb;
int i;
/*
* First look up the segment/offset pair and find a global
* symbol corresponding to it. If it's not one of our segments,
* then it must be an external symbol, in which case we're fine
* doing a normal elf_add_reloc after first sanity-checking
* that the offset from the symbol is zero.
*/
s = NULL;
for (i = 0; i < nsects; i++)
if (segment == sects[i]->index) {
s = sects[i];
break;
}
if (!s) {
if (exact && offset)
error(ERR_NONFATAL, "invalid access to an external symbol");
else
elf_add_reloc(sect, segment, offset - pcrel, type);
return;
}
srb = rb_search(s->gsyms, offset);
if (!srb || (exact && srb->key != offset)) {
error(ERR_NONFATAL, "unable to find a suitable global symbol"
" for this reference");
return;
}
sym = container_of(srb, struct Symbol, symv);
r = *sect->tail = nasm_malloc(sizeof(struct Reloc));
sect->tail = &r->next;
r->next = NULL;
r->address = sect->len;
r->offset = offset - pcrel - sym->symv.key;
r->symbol = GLOBAL_TEMP_BASE + sym->globnum;
r->type = type;
sect->nrelocs++;
}
static void elf_out(int32_t segto, const void *data,
enum out_type type, uint64_t size,
int32_t segment, int32_t wrt)
{
struct Section *s;
int64_t addr, zero;
int i;
static struct symlininfo sinfo;
zero = 0;
#if defined(DEBUG) && DEBUG>2
if (data) fprintf(stderr,
" elf_out line: %d type: %x seg: %d segto: %d bytes: %x data: %"PRIx64"\n",
currentline, type, segment, segto, size, *(int64_t *)data);
else fprintf(stderr,
" elf_out line: %d type: %x seg: %d segto: %d bytes: %x\n",
currentline, type, segment, segto, size);
#endif
/*
* handle absolute-assembly (structure definitions)
*/
if (segto == NO_SEG) {
if (type != OUT_RESERVE)
error(ERR_NONFATAL, "attempt to assemble code in [ABSOLUTE]"
" space");
return;
}
s = NULL;
for (i = 0; i < nsects; i++)
if (segto == sects[i]->index) {
s = sects[i];
break;
}
if (!s) {
int tempint; /* ignored */
if (segto != elf_section_names(".text", 2, &tempint))
error(ERR_PANIC, "strange segment conditions in ELF driver");
else {
s = sects[nsects - 1];
i = nsects - 1;
}
}
/* invoke current debug_output routine */
if (of_elf64.current_dfmt) {
sinfo.offset = s->len;
sinfo.section = i;
sinfo.segto = segto;
sinfo.name = s->name;
of_elf64.current_dfmt->debug_output(TY_DEBUGSYMLIN, &sinfo);
}
/* end of debugging stuff */
if (s->type == SHT_NOBITS && type != OUT_RESERVE) {
error(ERR_WARNING, "attempt to initialize memory in"
" BSS section `%s': ignored", s->name);
s->len += realsize(type, size);
return;
}
if (type == OUT_RESERVE) {
if (s->type == SHT_PROGBITS) {
error(ERR_WARNING, "uninitialized space declared in"
" non-BSS section `%s': zeroing", s->name);
elf_sect_write(s, NULL, size);
} else
s->len += size;
} else if (type == OUT_RAWDATA) {
if (segment != NO_SEG)
error(ERR_PANIC, "OUT_RAWDATA with other than NO_SEG");
elf_sect_write(s, data, size);
} else if (type == OUT_ADDRESS) {
addr = *(int64_t *)data;
if (segment == NO_SEG) {
/* Do nothing */
} else if (segment % 2) {
error(ERR_NONFATAL, "ELF format does not support"
" segment base references");
} else {
if (wrt == NO_SEG) {
switch ((int)size) {
case 1:
elf_add_reloc(s, segment, addr, R_X86_64_8);
break;
case 2:
elf_add_reloc(s, segment, addr, R_X86_64_16);
break;
case 4:
elf_add_reloc(s, segment, addr, R_X86_64_32);
break;
case 8:
elf_add_reloc(s, segment, addr, R_X86_64_64);
break;
default:
error(ERR_PANIC, "internal error elf64-hpa-871");
break;
}
addr = 0;
} else if (wrt == elf_gotpc_sect + 1) {
/*
* The user will supply GOT relative to $$. ELF
* will let us have GOT relative to $. So we
* need to fix up the data item by $-$$.
*/
addr += s->len;
elf_add_reloc(s, segment, addr, R_X86_64_GOTPC32);
addr = 0;
} else if (wrt == elf_gotoff_sect + 1) {
if (size != 8) {
error(ERR_NONFATAL, "ELF64 requires ..gotoff "
"references to be qword");
} else {
elf_add_reloc(s, segment, addr, R_X86_64_GOTOFF64);
addr = 0;
}
} else if (wrt == elf_got_sect + 1) {
switch ((int)size) {
case 4:
elf_add_gsym_reloc(s, segment, addr, 0,
R_X86_64_GOT32, true);
addr = 0;
break;
case 8:
elf_add_gsym_reloc(s, segment, addr, 0,
R_X86_64_GOT64, true);
addr = 0;
break;
default:
error(ERR_NONFATAL, "invalid ..got reference");
break;
}
} else if (wrt == elf_sym_sect + 1) {
switch ((int)size) {
case 1:
elf_add_gsym_reloc(s, segment, addr, 0,
R_X86_64_8, false);
addr = 0;
break;
case 2:
elf_add_gsym_reloc(s, segment, addr, 0,
R_X86_64_16, false);
addr = 0;
break;
case 4:
elf_add_gsym_reloc(s, segment, addr, 0,
R_X86_64_32, false);
addr = 0;
break;
case 8:
elf_add_gsym_reloc(s, segment, addr, 0,
R_X86_64_64, false);
addr = 0;
break;
default:
error(ERR_PANIC, "internal error elf64-hpa-903");
break;
}
} else if (wrt == elf_plt_sect + 1) {
error(ERR_NONFATAL, "ELF format cannot produce non-PC-"
"relative PLT references");
} else {
error(ERR_NONFATAL, "ELF format does not support this"
" use of WRT");
}
}
elf_sect_writeaddr(s, addr, size);
} else if (type == OUT_REL2ADR) {
addr = *(int64_t *)data - size;
if (segment == segto)
error(ERR_PANIC, "intra-segment OUT_REL2ADR");
if (segment == NO_SEG) {
/* Do nothing */
} else if (segment % 2) {
error(ERR_NONFATAL, "ELF format does not support"
