nasm/nasmlib.h
H. Peter Anvin 6ecc159a54 qstring: backquoted strings seem to work now...
Hopefully backquoted strings should work correctly now.
2008-06-01 21:34:49 -07:00

409 lines
12 KiB
C

/* nasmlib.h header file for nasmlib.c
*
* The Netwide Assembler is copyright (C) 1996 Simon Tatham and
* Julian Hall. All rights reserved. The software is
* redistributable under the license given in the file "LICENSE"
* distributed in the NASM archive.
*/
#ifndef NASM_NASMLIB_H
#define NASM_NASMLIB_H
#include "compiler.h"
#include <inttypes.h>
#include <stdio.h>
#include <string.h>
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
/*
* If this is defined, the wrappers around malloc et al will
* transform into logging variants, which will cause NASM to create
* a file called `malloc.log' when run, and spew details of all its
* memory management into that. That can then be analysed to detect
* memory leaks and potentially other problems too.
*/
/* #define LOGALLOC */
/*
* -------------------------
* Error reporting functions
* -------------------------
*/
/*
* An error reporting function should look like this.
*/
typedef void (*efunc) (int severity, const char *fmt, ...);
/*
* These are the error severity codes which get passed as the first
* argument to an efunc.
*/
#define ERR_DEBUG 0x00000008 /* put out debugging message */
#define ERR_WARNING 0x00000000 /* warn only: no further action */
#define ERR_NONFATAL 0x00000001 /* terminate assembly after phase */
#define ERR_FATAL 0x00000002 /* instantly fatal: exit with error */
#define ERR_PANIC 0x00000003 /* internal error: panic instantly
* and dump core for reference */
#define ERR_MASK 0x0000000F /* mask off the above codes */
#define ERR_NOFILE 0x00000010 /* don't give source file name/line */
#define ERR_USAGE 0x00000020 /* print a usage message */
#define ERR_PASS1 0x00000040 /* only print this error on pass one */
/*
* These codes define specific types of suppressible warning.
*/
#define ERR_WARN_MASK 0x0000FF00 /* the mask for this feature */
#define ERR_WARN_SHR 8 /* how far to shift right */
#define WARN(x) ((x) << ERR_WARN_SHR)
#define ERR_WARN_MNP WARN(1) /* macro-num-parameters warning */
#define ERR_WARN_MSR WARN(2) /* macro self-reference */
#define ERR_WARN_OL WARN(3) /* orphan label (no colon, and
* alone on line) */
#define ERR_WARN_NOV WARN(4) /* numeric overflow */
#define ERR_WARN_GNUELF WARN(5) /* using GNU ELF extensions */
#define ERR_WARN_FL_OVERFLOW WARN(6) /* FP overflow */
#define ERR_WARN_FL_DENORM WARN(7) /* FP denormal */
#define ERR_WARN_FL_UNDERFLOW WARN(8) /* FP underflow */
#define ERR_WARN_FL_TOOLONG WARN(9) /* FP too many digits */
#define ERR_WARN_MAX 9 /* the highest numbered one */
/*
* Wrappers around malloc, realloc and free. nasm_malloc will
* fatal-error and die rather than return NULL; nasm_realloc will
* do likewise, and will also guarantee to work right on being
* passed a NULL pointer; nasm_free will do nothing if it is passed
* a NULL pointer.
*/
void nasm_set_malloc_error(efunc);
#ifndef LOGALLOC
void *nasm_malloc(size_t);
void *nasm_zalloc(size_t);
void *nasm_realloc(void *, size_t);
void nasm_free(void *);
char *nasm_strdup(const char *);
char *nasm_strndup(char *, size_t);
#else
void *nasm_malloc_log(char *, int, size_t);
void *nasm_zalloc_log(char *, int, size_t);
void *nasm_realloc_log(char *, int, void *, size_t);
void nasm_free_log(char *, int, void *);
char *nasm_strdup_log(char *, int, const char *);
char *nasm_strndup_log(char *, int, char *, size_t);
#define nasm_malloc(x) nasm_malloc_log(__FILE__,__LINE__,x)
#define nasm_zalloc(x) nasm_zalloc_log(__FILE__,__LINE__,x)
#define nasm_realloc(x,y) nasm_realloc_log(__FILE__,__LINE__,x,y)
#define nasm_free(x) nasm_free_log(__FILE__,__LINE__,x)
#define nasm_strdup(x) nasm_strdup_log(__FILE__,__LINE__,x)
#define nasm_strndup(x,y) nasm_strndup_log(__FILE__,__LINE__,x,y)
#endif
/*
* ANSI doesn't guarantee the presence of `stricmp' or
* `strcasecmp'.
