nasm/nasmlib.h
2007-04-12 02:40:54 +00:00

275 lines
8.2 KiB
C

/* nasmlib.h header file for nasmlib.c
*
* The Netwide Assembler is copyright (C) 1996 Simon Tatham and
* Julian Hall. All rights reserved. The software is
* redistributable under the licence given in the file "Licence"
* distributed in the NASM archive.
*/
#ifndef NASM_NASMLIB_H
#define NASM_NASMLIB_H
/*
* If this is defined, the wrappers around malloc et al will
* transform into logging variants, which will cause NASM to create
* a file called `malloc.log' when run, and spew details of all its
* memory management into that. That can then be analysed to detect
* memory leaks and potentially other problems too.
*/
/* #define LOGALLOC */
/*
* Wrappers around malloc, realloc and free. nasm_malloc will
* fatal-error and die rather than return NULL; nasm_realloc will
* do likewise, and will also guarantee to work right on being
* passed a NULL pointer; nasm_free will do nothing if it is passed
* a NULL pointer.
*/
#ifdef NASM_NASM_H /* need efunc defined for this */
void nasm_set_malloc_error(efunc);
#ifndef LOGALLOC
void *nasm_malloc(size_t);
void *nasm_realloc(void *, size_t);
void nasm_free(void *);
int8_t *nasm_strdup(const int8_t *);
int8_t *nasm_strndup(int8_t *, size_t);
#else
void *nasm_malloc_log(int8_t *, int, size_t);
void *nasm_realloc_log(int8_t *, int, void *, size_t);
void nasm_free_log(int8_t *, int, void *);
int8_t *nasm_strdup_log(int8_t *, int, const int8_t *);
int8_t *nasm_strndup_log(int8_t *, int, int8_t *, size_t);
#define nasm_malloc(x) nasm_malloc_log(__FILE__,__LINE__,x)
#define nasm_realloc(x,y) nasm_realloc_log(__FILE__,__LINE__,x,y)
#define nasm_free(x) nasm_free_log(__FILE__,__LINE__,x)
#define nasm_strdup(x) nasm_strdup_log(__FILE__,__LINE__,x)
#define nasm_strndup(x,y) nasm_strndup_log(__FILE__,__LINE__,x,y)
#endif
#endif
/*
* ANSI doesn't guarantee the presence of `stricmp' or
* `strcasecmp'.
*/
#if defined(stricmp) || defined(strcasecmp)
#if defined(stricmp)
#define nasm_stricmp stricmp
#else
#define nasm_stricmp strcasecmp
#endif
#else
int nasm_stricmp(const int8_t *, const int8_t *);
#endif
#if defined(strnicmp) || defined(strncasecmp)
#if defined(strnicmp)
#define nasm_strnicmp strnicmp
#else
#define nasm_strnicmp strncasecmp
#endif
#else
int nasm_strnicmp(const int8_t *, const int8_t *, int);
#endif
/*
* Convert a string into a number, using NASM number rules. Sets
* `*error' to TRUE if an error occurs, and FALSE otherwise.
*/
int64_t readnum(int8_t *str, int *error);
/*
* Convert a character constant into a number. Sets
* `*warn' to TRUE if an overflow occurs, and FALSE otherwise.
* str points to and length covers the middle of the string,
* without the quotes.
*/
int64_t readstrnum(int8_t *str, int length, int *warn);
/*
* seg_init: Initialise the segment-number allocator.
* seg_alloc: allocate a hitherto unused segment number.
*/
void seg_init(void);
int32_t seg_alloc(void);
/*
* many output formats will be able to make use of this: a standard
* function to add an extension to the name of the input file
*/
#ifdef NASM_NASM_H
void standard_extension(int8_t *inname, int8_t *outname, int8_t *extension,
efunc error);
#endif
/*
* some handy macros that will probably be of use in more than one
* output format: convert integers into little-endian byte packed
* format in memory
*/
#define WRITECHAR(p,v) \
do { \
*(p)++ = (v) & 0xFF; \
} while (0)
#define WRITESHORT(p,v) \
do { \
WRITECHAR(p,v); \
WRITECHAR(p,(v) >> 8); \
} while (0)
#define WRITELONG(p,v) \
do { \
WRITECHAR(p,v); \
WRITECHAR(p,(v) >> 8); \
WRITECHAR(p,(v) >> 16); \
WRITECHAR(p,(v) >> 24); \
} while (0)
#define WRITEDLONG(p,v) \
do { \
WRITECHAR(p,v); \
WRITECHAR(p,(v) >> 8); \
WRITECHAR(p,(v) >> 16); \
WRITECHAR(p,(v) >> 24); \
WRITECHAR(p,(v) >> 32); \
WRITECHAR(p,(v) >> 40); \
WRITECHAR(p,(v) >> 48); \
WRITECHAR(p,(v) >> 56); \
} while (0)
/*
* and routines to do the same thing to a file
*/
void fwriteint16_t(int data, FILE * fp);
void fwriteint32_t(int32_t data, FILE * fp);
/*
* Routines to manage a dynamic random access array of int32_ts which
* may grow in size to be more than the largest single malloc'able
* chunk.