" segment base references");
} else {
if (wrt == NO_SEG) {
elf_add_reloc(s, segment, addr, R_X86_64_PC16);
addr = 0;
} else {
error(ERR_NONFATAL,
"Unsupported non-32-bit ELF relocation [2]");
}
}
elf_sect_writeaddr(s, addr, 2);
} else if (type == OUT_REL4ADR) {
addr = *(int64_t *)data - size;
if (segment == segto)
error(ERR_PANIC, "intra-segment OUT_REL4ADR");
if (segment == NO_SEG) {
/* Do nothing */
} else if (segment % 2) {
error(ERR_NONFATAL, "ELF64 format does not support"
" segment base references");
} else {
if (wrt == NO_SEG) {
elf_add_reloc(s, segment, addr, R_X86_64_PC32);
addr = 0;
} else if (wrt == elf_plt_sect + 1) {
elf_add_gsym_reloc(s, segment, addr+size, size,
R_X86_64_PLT32, true);
addr = 0;
} else if (wrt == elf_gotpc_sect + 1 ||
wrt == elf_got_sect + 1) {
elf_add_gsym_reloc(s, segment, addr+size, size,
R_X86_64_GOTPCREL, true);
addr = 0;
} else if (wrt == elf_gotoff_sect + 1 ||
wrt == elf_got_sect + 1) {
error(ERR_NONFATAL, "ELF64 requires ..gotoff references to be "
"qword absolute");
} else if (wrt == elf_gottpoff_sect + 1) {
elf_add_gsym_reloc(s, segment, addr+size, size,
R_X86_64_GOTTPOFF, true);
addr = 0;
} else {
error(ERR_NONFATAL, "ELF64 format does not support this"
" use of WRT");
}
}
elf_sect_writeaddr(s, addr, 4);
} else if (type == OUT_REL8ADR) {
addr = *(int64_t *)data - size;
if (segment == segto)
error(ERR_PANIC, "intra-segment OUT_REL8ADR");
if (segment == NO_SEG) {
/* Do nothing */
} else if (segment % 2) {
error(ERR_NONFATAL, "ELF64 format does not support"
" segment base references");
} else {
if (wrt == NO_SEG) {
elf_add_reloc(s, segment, addr, R_X86_64_PC64);
addr = 0;
} else if (wrt == elf_gotpc_sect + 1 ||
wrt == elf_got_sect + 1) {
elf_add_gsym_reloc(s, segment, addr+size, size,
R_X86_64_GOTPCREL64, true);
addr = 0;
} else if (wrt == elf_gotoff_sect + 1 ||
wrt == elf_got_sect + 1) {
error(ERR_NONFATAL, "ELF64 requires ..gotoff references to be "
"absolute");
} else if (wrt == elf_gottpoff_sect + 1) {
error(ERR_NONFATAL, "ELF64 requires ..gottpoff references to be "
"dword");
} else {
error(ERR_NONFATAL, "ELF64 format does not support this"
" use of WRT");
}
}
elf_sect_writeaddr(s, addr, 8);
}
}
static void elf_write(void)
{
int align;
int scount;
char *p;
int commlen;
char comment[64];
int i;
struct SAA *symtab;
int32_t symtablen, symtablocal;
/*
* Work out how many sections we will have. We have SHN_UNDEF,
* then the flexible user sections, then the four fixed
* sections `.comment', `.shstrtab', `.symtab' and `.strtab',
* then optionally relocation sections for the user sections.
*/
if (of_elf64.current_dfmt == &df_stabs)
nsections = 8;
else if (of_elf64.current_dfmt == &df_dwarf)
nsections = 15;
else
nsections = 5; /* SHN_UNDEF and the fixed ones */
add_sectname("", ".comment");
add_sectname("", ".shstrtab");
add_sectname("", ".symtab");
add_sectname("", ".strtab");
for (i = 0; i < nsects; i++) {
nsections++; /* for the section itself */
if (sects[i]->head) {
nsections++; /* for its relocations */
add_sectname(".rela", sects[i]->name);
}
}
if (of_elf64.current_dfmt == &df_stabs) {
/* in case the debug information is wanted, just add these three sections... */
add_sectname("", ".stab");
add_sectname("", ".stabstr");
add_sectname(".rel", ".stab");
}
else if (of_elf64.current_dfmt == &df_dwarf) {
/* the dwarf debug standard specifies the following ten sections,
not all of which are currently implemented,
although all of them are defined. */
#define debug_aranges (int64_t) (nsections-10)
#define debug_info (int64_t) (nsections-7)
#define debug_abbrev (int64_t) (nsections-5)
#define debug_line (int64_t) (nsections-4)
add_sectname("", ".debug_aranges");
add_sectname(".rela", ".debug_aranges");
add_sectname("", ".debug_pubnames");
add_sectname("", ".debug_info");
add_sectname(".rela", ".debug_info");
add_sectname("", ".debug_abbrev");
add_sectname("", ".debug_line");
add_sectname(".rela", ".debug_line");
add_sectname("", ".debug_frame");
add_sectname("", ".debug_loc");
}
/*
* Do the comment.
*/
*comment = '\0';
commlen = 2 + snprintf(comment+1, sizeof comment-1, "%s", nasm_comment);
/*
* Output the ELF header.
*/
fwrite("\177ELF\2\1\1", 7, 1, elffp);
fputc(elf_osabi, elffp);
fputc(elf_abiver, elffp);
fwritezero(7, elffp);
fwriteint16_t(ET_REL, elffp); /* relocatable file */
fwriteint16_t(EM_X86_64, elffp); /* processor ID */
fwriteint32_t(1L, elffp); /* EV_CURRENT file format version */
fwriteint64_t(0L, elffp); /* no entry point */
fwriteint64_t(0L, elffp); /* no program header table */
fwriteint64_t(0x40L, elffp); /* section headers straight after
* ELF header plus alignment */
fwriteint32_t(0L, elffp); /* 386 defines no special flags */
fwriteint16_t(0x40, elffp); /* size of ELF header */
fwriteint16_t(0, elffp); /* no program header table, again */
fwriteint16_t(0, elffp); /* still no program header table */
fwriteint16_t(sizeof(Elf64_Shdr), elffp); /* size of section header */
fwriteint16_t(nsections, elffp); /* number of sections */
fwriteint16_t(nsects + 2, elffp); /* string table section index for
* section header table */
/*
* Build the symbol table and relocation tables.