*/
#if defined(HAVE_STRCASECMP)
#define nasm_stricmp strcasecmp
#elif defined(HAVE_STRICMP)
#define nasm_stricmp stricmp
#else
int nasm_stricmp(const char *, const char *);
#endif
#if defined(HAVE_STRNCASECMP)
#define nasm_strnicmp strncasecmp
#elif defined(HAVE_STRNICMP)
#define nasm_strnicmp strnicmp
#else
int nasm_strnicmp(const char *, const char *, size_t);
#endif
int nasm_memicmp(const char *, const char *, size_t);
#if defined(HAVE_STRSEP)
#define nasm_strsep strsep
#else
char *nasm_strsep(char **stringp, const char *delim);
#endif
/*
* Convert a string into a number, using NASM number rules. Sets
* `*error' to true if an error occurs, and false otherwise.
*/
int64_t readnum(char *str, bool *error);
/*
* Convert a character constant into a number. Sets
* `*warn' to true if an overflow occurs, and false otherwise.
* str points to and length covers the middle of the string,
* without the quotes.
*/
int64_t readstrnum(char *str, int length, bool *warn);
/*
* seg_init: Initialise the segment-number allocator.
* seg_alloc: allocate a hitherto unused segment number.
*/
void seg_init(void);
int32_t seg_alloc(void);
/*
* many output formats will be able to make use of this: a standard
* function to add an extension to the name of the input file
*/
#ifdef NASM_NASM_H
void standard_extension(char *inname, char *outname, char *extension,
efunc error);
#endif
/*
* Utility macros...
*
* This is a useful #define which I keep meaning to use more often:
* the number of elements of a statically defined array.
*/
#define elements(x) ( sizeof(x) / sizeof(*(x)) )
/*
* some handy macros that will probably be of use in more than one
* output format: convert integers into little-endian byte packed
* format in memory
*/
#if X86_MEMORY
#define WRITECHAR(p,v) \
do { \
*(uint8_t *)(p) = (v); \
(p) += 1; \
} while (0)
#define WRITESHORT(p,v) \
do { \
*(uint16_t *)(p) = (v); \
(p) += 2; \
} while (0)
#define WRITELONG(p,v) \
do { \
*(uint32_t *)(p) = (v); \
(p) += 4; \
} while (0)
#define WRITEDLONG(p,v) \
do { \
*(uint64_t *)(p) = (v); \
(p) += 8; \
} while (0)
#define WRITEADDR(p,v,s) \
do { \
uint64_t _wa_v = (v); \
memcpy((p), &_wa_v, (s)); \
(p) += (s); \
} while (0)
#else /* !X86_MEMORY */
#define WRITECHAR(p,v) \
do { \
uint8_t *_wc_p = (uint8_t *)(p); \
uint8_t _wc_v = (v); \
_wc_p[0] = _wc_v; \
(p) = (void *)(_wc_p + 1); \
} while (0)
#define WRITESHORT(p,v) \
do { \
uint8_t *_ws_p = (uint8_t *)(p); \
uint16_t _ws_v = (v); \
_ws_p[0] = _ws_v; \
_ws_p[1] = _ws_v >> 8; \
(p) = (void *)(_ws_p + 2); \
} while (0)
#define WRITELONG(p,v) \
do { \
uint8_t *_wl_p = (uint8_t *)(p); \
uint32_t _wl_v = (v); \
_wl_p[0] = _wl_v; \
_wl_p[1] = _wl_v >> 8; \
_wl_p[2] = _wl_v >> 16; \
_wl_p[3] = _wl_v >> 24; \
(p) = (void *)(_wl_p + 4); \
} while (0)
#define WRITEDLONG(p,v) \
do { \
uint8_t *_wq_p = (uint8_t *)(p); \
uint64_t _wq_v = (v); \
_wq_p[0] = _wq_v; \
_wq_p[1] = _wq_v >> 8; \
_wq_p[2] = _wq_v >> 16; \
_wq_p[3] = _wq_v >> 24; \
_wq_p[4] = _wq_v >> 32; \
_wq_p[5] = _wq_v >> 40; \
_wq_p[6] = _wq_v >> 48; \
_wq_p[7] = _wq_v >> 56; \
(p) = (void *)(_wq_p + 8); \
} while (0)
#define WRITEADDR(p,v,s) \
do { \
int _wa_s = (s); \
uint64_t _wa_v = (v); \
while (_wa_s--) { \
WRITECHAR(p,_wa_v); \
_wa_v >>= 8; \
} \
} while(0)
#endif
/*
* and routines to do the same thing to a file
*/
#define fwriteint8_t(d,f) putc(d,f)
void fwriteint16_t(uint16_t data, FILE * fp);
void fwriteint32_t(uint32_t data, FILE * fp);
void fwriteint64_t(uint64_t data, FILE * fp);
void fwriteaddr(uint64_t data, int size, FILE * fp);
/*
* Routines to manage a dynamic random access array of int64_ts which
* may grow in size to be more than the largest single malloc'able
* chunk.
