nasm/nasmlib.c
2007-08-31 00:16:10 +00:00

1005 lines
23 KiB
C

/* nasmlib.c library routines for the Netwide Assembler
*
* The Netwide Assembler is copyright (C) 1996 Simon Tatham and
* Julian Hall. All rights reserved. The software is
* redistributable under the licence given in the file "Licence"
* distributed in the NASM archive.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <inttypes.h>
#include "nasm.h"
#include "nasmlib.h"
#include "insns.h"
int globalbits = 0; /* defined in nasm.h, works better here for ASM+DISASM */
static efunc nasm_malloc_error;
#ifdef LOGALLOC
static FILE *logfp;
#endif
void nasm_set_malloc_error(efunc error)
{
nasm_malloc_error = error;
#ifdef LOGALLOC
logfp = fopen("malloc.log", "w");
setvbuf(logfp, NULL, _IOLBF, BUFSIZ);
fprintf(logfp, "null pointer is %p\n", NULL);
#endif
}
#ifdef LOGALLOC
void *nasm_malloc_log(char *file, int line, size_t size)
#else
void *nasm_malloc(size_t size)
#endif
{
void *p = malloc(size);
if (!p)
nasm_malloc_error(ERR_FATAL | ERR_NOFILE, "out of memory");
#ifdef LOGALLOC
else
fprintf(logfp, "%s %d malloc(%ld) returns %p\n",
file, line, (int32_t)size, p);
#endif
return p;
}
#ifdef LOGALLOC
void *nasm_realloc_log(char *file, int line, void *q, size_t size)
#else
void *nasm_realloc(void *q, size_t size)
#endif
{
void *p = q ? realloc(q, size) : malloc(size);
if (!p)
nasm_malloc_error(ERR_FATAL | ERR_NOFILE, "out of memory");
#ifdef LOGALLOC
else if (q)
fprintf(logfp, "%s %d realloc(%p,%ld) returns %p\n",
file, line, q, (int32_t)size, p);
else
fprintf(logfp, "%s %d malloc(%ld) returns %p\n",
file, line, (int32_t)size, p);
#endif
return p;
}
#ifdef LOGALLOC
void nasm_free_log(char *file, int line, void *q)
#else
void nasm_free(void *q)
#endif
{
if (q) {
free(q);
#ifdef LOGALLOC
fprintf(logfp, "%s %d free(%p)\n", file, line, q);
#endif
}
}
#ifdef LOGALLOC
char *nasm_strdup_log(char *file, int line, const char *s)
#else
char *nasm_strdup(const char *s)
#endif
{
char *p;
int size = strlen(s) + 1;
p = malloc(size);
if (!p)
nasm_malloc_error(ERR_FATAL | ERR_NOFILE, "out of memory");
#ifdef LOGALLOC
else
fprintf(logfp, "%s %d strdup(%ld) returns %p\n",
file, line, (int32_t)size, p);
#endif
strcpy(p, s);
return p;
}
#ifdef LOGALLOC
char *nasm_strndup_log(char *file, int line, char *s, size_t len)
#else
char *nasm_strndup(char *s, size_t len)
#endif
{
char *p;
int size = len + 1;
p = malloc(size);
if (!p)
nasm_malloc_error(ERR_FATAL | ERR_NOFILE, "out of memory");
#ifdef LOGALLOC
else
fprintf(logfp, "%s %d strndup(%ld) returns %p\n",
file, line, (int32_t)size, p);
#endif
strncpy(p, s, len);
p[len] = '\0';
return p;
}
#if !defined(stricmp) && !defined(strcasecmp)
int nasm_stricmp(const char *s1, const char *s2)
{
while (*s1 && tolower(*s1) == tolower(*s2))
s1++, s2++;
if (!*s1 && !*s2)
return 0;
else if (tolower(*s1) < tolower(*s2))
return -1;
else
return 1;
}
#endif
#if !defined(strnicmp) && !defined(strncasecmp)
int nasm_strnicmp(const char *s1, const char *s2, int n)
{
while (n > 0 && *s1 && tolower(*s1) == tolower(*s2))
s1++, s2++, n--;
if ((!*s1 && !*s2) || n == 0)
return 0;
else if (tolower(*s1) < tolower(*s2))
return -1;
else
return 1;
}
#endif
#if !defined(strsep)
char *nasm_strsep(char **stringp, const char *delim)
{
char *s = *stringp;
char *e;
if (!s)
return NULL;
e = strpbrk(s, delim);
if (e)
*e++ = '\0';
*stringp = e;
return s;
}
#endif
#define lib_isnumchar(c) ( isalnum(c) || (c) == '$')
#define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
int64_t readnum(char *str, int *error)
{
char *r = str, *q;
int32_t radix;
uint64_t result, checklimit;
int digit, last;
int warn = FALSE;
int sign = 1;
*error = FALSE;
while (isspace(*r))
r++; /* find start of number */
/*
* If the number came from make_tok_num (as a result of an %assign), it
* might have a '-' built into it (rather than in a preceeding token).