*/
symtab = elf_build_symtab(&symtablen, &symtablocal);
for (i = 0; i < nsects; i++)
if (sects[i]->head)
sects[i]->rel = elf_build_reltab(&sects[i]->rellen,
sects[i]->head);
/*
* Now output the section header table.
*/
elf_foffs = 0x40 + sizeof(Elf64_Shdr) * nsections;
align = ((elf_foffs + SEG_ALIGN_1) & ~SEG_ALIGN_1) - elf_foffs;
elf_foffs += align;
elf_nsect = 0;
elf_sects = nasm_malloc(sizeof(*elf_sects) * nsections);
elf_section_header(0, 0, 0, NULL, false, 0L, 0, 0, 0, 0); /* SHN_UNDEF */
scount = 1; /* needed for the stabs debugging to track the symtable section */
p = shstrtab + 1;
for (i = 0; i < nsects; i++) {
elf_section_header(p - shstrtab, sects[i]->type, sects[i]->flags,
(sects[i]->type == SHT_PROGBITS ?
sects[i]->data : NULL), true,
sects[i]->len, 0, 0, sects[i]->align, 0);
p += strlen(p) + 1;
scount++; /* ditto */
}
elf_section_header(p - shstrtab, 1, 0, comment, false, (int32_t)commlen, 0, 0, 1, 0); /* .comment */
scount++; /* ditto */
p += strlen(p) + 1;
elf_section_header(p - shstrtab, 3, 0, shstrtab, false, (int32_t)shstrtablen, 0, 0, 1, 0); /* .shstrtab */
scount++; /* ditto */
p += strlen(p) + 1;
elf_section_header(p - shstrtab, 2, 0, symtab, true, symtablen, nsects + 4, symtablocal, 4, 24); /* .symtab */
symtabsection = scount; /* now we got the symtab section index in the ELF file */
p += strlen(p) + 1;
elf_section_header(p - shstrtab, 3, 0, strs, true, strslen, 0, 0, 1, 0); /* .strtab */
for (i = 0; i < nsects; i++)
if (sects[i]->head) {
p += strlen(p) + 1;
elf_section_header(p - shstrtab,SHT_RELA, 0, sects[i]->rel, true,
sects[i]->rellen, nsects + 3, i + 1, 4, 24);
}
if (of_elf64.current_dfmt == &df_stabs) {
/* for debugging information, create the last three sections
which are the .stab , .stabstr and .rel.stab sections respectively */
/* this function call creates the stab sections in memory */
stabs64_generate();
if ((stabbuf) && (stabstrbuf) && (stabrelbuf)) {
p += strlen(p) + 1;
elf_section_header(p - shstrtab, 1, 0, stabbuf, false, stablen,
nsections - 2, 0, 4, 12);
p += strlen(p) + 1;
elf_section_header(p - shstrtab, 3, 0, stabstrbuf, false,
stabstrlen, 0, 0, 4, 0);
p += strlen(p) + 1;
/* link -> symtable info -> section to refer to */
elf_section_header(p - shstrtab, 9, 0, stabrelbuf, false,
stabrellen, symtabsection, nsections - 3, 4,
16);
}
}
else if (of_elf64.current_dfmt == &df_dwarf) {
/* for dwarf debugging information, create the ten dwarf sections */
/* this function call creates the dwarf sections in memory */
if (dwarf_fsect) dwarf64_generate();
p += strlen(p) + 1;
elf_section_header(p - shstrtab, SHT_PROGBITS, 0, arangesbuf, false,
arangeslen, 0, 0, 1, 0);
p += strlen(p) + 1;
elf_section_header(p - shstrtab, SHT_RELA, 0, arangesrelbuf, false,
arangesrellen, symtabsection, debug_aranges, 1, 24);
p += strlen(p) + 1;
elf_section_header(p - shstrtab, SHT_PROGBITS, 0, pubnamesbuf, false,
pubnameslen, 0, 0, 1, 0);
p += strlen(p) + 1;
elf_section_header(p - shstrtab, SHT_PROGBITS, 0, infobuf, false,
infolen, 0, 0, 1, 0);
p += strlen(p) + 1;
elf_section_header(p - shstrtab, SHT_RELA, 0, inforelbuf, false,
inforellen, symtabsection, debug_info, 1, 24);
p += strlen(p) + 1;
elf_section_header(p - shstrtab, SHT_PROGBITS, 0, abbrevbuf, false,
abbrevlen, 0, 0, 1, 0);
p += strlen(p) + 1;
elf_section_header(p - shstrtab, SHT_PROGBITS, 0, linebuf, false,
linelen, 0, 0, 1, 0);
p += strlen(p) + 1;
elf_section_header(p - shstrtab, SHT_RELA, 0, linerelbuf, false,
linerellen, symtabsection, debug_line, 1, 24);
p += strlen(p) + 1;
elf_section_header(p - shstrtab, SHT_PROGBITS, 0, framebuf, false,
framelen, 0, 0, 8, 0);
p += strlen(p) + 1;
elf_section_header(p - shstrtab, SHT_PROGBITS, 0, locbuf, false,
loclen, 0, 0, 1, 0);
}
fwritezero(align, elffp);
/*
* Now output the sections.
*/
elf_write_sections();
nasm_free(elf_sects);
saa_free(symtab);
}
static struct SAA *elf_build_symtab(int32_t *len, int32_t *local)
{
struct SAA *s = saa_init(1L);
struct Symbol *sym;
uint8_t entry[24], *p;
int i;
*len = *local = 0;
/*
* First, an all-zeros entry, required by the ELF spec.
*/
saa_wbytes(s, NULL, 24L); /* null symbol table entry */
*len += 24;
(*local)++;
/*
* Next, an entry for the file name.
*/
p = entry;
WRITELONG(p, 1); /* we know it's 1st entry in strtab */
WRITESHORT(p, STT_FILE); /* type FILE */
WRITESHORT(p, SHN_ABS);
WRITEDLONG(p, (uint64_t) 0); /* no value */
WRITEDLONG(p, (uint64_t) 0); /* no size either */
saa_wbytes(s, entry, 24L);
*len += 24;
(*local)++;
/*
* Now some standard symbols defining the segments, for relocation
* purposes.