*/
#define RAA_BLKSHIFT 15 /* 2**this many longs allocated at once */
#define RAA_BLKSIZE (1 << RAA_BLKSHIFT)
#define RAA_LAYERSHIFT 15 /* 2**this many _pointers_ allocated */
#define RAA_LAYERSIZE (1 << RAA_LAYERSHIFT)
typedef struct RAA RAA;
typedef union RAA_UNION RAA_UNION;
typedef struct RAA_LEAF RAA_LEAF;
typedef struct RAA_BRANCH RAA_BRANCH;
struct RAA {
/*
* Number of layers below this one to get to the real data. 0
* means this structure is a leaf, holding RAA_BLKSIZE real
* data items; 1 and above mean it's a branch, holding
* RAA_LAYERSIZE pointers to the next level branch or leaf
* structures.
*/
int layers;
/*
* Number of real data items spanned by one position in the
* `data' array at this level. This number is 0 trivially, for
* a leaf (level 0): for a level 1 branch it should be
* RAA_BLKSHIFT, and for a level 2 branch it's
* RAA_LAYERSHIFT+RAA_BLKSHIFT.
*/
int shift;
union RAA_UNION {
struct RAA_LEAF {
int64_t data[RAA_BLKSIZE];
} l;
struct RAA_BRANCH {
struct RAA *data[RAA_LAYERSIZE];
} b;
} u;
};
struct RAA *raa_init(void);
void raa_free(struct RAA *);
int64_t raa_read(struct RAA *, int32_t);
struct RAA *raa_write(struct RAA *r, int32_t posn, int64_t value);
/*
* Routines to manage a dynamic sequential-access array, under the
* same restriction on maximum mallocable block. This array may be
* written to in two ways: a contiguous chunk can be reserved of a
* given size with a pointer returned OR single-byte data may be
* written. The array can also be read back in the same two ways:
* as a series of big byte-data blocks or as a list of structures
* of a given size.
*/
struct SAA {
/*
* members `end' and `elem_len' are only valid in first link in
* list; `rptr' and `rpos' are used for reading
*/
size_t elem_len; /* Size of each element */
size_t blk_len; /* Size of each allocation block */
size_t nblks; /* Total number of allocated blocks */
size_t nblkptrs; /* Total number of allocation block pointers */
size_t length; /* Total allocated length of the array */
size_t datalen; /* Total data length of the array */
char **wblk; /* Write block pointer */
size_t wpos; /* Write position inside block */
size_t wptr; /* Absolute write position */
char **rblk; /* Read block pointer */
size_t rpos; /* Read position inside block */
size_t rptr; /* Absolute read position */
char **blk_ptrs; /* Pointer to pointer blocks */
};
struct SAA *saa_init(size_t elem_len); /* 1 == byte */
void saa_free(struct SAA *);
void *saa_wstruct(struct SAA *); /* return a structure of elem_len */
void saa_wbytes(struct SAA *, const void *, size_t); /* write arbitrary bytes */
void saa_wleb128u(struct SAA *, int); /* write unsigned LEB128 value */
void saa_wleb128s(struct SAA *, int); /* write signed LEB128 value */
void saa_rewind(struct SAA *); /* for reading from beginning */
void *saa_rstruct(struct SAA *); /* return NULL on EOA */
const void *saa_rbytes(struct SAA *, size_t *); /* return 0 on EOA */
void saa_rnbytes(struct SAA *, void *, size_t); /* read a given no. of bytes */
/* random access */
void saa_fread(struct SAA *, size_t, void *, size_t);
void saa_fwrite(struct SAA *, size_t, const void *, size_t);
/* dump to file */
void saa_fpwrite(struct SAA *, FILE *);
/*
* Binary search routine. Returns index into `array' of an entry
* matching `string', or <0 if no match. `array' is taken to
* contain `size' elements.
*
* bsi() is case sensitive, bsii() is case insensitive.
*/
int bsi(const char *string, const char **array, int size);
int bsii(const char *string, const char **array, int size);
char *src_set_fname(char *newname);
int32_t src_set_linnum(int32_t newline);
int32_t src_get_linnum(void);
/*
* src_get may be used if you simply want to know the source file and line.
* It is also used if you maintain private status about the source location
* It return 0 if the information was the same as the last time you
* checked, -1 if the name changed and (new-old) if just the line changed.
*/
int src_get(int32_t *xline, char **xname);
char *nasm_strcat(char *one, char *two);
void null_debug_routine(const char *directive, const char *params);
extern struct dfmt null_debug_form;
extern struct dfmt *null_debug_arr[2];
const char *prefix_name(int);
#endif