*/
if (*r == '-') {
r++;
sign = -1;
}
q = r;
while (lib_isnumchar(*q))
q++; /* find end of number */
/*
* If it begins 0x, 0X or $, or ends in H, it's in hex. if it
* ends in Q, it's octal. if it ends in B, it's binary.
* Otherwise, it's ordinary decimal.
*/
if (*r == '0' && (r[1] == 'x' || r[1] == 'X'))
radix = 16, r += 2;
else if (*r == '$')
radix = 16, r++;
else if (q[-1] == 'H' || q[-1] == 'h')
radix = 16, q--;
else if (q[-1] == 'Q' || q[-1] == 'q' || q[-1] == 'O' || q[-1] == 'o')
radix = 8, q--;
else if (q[-1] == 'B' || q[-1] == 'b')
radix = 2, q--;
else
radix = 10;
/*
* If this number has been found for us by something other than
* the ordinary scanners, then it might be malformed by having
* nothing between the prefix and the suffix. Check this case
* now.
*/
if (r >= q) {
*error = TRUE;
return 0;
}
/*
* `checklimit' must be 2**(32|64) / radix. We can't do that in
* 32/64-bit arithmetic, which we're (probably) using, so we
* cheat: since we know that all radices we use are even, we
* can divide 2**(31|63) by radix/2 instead.
*/
if (globalbits == 64)
checklimit = 0x8000000000000000ULL / (radix >> 1);
else
checklimit = 0x80000000UL / (radix >> 1);
/*
* Calculate the highest allowable value for the last digit of a
* 32-bit constant... in radix 10, it is 6, otherwise it is 0
*/
last = (radix == 10 ? 6 : 0);
result = 0;
while (*r && r < q) {
if (*r < '0' || (*r > '9' && *r < 'A')
|| (digit = numvalue(*r)) >= radix) {
*error = TRUE;
return 0;
}
if (result > checklimit || (result == checklimit && digit >= last)) {
warn = TRUE;
}
result = radix * result + digit;
r++;
}
if (warn)
nasm_malloc_error(ERR_WARNING | ERR_PASS1 | ERR_WARN_NOV,
"numeric constant %s does not fit in 32 bits",
str);
return result * sign;
}
int64_t readstrnum(char *str, int length, int *warn)
{
int64_t charconst = 0;
int i;
*warn = FALSE;
str += length;
if (globalbits == 64) {
for (i = 0; i < length; i++) {
if (charconst & 0xFF00000000000000ULL)
*warn = TRUE;
charconst = (charconst << 8) + (uint8_t)*--str;
}
} else {
for (i = 0; i < length; i++) {
if (charconst & 0xFF000000UL)
*warn = TRUE;
charconst = (charconst << 8) + (uint8_t)*--str;
}
}
return charconst;
}
static int32_t next_seg;
void seg_init(void)
{
next_seg = 0;
}
int32_t seg_alloc(void)
{
return (next_seg += 2) - 2;
}
void fwriteint16_t(int data, FILE * fp)
{
fputc((int)(data & 255), fp);
fputc((int)((data >> 8) & 255), fp);
}
void fwriteint32_t(int32_t data, FILE * fp)
{
fputc((int)(data & 255), fp);
fputc((int)((data >> 8) & 255), fp);
fputc((int)((data >> 16) & 255), fp);
fputc((int)((data >> 24) & 255), fp);
}
void fwriteint64_t(int64_t data, FILE * fp)
{
fputc((int)(data & 255), fp);
fputc((int)((data >> 8) & 255), fp);
fputc((int)((data >> 16) & 255), fp);
fputc((int)((data >> 24) & 255), fp);
fputc((int)((data >> 32) & 255), fp);
fputc((int)((data >> 40) & 255), fp);
fputc((int)((data >> 48) & 255), fp);
fputc((int)((data >> 56) & 255), fp);
}
void standard_extension(char *inname, char *outname, char *extension,
efunc error)
{
char *p, *q;
if (*outname) /* file name already exists, */
return; /* so do nothing */
q = inname;
p = outname;
while (*q)
*p++ = *q++; /* copy, and find end of string */
*p = '\0'; /* terminate it */
while (p > outname && *--p != '.') ; /* find final period (or whatever) */
if (*p != '.')