*/
for (i = 1; i <= nsects; i++) {
p = entry;
WRITELONG(p, 0); /* no symbol name */
WRITESHORT(p, STT_SECTION); /* type, binding, and visibility */
WRITESHORT(p, i); /* section id */
WRITEDLONG(p, (uint64_t) 0); /* offset zero */
WRITEDLONG(p, (uint64_t) 0); /* size zero */
saa_wbytes(s, entry, 24L);
*len += 24;
(*local)++;
}
/*
* Now the other local symbols.
*/
saa_rewind(syms);
while ((sym = saa_rstruct(syms))) {
if (sym->type & SYM_GLOBAL)
continue;
p = entry;
WRITELONG(p, sym->strpos); /* index into symbol string table */
WRITECHAR(p, sym->type); /* type and binding */
WRITECHAR(p, sym->other); /* visibility */
WRITESHORT(p, sym->section); /* index into section header table */
WRITEDLONG(p, (int64_t)sym->symv.key); /* value of symbol */
WRITEDLONG(p, (int64_t)sym->size); /* size of symbol */
saa_wbytes(s, entry, 24L);
*len += 24;
(*local)++;
}
/*
* dwarf needs symbols for debug sections
* which are relocation targets.
*/
if (of_elf64.current_dfmt == &df_dwarf) {
dwarf_infosym = *local;
p = entry;
WRITELONG(p, 0); /* no symbol name */
WRITESHORT(p, STT_SECTION); /* type, binding, and visibility */
WRITESHORT(p, debug_info); /* section id */
WRITEDLONG(p, (uint64_t) 0); /* offset zero */
WRITEDLONG(p, (uint64_t) 0); /* size zero */
saa_wbytes(s, entry, 24L);
*len += 24;
(*local)++;
dwarf_abbrevsym = *local;
p = entry;
WRITELONG(p, 0); /* no symbol name */
WRITESHORT(p, STT_SECTION); /* type, binding, and visibility */
WRITESHORT(p, debug_abbrev); /* section id */
WRITEDLONG(p, (uint64_t) 0); /* offset zero */
WRITEDLONG(p, (uint64_t) 0); /* size zero */
saa_wbytes(s, entry, 24L);
*len += 24;
(*local)++;
dwarf_linesym = *local;
p = entry;
WRITELONG(p, 0); /* no symbol name */
WRITESHORT(p, STT_SECTION); /* type, binding, and visibility */
WRITESHORT(p, debug_line); /* section id */
WRITEDLONG(p, (uint64_t) 0); /* offset zero */
WRITEDLONG(p, (uint64_t) 0); /* size zero */
saa_wbytes(s, entry, 24L);
*len += 24;
(*local)++;
}
/*
* Now the global symbols.
*/
saa_rewind(syms);
while ((sym = saa_rstruct(syms))) {
if (!(sym->type & SYM_GLOBAL))
continue;
p = entry;
WRITELONG(p, sym->strpos);
WRITECHAR(p, sym->type); /* type and binding */
WRITECHAR(p, sym->other); /* visibility */
WRITESHORT(p, sym->section);
WRITEDLONG(p, (int64_t)sym->symv.key);
WRITEDLONG(p, (int64_t)sym->size);
saa_wbytes(s, entry, 24L);
*len += 24;
}
return s;
}
static struct SAA *elf_build_reltab(uint64_t *len, struct Reloc *r)
{
struct SAA *s;
uint8_t *p, entry[24];
if (!r)
return NULL;
s = saa_init(1L);
*len = 0;
while (r) {
int64_t sym = r->symbol;
if (sym >= GLOBAL_TEMP_BASE)
{
if (of_elf64.current_dfmt == &df_dwarf)
sym += -GLOBAL_TEMP_BASE + (nsects + 5) + nlocals;
else sym += -GLOBAL_TEMP_BASE + (nsects + 2) + nlocals;
}
p = entry;
WRITEDLONG(p, r->address);
WRITEDLONG(p, (sym << 32) + r->type);
WRITEDLONG(p, r->offset);
saa_wbytes(s, entry, 24L);
*len += 24;
r = r->next;
}
return s;
}
static void elf_section_header(int name, int type, uint64_t flags,
void *data, bool is_saa, uint64_t datalen,
int link, int info, int align, int eltsize)
{
elf_sects[elf_nsect].data = data;
elf_sects[elf_nsect].len = datalen;
elf_sects[elf_nsect].is_saa = is_saa;
elf_nsect++;
fwriteint32_t((int32_t)name, elffp);
fwriteint32_t((int32_t)type, elffp);
fwriteint64_t((int64_t)flags, elffp);
fwriteint64_t(0L, elffp); /* no address, ever, in object files */
fwriteint64_t(type == 0 ? 0L : elf_foffs, elffp);
fwriteint64_t(datalen, elffp);
if (data)
elf_foffs += (datalen + SEG_ALIGN_1) & ~SEG_ALIGN_1;
fwriteint32_t((int32_t)link, elffp);
fwriteint32_t((int32_t)info, elffp);
fwriteint64_t((int64_t)align, elffp);
fwriteint64_t((int64_t)eltsize, elffp);
}
static void elf_write_sections(void)
{
int i;
for (i = 0; i < elf_nsect; i++)
if (elf_sects[i].data) {
int32_t len = elf_sects[i].len;
int32_t reallen = (len + SEG_ALIGN_1) & ~SEG_ALIGN_1;
int32_t align = reallen - len;
if (elf_sects[i].is_saa)
saa_fpwrite(elf_sects[i].data, elffp);
else
fwrite(elf_sects[i].data, len, 1, elffp);
fwritezero(align, elffp);
}
}
static void elf_sect_write(struct Section *sect, const void *data, size_t len)
{
saa_wbytes(sect->data, data, len);
sect->len += len;
}
static void elf_sect_writeaddr(struct Section *sect, int64_t data, size_t len)
{
saa_writeaddr(sect->data, data, len);
sect->len += len;
}
static int32_t elf_segbase(int32_t segment)
{
return segment;
}
static int elf_directive(char *directive, char *value, int pass)
{
bool err;
int64_t n;
char *p;
if (!strcmp(directive, "osabi")) {
if (pass == 2)
return 1; /* ignore in pass 2 */
n = readnum(value, &err);
if (err) {
error(ERR_NONFATAL, "`osabi' directive requires a parameter");
return 1;
}
if (n < 0 || n > 255) {
error(ERR_NONFATAL, "valid osabi numbers are 0 to 255");
return 1;
}
elf_osabi = n;
elf_abiver = 0;
if ((p = strchr(value,',')) == NULL)
return 1;
n = readnum(p+1, &err);
if (err || n < 0 || n > 255) {