*/
#define RAA_BLKSIZE 4096 /* this many longs allocated at once */
#define RAA_LAYERSIZE 1024 /* this many _pointers_ allocated */
typedef struct RAA RAA;
typedef union RAA_UNION RAA_UNION;
typedef struct RAA_LEAF RAA_LEAF;
typedef struct RAA_BRANCH RAA_BRANCH;
struct RAA {
/*
* Number of layers below this one to get to the real data. 0
* means this structure is a leaf, holding RAA_BLKSIZE real
* data items; 1 and above mean it's a branch, holding
* RAA_LAYERSIZE pointers to the next level branch or leaf
* structures.
*/
int layers;
/*
* Number of real data items spanned by one position in the
* `data' array at this level. This number is 1, trivially, for
* a leaf (level 0): for a level 1 branch it should be
* RAA_BLKSIZE, and for a level 2 branch it's
* RAA_LAYERSIZE*RAA_BLKSIZE.
*/
int32_t stepsize;
union RAA_UNION {
struct RAA_LEAF {
int32_t data[RAA_BLKSIZE];
} l;
struct RAA_BRANCH {
struct RAA *data[RAA_LAYERSIZE];
} b;
} u;
};
struct RAA *raa_init(void);
void raa_free(struct RAA *);
int32_t raa_read(struct RAA *, int32_t);
struct RAA *raa_write(struct RAA *r, int32_t posn, int32_t value);
/*
* Routines to manage a dynamic sequential-access array, under the
* same restriction on maximum mallocable block. This array may be
* written to in two ways: a contiguous chunk can be reserved of a
* given size with a pointer returned OR single-byte data may be
* written. The array can also be read back in the same two ways:
* as a series of big byte-data blocks or as a list of structures
* of a given size.
*/
struct SAA {
/*
* members `end' and `elem_len' are only valid in first link in
* list; `rptr' and `rpos' are used for reading
*/
struct SAA *next, *end, *rptr;
int32_t elem_len, length, posn, start, rpos;
int8_t *data;
};
struct SAA *saa_init(int32_t elem_len); /* 1 == byte */
void saa_free(struct SAA *);
void *saa_wstruct(struct SAA *); /* return a structure of elem_len */
void saa_wbytes(struct SAA *, const void *, int32_t); /* write arbitrary bytes */
void saa_rewind(struct SAA *); /* for reading from beginning */
void *saa_rstruct(struct SAA *); /* return NULL on EOA */
void *saa_rbytes(struct SAA *, int32_t *); /* return 0 on EOA */
void saa_rnbytes(struct SAA *, void *, int32_t); /* read a given no. of bytes */
void saa_fread(struct SAA *s, int32_t posn, void *p, int32_t len); /* fixup */
void saa_fwrite(struct SAA *s, int32_t posn, void *p, int32_t len); /* fixup */
void saa_fpwrite(struct SAA *, FILE *);
#ifdef NASM_NASM_H
/*
* Standard scanner.
*/
extern int8_t *stdscan_bufptr;
void stdscan_reset(void);
int stdscan(void *private_data, struct tokenval *tv);
#endif
#ifdef NASM_NASM_H
/*
* Library routines to manipulate expression data types.
*/
int is_reloc(expr *);
int is_simple(expr *);
int is_really_simple(expr *);
int is_unknown(expr *);
int is_just_unknown(expr *);
int64_t reloc_value(expr *);
int32_t reloc_seg(expr *);
int32_t reloc_wrt(expr *);
#endif
/*
* Binary search routine. Returns index into `array' of an entry
* matching `string', or <0 if no match. `array' is taken to
* contain `size' elements.
*/
int bsi(int8_t *string, const int8_t **array, int size);
int8_t *src_set_fname(int8_t *newname);
int32_t src_set_linnum(int32_t newline);
int32_t src_get_linnum(void);
/*
* src_get may be used if you simply want to know the source file and line.
* It is also used if you maintain private status about the source location
* It return 0 if the information was the same as the last time you
* checked, -1 if the name changed and (new-old) if just the line changed.
*/
int src_get(int32_t *xline, int8_t **xname);
void nasm_quote(int8_t **str);
int8_t *nasm_strcat(int8_t *one, int8_t *two);
void nasmlib_cleanup(void);
void null_debug_routine(const int8_t *directive, const int8_t *params);
extern struct dfmt null_debug_form;
extern struct dfmt *null_debug_arr[2];
#endif