error(ERR_NONFATAL, "invalid ABI version number (valid: 0 to 255)");
return 1;
}
elf_abiver = n;
return 1;
}
return 0;
}
static void elf_filename(char *inname, char *outname, efunc error)
{
strcpy(elf_module, inname);
standard_extension(inname, outname, ".o", error);
}
extern macros_t elf_stdmac[];
static int elf_set_info(enum geninfo type, char **val)
{
(void)type;
(void)val;
return 0;
}
static struct dfmt df_dwarf = {
"ELF64 (X86_64) dwarf debug format for Linux",
"dwarf",
debug64_init,
dwarf64_linenum,
debug64_deflabel,
debug64_directive,
debug64_typevalue,
dwarf64_output,
dwarf64_cleanup
};
static struct dfmt df_stabs = {
"ELF64 (X86_64) stabs debug format for Linux",
"stabs",
debug64_init,
stabs64_linenum,
debug64_deflabel,
debug64_directive,
debug64_typevalue,
stabs64_output,
stabs64_cleanup
};
struct dfmt *elf64_debugs_arr[3] = { &df_dwarf, &df_stabs, NULL };
struct ofmt of_elf64 = {
"ELF64 (x86_64) object files (e.g. Linux)",
"elf64",
NULL,
elf64_debugs_arr,
&df_stabs,
elf_stdmac,
elf_init,
elf_set_info,
elf_out,
elf_deflabel,
elf_section_names,
elf_segbase,
elf_directive,
elf_filename,
elf_cleanup
};
/* common debugging routines */
void debug64_init(struct ofmt *of, void *id, FILE * fp, efunc error)
{
(void)of;
(void)id;
(void)fp;
(void)error;
}
void debug64_deflabel(char *name, int32_t segment, int64_t offset, int is_global,
char *special)
{
(void)name;
(void)segment;
(void)offset;
(void)is_global;
(void)special;
}
void debug64_directive(const char *directive, const char *params)
{
(void)directive;
(void)params;
}
void debug64_typevalue(int32_t type)
{
int32_t stype, ssize;
switch (TYM_TYPE(type)) {
case TY_LABEL:
ssize = 0;
stype = STT_NOTYPE;
break;
case TY_BYTE:
ssize = 1;
stype = STT_OBJECT;
break;
case TY_WORD:
ssize = 2;
stype = STT_OBJECT;
break;
case TY_DWORD:
ssize = 4;
stype = STT_OBJECT;
break;
case TY_FLOAT:
ssize = 4;
stype = STT_OBJECT;
break;
case TY_QWORD:
ssize = 8;
stype = STT_OBJECT;
break;
case TY_TBYTE:
ssize = 10;
stype = STT_OBJECT;
break;
case TY_OWORD:
ssize = 16;
stype = STT_OBJECT;
break;
case TY_COMMON:
ssize = 0;
stype = STT_COMMON;
break;
case TY_SEG:
ssize = 0;
stype = STT_SECTION;
break;
case TY_EXTERN:
ssize = 0;
stype = STT_NOTYPE;
break;
case TY_EQU:
ssize = 0;
stype = STT_NOTYPE;
break;
default:
ssize = 0;
stype = STT_NOTYPE;
break;
}
if (stype == STT_OBJECT && lastsym && !lastsym->type) {
lastsym->size = ssize;
lastsym->type = stype;
}
}
/* stabs debugging routines */
void stabs64_linenum(const char *filename, int32_t linenumber, int32_t segto)
{
(void)segto;
if (!stabs_filename) {
stabs_filename = (char *)nasm_malloc(strlen(filename) + 1);
strcpy(stabs_filename, filename);
} else {
if (strcmp(stabs_filename, filename)) {
/* yep, a memory leak...this program is one-shot anyway, so who cares...
in fact, this leak comes in quite handy to maintain a list of files
encountered so far in the symbol lines... */
/* why not nasm_free(stabs_filename); we're done with the old one */
stabs_filename = (char *)nasm_malloc(strlen(filename) + 1);
strcpy(stabs_filename, filename);
}
}
debug_immcall = 1;
currentline = linenumber;
}
void stabs64_output(int type, void *param)
{
struct symlininfo *s;
struct linelist *el;
if (type == TY_DEBUGSYMLIN) {
if (debug_immcall) {
s = (struct symlininfo *)param;
if (!(sects[s->section]->flags & SHF_EXECINSTR))
return; /* line info is only collected for executable sections */
numlinestabs++;
el = (struct linelist *)nasm_malloc(sizeof(struct linelist));
el->info.offset = s->offset;
el->info.section = s->section;
el->info.name = s->name;
el->line = currentline;
el->filename = stabs_filename;
el->next = 0;
if (stabslines) {
stabslines->last->next = el;
stabslines->last = el;
} else {
stabslines = el;
stabslines->last = el;
}
}
}
debug_immcall = 0;
}
#define WRITE_STAB(p,n_strx,n_type,n_other,n_desc,n_value) \
do {\
WRITELONG(p,n_strx); \
WRITECHAR(p,n_type); \
WRITECHAR(p,n_other); \
WRITESHORT(p,n_desc); \
WRITELONG(p,n_value); \
} while (0)
/* for creating the .stab , .stabstr and .rel.stab sections in memory */
void stabs64_generate(void)
{
int i, numfiles, strsize, numstabs = 0, currfile, mainfileindex;
uint8_t *sbuf, *ssbuf, *rbuf, *sptr, *rptr;
char **allfiles;
int *fileidx;
struct linelist *ptr;
ptr = stabslines;
allfiles = (char **)nasm_malloc(numlinestabs * sizeof(int8_t *));
for (i = 0; i < numlinestabs; i++)
allfiles[i] = 0;
numfiles = 0;
while (ptr) {
if (numfiles == 0) {
allfiles[0] = ptr->filename;
numfiles++;
} else {
for (i = 0; i < numfiles; i++) {
if (!strcmp(allfiles[i], ptr->filename))
break;
}
if (i >= numfiles) {
allfiles[i] = ptr->filename;
numfiles++;
}
}
ptr = ptr->next;
}
strsize = 1;
fileidx = (int *)nasm_malloc(numfiles * sizeof(int));
for (i = 0; i < numfiles; i++) {
fileidx[i] = strsize;
strsize += strlen(allfiles[i]) + 1;
}
mainfileindex = 0;
for (i = 0; i < numfiles; i++) {
if (!strcmp(allfiles[i], elf_module)) {
mainfileindex = i;
break;
}
}
/* worst case size of the stab buffer would be:
the sourcefiles changes each line, which would mean 1 SOL, 1 SYMLIN per line
*/
sbuf =
(uint8_t *)nasm_malloc((numlinestabs * 2 + 3) *
sizeof(struct stabentry));
ssbuf = (uint8_t *)nasm_malloc(strsize);
rbuf = (uint8_t *)nasm_malloc(numlinestabs * 16 * (2 + 3));
rptr = rbuf;
for (i = 0; i < numfiles; i++) {
strcpy((char *)ssbuf + fileidx[i], allfiles[i]);
}
ssbuf[0] = 0;
stabstrlen = strsize; /* set global variable for length of stab strings */
sptr = sbuf;
ptr = stabslines;
numstabs = 0;
if (ptr) {
/* this is the first stab, its strx points to the filename of the
the source-file, the n_desc field should be set to the number
of remaining stabs
*/
WRITE_STAB(sptr, fileidx[0], 0, 0, 0, strlen(allfiles[0] + 12));
/* this is the stab for the main source file */
WRITE_STAB(sptr, fileidx[mainfileindex], N_SO, 0, 0, 0);
/* relocation table entry */
/* Since the symbol table has two entries before */
/* the section symbols, the index in the info.section */
/* member must be adjusted by adding 2 */
WRITEDLONG(rptr, (int64_t)(sptr - sbuf) - 4);
WRITELONG(rptr, R_X86_64_32);
WRITELONG(rptr, ptr->info.section + 2);
numstabs++;
currfile = mainfileindex;
}
while (ptr) {
if (strcmp(allfiles[currfile], ptr->filename)) {
/* oops file has changed... */
for (i = 0; i < numfiles; i++)
if (!strcmp(allfiles[i], ptr->filename))
break;
currfile = i;
WRITE_STAB(sptr, fileidx[currfile], N_SOL, 0, 0,
ptr->info.offset);
numstabs++;
/* relocation table entry */
WRITEDLONG(rptr, (int64_t)(sptr - sbuf) - 4);
WRITELONG(rptr, R_X86_64_32);
WRITELONG(rptr, ptr->info.section + 2);
}
WRITE_STAB(sptr, 0, N_SLINE, 0, ptr->line, ptr->info.offset);
numstabs++;
/* relocation table entry */
WRITEDLONG(rptr, (int64_t)(sptr - sbuf) - 4);
WRITELONG(rptr, R_X86_64_32);
WRITELONG(rptr, ptr->info.section + 2);
ptr = ptr->next;
}
((struct stabentry *)sbuf)->n_desc = numstabs;
nasm_free(allfiles);
nasm_free(fileidx);
stablen = (sptr - sbuf);
stabrellen = (rptr - rbuf);
stabrelbuf = rbuf;
stabbuf = sbuf;
stabstrbuf = ssbuf;
}
void stabs64_cleanup(void)
{
struct linelist *ptr, *del;
if (!stabslines)
return;
ptr = stabslines;
while (ptr) {
del = ptr;
ptr = ptr->next;
nasm_free(del);
}
if (stabbuf)
nasm_free(stabbuf);
if (stabrelbuf)
nasm_free(stabrelbuf);
if (stabstrbuf)
nasm_free(stabstrbuf);
}
/* dwarf routines */
void dwarf64_linenum(const char *filename, int32_t linenumber, int32_t segto)
{
(void)segto;
dwarf64_findfile(filename);
debug_immcall = 1;
currentline = linenumber;
}
/* called from elf_out with type == TY_DEBUGSYMLIN */
void dwarf64_output(int type, void *param)
{
int ln, aa, inx, maxln, soc;
struct symlininfo *s;
struct SAA *plinep;
(void)type;
s = (struct symlininfo *)param;
/* line number info is only gathered for executable sections */
if (!(sects[s->section]->flags & SHF_EXECINSTR))
return;
/* Check if section index has changed */
if (!(dwarf_csect && (dwarf_csect->section) == (s->section)))
{
dwarf64_findsect(s->section);
}
/* do nothing unless line or file has changed */
if (debug_immcall)
{
ln = currentline - dwarf_csect->line;
aa = s->offset - dwarf_csect->offset;
inx = dwarf_clist->line;
plinep = dwarf_csect->psaa;
/* check for file change */
if (!(inx == dwarf_csect->file))
{
saa_write8(plinep,DW_LNS_set_file);
saa_write8(plinep,inx);
dwarf_csect->file = inx;
}
/* check for line change */
if (ln)
{
/* test if in range of special op code */
maxln = line_base + line_range;
soc = (ln - line_base) + (line_range * aa) + opcode_base;
if (ln >= line_base && ln < maxln && soc < 256)
{
saa_write8(plinep,soc);
}
else
{
if (ln)
{
saa_write8(plinep,DW_LNS_advance_line);
saa_wleb128s(plinep,ln);
}
if (aa)
{
saa_write8(plinep,DW_LNS_advance_pc);
saa_wleb128u(plinep,aa);
}
}
dwarf_csect->line = currentline;
dwarf_csect->offset = s->offset;
}
/* show change handled */
debug_immcall = 0;
}
}
void dwarf64_generate(void)
{
uint8_t *pbuf;
int indx;
struct linelist *ftentry;
struct SAA *paranges, *ppubnames, *pinfo, *pabbrev, *plines, *plinep;
struct SAA *parangesrel, *plinesrel, *pinforel;
struct sectlist *psect;
size_t saalen, linepoff, totlen, highaddr;
/* write epilogues for each line program range */
/* and build aranges section */
paranges = saa_init(1L);
parangesrel = saa_init(1L);
saa_write16(paranges,3); /* dwarf version */
saa_write64(parangesrel, paranges->datalen+4);
saa_write64(parangesrel, (dwarf_infosym << 32) + R_X86_64_32); /* reloc to info */
saa_write64(parangesrel, 0);
saa_write32(paranges,0); /* offset into info */
saa_write8(paranges,8); /* pointer size */
saa_write8(paranges,0); /* not segmented */
saa_write32(paranges,0); /* padding */
/* iterate though sectlist entries */
psect = dwarf_fsect;
totlen = 0;
highaddr = 0;
for (indx = 0; indx < dwarf_nsections; indx++)
{
plinep = psect->psaa;
/* Line Number Program Epilogue */
saa_write8(plinep,2); /* std op 2 */
saa_write8(plinep,(sects[psect->section]->len)-psect->offset);
saa_write8(plinep,DW_LNS_extended_op);
saa_write8(plinep,1); /* operand length */
saa_write8(plinep,DW_LNE_end_sequence);
totlen += plinep->datalen;
/* range table relocation entry */
saa_write64(parangesrel, paranges->datalen + 4);
saa_write64(parangesrel, ((uint64_t) (psect->section + 2) << 32) + R_X86_64_64);
saa_write64(parangesrel, (uint64_t) 0);
/* range table entry */
saa_write64(paranges,0x0000); /* range start */
saa_write64(paranges,sects[psect->section]->len); /* range length */
highaddr += sects[psect->section]->len;
/* done with this entry */
psect = psect->next;
}
saa_write64(paranges,0); /* null address */
saa_write64(paranges,0); /* null length */
saalen = paranges->datalen;
arangeslen = saalen + 4;
arangesbuf = pbuf = nasm_malloc(arangeslen);
WRITELONG(pbuf,saalen); /* initial length */
saa_rnbytes(paranges, pbuf, saalen);
saa_free(paranges);
/* build rela.aranges section */
arangesrellen = saalen = parangesrel->datalen;
arangesrelbuf = pbuf = nasm_malloc(arangesrellen);
saa_rnbytes(parangesrel, pbuf, saalen);
saa_free(parangesrel);
/* build pubnames section */
ppubnames = saa_init(1L);
saa_write16(ppubnames,3); /* dwarf version */
saa_write32(ppubnames,0); /* offset into info */
saa_write32(ppubnames,0); /* space used in info */
saa_write32(ppubnames,0); /* end of list */
saalen = ppubnames->datalen;
pubnameslen = saalen + 4;
pubnamesbuf = pbuf = nasm_malloc(pubnameslen);
WRITELONG(pbuf,saalen); /* initial length */
saa_rnbytes(ppubnames, pbuf, saalen);
saa_free(ppubnames);
/* build info section */
pinfo = saa_init(1L);
pinforel = saa_init(1L);
saa_write16(pinfo,3); /* dwarf version */
saa_write64(pinforel, pinfo->datalen + 4);
saa_write64(pinforel, (dwarf_abbrevsym << 32) + R_X86_64_32); /* reloc to abbrev */
saa_write64(pinforel, 0);
saa_write32(pinfo,0); /* offset into abbrev */
saa_write8(pinfo,8); /* pointer size */
saa_write8(pinfo,1); /* abbrviation number LEB128u */
saa_write64(pinforel, pinfo->datalen + 4);
saa_write64(pinforel, ((uint64_t)(dwarf_fsect->section + 2) << 32) + R_X86_64_64);
saa_write64(pinforel, 0);
saa_write64(pinfo,0); /* DW_AT_low_pc */
saa_write64(pinforel, pinfo->datalen + 4);
saa_write64(pinforel, ((uint64_t)(dwarf_fsect->section + 2) << 32) + R_X86_64_64);
saa_write64(pinforel, 0);
saa_write64(pinfo,highaddr); /* DW_AT_high_pc */
saa_write64(pinforel, pinfo->datalen + 4);
saa_write64(pinforel, (dwarf_linesym << 32) + R_X86_64_32); /* reloc to line */
saa_write64(pinforel, 0);
saa_write32(pinfo,0); /* DW_AT_stmt_list */
saa_wbytes(pinfo, elf_module, strlen(elf_module)+1);
saa_wbytes(pinfo, nasm_signature, strlen(nasm_signature)+1);
saa_write16(pinfo,DW_LANG_Mips_Assembler);
saa_write8(pinfo,2); /* abbrviation number LEB128u */
saa_write64(pinforel, pinfo->datalen + 4);
saa_write64(pinforel, ((uint64_t)(dwarf_fsect->section + 2) << 32) + R_X86_64_64);
saa_write64(pinforel, 0);
saa_write64(pinfo,0); /* DW_AT_low_pc */
saa_write64(pinfo,0); /* DW_AT_frame_base */
saa_write8(pinfo,0); /* end of entries */
saalen = pinfo->datalen;
infolen = saalen + 4;
infobuf = pbuf = nasm_malloc(infolen);
WRITELONG(pbuf,saalen); /* initial length */
saa_rnbytes(pinfo, pbuf, saalen);
saa_free(pinfo);
/* build rela.info section */
inforellen = saalen = pinforel->datalen;
inforelbuf = pbuf = nasm_malloc(inforellen);
saa_rnbytes(pinforel, pbuf, saalen);
saa_free(pinforel);
/* build abbrev section */
pabbrev = saa_init(1L);
saa_write8(pabbrev,1); /* entry number LEB128u */
saa_write8(pabbrev,DW_TAG_compile_unit); /* tag LEB128u */
saa_write8(pabbrev,1); /* has children */
/* the following attributes and forms are all LEB128u values */
saa_write8(pabbrev,DW_AT_low_pc);
saa_write8(pabbrev,DW_FORM_addr);
saa_write8(pabbrev,DW_AT_high_pc);
saa_write8(pabbrev,DW_FORM_addr);
saa_write8(pabbrev,DW_AT_stmt_list);
saa_write8(pabbrev,DW_FORM_data4);
saa_write8(pabbrev,DW_AT_name);
saa_write8(pabbrev,DW_FORM_string);
saa_write8(pabbrev,DW_AT_producer);
saa_write8(pabbrev,DW_FORM_string);
saa_write8(pabbrev,DW_AT_language);
saa_write8(pabbrev,DW_FORM_data2);
saa_write16(pabbrev,0); /* end of entry */
/* LEB128u usage same as above */
saa_write8(pabbrev,2); /* entry number */
saa_write8(pabbrev,DW_TAG_subprogram);
saa_write8(pabbrev,0); /* no children */
saa_write8(pabbrev,DW_AT_low_pc);
saa_write8(pabbrev,DW_FORM_addr);
saa_write8(pabbrev,DW_AT_frame_base);
saa_write8(pabbrev,DW_FORM_data4);
saa_write16(pabbrev,0); /* end of entry */
abbrevlen = saalen = pabbrev->datalen;
abbrevbuf = pbuf = nasm_malloc(saalen);
saa_rnbytes(pabbrev, pbuf, saalen);
saa_free(pabbrev);
/* build line section */
/* prolog */
plines = saa_init(1L);
saa_write8(plines,1); /* Minimum Instruction Length */
saa_write8(plines,1); /* Initial value of 'is_stmt' */
saa_write8(plines,line_base); /* Line Base */
saa_write8(plines,line_range); /* Line Range */
saa_write8(plines,opcode_base); /* Opcode Base */
/* standard opcode lengths (# of LEB128u operands) */
saa_write8(plines,0); /* Std opcode 1 length */
saa_write8(plines,1); /* Std opcode 2 length */
saa_write8(plines,1); /* Std opcode 3 length */
saa_write8(plines,1); /* Std opcode 4 length */
saa_write8(plines,1); /* Std opcode 5 length */
saa_write8(plines,0); /* Std opcode 6 length */
saa_write8(plines,0); /* Std opcode 7 length */
saa_write8(plines,0); /* Std opcode 8 length */
saa_write8(plines,1); /* Std opcode 9 length */
saa_write8(plines,0); /* Std opcode 10 length */
saa_write8(plines,0); /* Std opcode 11 length */
saa_write8(plines,1); /* Std opcode 12 length */
/* Directory Table */
saa_write8(plines,0); /* End of table */
/* File Name Table */
ftentry = dwarf_flist;
for (indx = 0;indx<dwarf_numfiles;indx++)
{
saa_wbytes(plines, ftentry->filename, (int32_t)(strlen(ftentry->filename) + 1));
saa_write8(plines,0); /* directory LEB128u */
saa_write8(plines,0); /* time LEB128u */
saa_write8(plines,0); /* size LEB128u */
ftentry = ftentry->next;
}
saa_write8(plines,0); /* End of table */
linepoff = plines->datalen;
linelen = linepoff + totlen + 10;
linebuf = pbuf = nasm_malloc(linelen);
WRITELONG(pbuf,linelen-4); /* initial length */
WRITESHORT(pbuf,3); /* dwarf version */
WRITELONG(pbuf,linepoff); /* offset to line number program */
/* write line header */
saalen = linepoff;
saa_rnbytes(plines, pbuf, saalen); /* read a given no. of bytes */
pbuf += linepoff;
saa_free(plines);
/* concatonate line program ranges */
linepoff += 13;
plinesrel = saa_init(1L);
psect = dwarf_fsect;
for (indx = 0; indx < dwarf_nsections; indx++)
{
saa_write64(plinesrel, linepoff);
saa_write64(plinesrel, ((uint64_t) (psect->section + 2) << 32) + R_X86_64_64);
saa_write64(plinesrel, (uint64_t) 0);
plinep = psect->psaa;
saalen = plinep->datalen;
saa_rnbytes(plinep, pbuf, saalen);
pbuf += saalen;
linepoff += saalen;
saa_free(plinep);
/* done with this entry */
psect = psect->next;
}
/* build rela.lines section */
linerellen =saalen = plinesrel->datalen;
linerelbuf = pbuf = nasm_malloc(linerellen);
saa_rnbytes(plinesrel, pbuf, saalen);
saa_free(plinesrel);
/* build frame section */
framelen = 4;
framebuf = pbuf = nasm_malloc(framelen);
WRITELONG(pbuf,framelen-4); /* initial length */
/* build loc section */
loclen = 16;
locbuf = pbuf = nasm_malloc(loclen);
WRITEDLONG(pbuf,0); /* null beginning offset */
WRITEDLONG(pbuf,0); /* null ending offset */
}
void dwarf64_cleanup(void)
{
if (arangesbuf)
nasm_free(arangesbuf);
if (arangesrelbuf)
nasm_free(arangesrelbuf);
if (pubnamesbuf)
nasm_free(pubnamesbuf);
if (infobuf)
nasm_free(infobuf);
if (inforelbuf)
nasm_free(inforelbuf);
if (abbrevbuf)
nasm_free(abbrevbuf);
if (linebuf)
nasm_free(linebuf);
if (linerelbuf)
nasm_free(linerelbuf);
if (framebuf)
nasm_free(framebuf);
if (locbuf)
nasm_free(locbuf);
}
void dwarf64_findfile(const char * fname)
{
int finx;
struct linelist *match;
/* return if fname is current file name */
if (dwarf_clist && !(strcmp(fname, dwarf_clist->filename))) return;
/* search for match */
else
{
match = 0;
if (dwarf_flist)
{
match = dwarf_flist;
for (finx = 0; finx < dwarf_numfiles; finx++)
{
if (!(strcmp(fname, match->filename)))
{
dwarf_clist = match;
return;
}
}
}
/* add file name to end of list */
dwarf_clist = (struct linelist *)nasm_malloc(sizeof(struct linelist));
dwarf_numfiles++;
dwarf_clist->line = dwarf_numfiles;
dwarf_clist->filename = nasm_malloc(strlen(fname) + 1);
strcpy(dwarf_clist->filename,fname);
dwarf_clist->next = 0;
/* if first entry */
if (!dwarf_flist)
{
dwarf_flist = dwarf_elist = dwarf_clist;
dwarf_clist->last = 0;
}
/* chain to previous entry */
else
{
dwarf_elist->next = dwarf_clist;
dwarf_elist = dwarf_clist;
}
}
}
/* */
void dwarf64_findsect(const int index)
{
int sinx;
struct sectlist *match;
struct SAA *plinep;
/* return if index is current section index */
if (dwarf_csect && (dwarf_csect->section == index))
{
return;
}
/* search for match */
else
{
match = 0;
if (dwarf_fsect)
{
match = dwarf_fsect;
for (sinx = 0; sinx < dwarf_nsections; sinx++)
{
if ((match->section == index))
{
dwarf_csect = match;
return;
}
match = match->next;
}
}
/* add entry to end of list */
dwarf_csect = (struct sectlist *)nasm_malloc(sizeof(struct sectlist));
dwarf_nsections++;
dwarf_csect->psaa = plinep = saa_init(1L);
dwarf_csect->line = 1;
dwarf_csect->offset = 0;
dwarf_csect->file = 1;
dwarf_csect->section = index;
dwarf_csect->next = 0;
/* set relocatable address at start of line program */
saa_write8(plinep,DW_LNS_extended_op);
saa_write8(plinep,9); /* operand length */
saa_write8(plinep,DW_LNE_set_address);
saa_write64(plinep,0); /* Start Address */
/* if first entry */
if (!dwarf_fsect)
{
dwarf_fsect = dwarf_esect = dwarf_csect;
dwarf_csect->last = 0;
}
/* chain to previous entry */
else
{
dwarf_esect->next = dwarf_csect;
dwarf_esect = dwarf_csect;
}
}
}
#endif /* OF_ELF */