while (*p)
p++; /* go back to end if none found */
if (!strcmp(p, extension)) { /* is the extension already there? */
if (*extension)
error(ERR_WARNING | ERR_NOFILE,
"file name already ends in `%s': "
"output will be in `nasm.out'", extension);
else
error(ERR_WARNING | ERR_NOFILE,
"file name already has no extension: "
"output will be in `nasm.out'");
strcpy(outname, "nasm.out");
} else
strcpy(p, extension);
}
#define LEAFSIZ (sizeof(RAA)-sizeof(RAA_UNION)+sizeof(RAA_LEAF))
#define BRANCHSIZ (sizeof(RAA)-sizeof(RAA_UNION)+sizeof(RAA_BRANCH))
#define LAYERSIZ(r) ( (r)->layers==0 ? RAA_BLKSIZE : RAA_LAYERSIZE )
static struct RAA *real_raa_init(int layers)
{
struct RAA *r;
int i;
if (layers == 0) {
r = nasm_malloc(LEAFSIZ);
r->layers = 0;
memset(r->u.l.data, 0, sizeof(r->u.l.data));
r->stepsize = 1L;
} else {
r = nasm_malloc(BRANCHSIZ);
r->layers = layers;
for (i = 0; i < RAA_LAYERSIZE; i++)
r->u.b.data[i] = NULL;
r->stepsize = RAA_BLKSIZE;
while (--layers)
r->stepsize *= RAA_LAYERSIZE;
}
return r;
}
struct RAA *raa_init(void)
{
return real_raa_init(0);
}
void raa_free(struct RAA *r)
{
if (r->layers == 0)
nasm_free(r);
else {
struct RAA **p;
for (p = r->u.b.data; p - r->u.b.data < RAA_LAYERSIZE; p++)
if (*p)
raa_free(*p);
}
}
int32_t raa_read(struct RAA *r, int32_t posn)
{
if (posn >= r->stepsize * LAYERSIZ(r))
return 0; /* Return 0 for undefined entries */
while (r->layers > 0) {
ldiv_t l;
l = ldiv(posn, r->stepsize);
r = r->u.b.data[l.quot];
posn = l.rem;
if (!r)
return 0; /* Return 0 for undefined entries */
}
return r->u.l.data[posn];
}
struct RAA *raa_write(struct RAA *r, int32_t posn, int32_t value)
{
struct RAA *result;
if (posn < 0)
nasm_malloc_error(ERR_PANIC, "negative position in raa_write");
while (r->stepsize * LAYERSIZ(r) <= posn) {
/*
* Must add a layer.
*/
struct RAA *s;
int i;
s = nasm_malloc(BRANCHSIZ);
for (i = 0; i < RAA_LAYERSIZE; i++)
s->u.b.data[i] = NULL;
s->layers = r->layers + 1;
s->stepsize = LAYERSIZ(r) * r->stepsize;
s->u.b.data[0] = r;
r = s;
}
result = r;
while (r->layers > 0) {
ldiv_t l;
struct RAA **s;
l = ldiv(posn, r->stepsize);
s = &r->u.b.data[l.quot];
if (!*s)
*s = real_raa_init(r->layers - 1);
r = *s;
posn = l.rem;
}
r->u.l.data[posn] = value;
return result;
}
#define SAA_MAXLEN 8192
struct SAA *saa_init(int32_t elem_len)
{
struct SAA *s;
if (elem_len > SAA_MAXLEN)
nasm_malloc_error(ERR_PANIC | ERR_NOFILE,
"SAA with huge elements");
s = nasm_malloc(sizeof(struct SAA));
s->posn = s->start = 0L;
s->elem_len = elem_len;
s->length = SAA_MAXLEN - (SAA_MAXLEN % elem_len);
s->data = nasm_malloc(s->length);
s->next = NULL;
s->end = s;
return s;
}
void saa_free(struct SAA *s)
{
struct SAA *t;
while (s) {
t = s->next;
nasm_free(s->data);
nasm_free(s);
s = t;
}
}
void *saa_wstruct(struct SAA *s)
{
void *p;
if (s->end->length - s->end->posn < s->elem_len) {
s->end->next = nasm_malloc(sizeof(struct SAA));
s->end->next->start = s->end->start + s->end->posn;
s->end = s->end->next;
s->end->length = s->length;
s->end->next = NULL;
s->end->posn = 0L;
s->end->data = nasm_malloc(s->length);
}
p = s->end->data + s->end->posn;
s->end->posn += s->elem_len;
return p;
}
void saa_wbytes(struct SAA *s, const void *data, int32_t len)
{
const char *d = data;
while (len > 0) {
int32_t l = s->end->length - s->end->posn;
if (l > len)
l = len;
if (l > 0) {
if (d) {
memcpy(s->end->data + s->end->posn, d, l);
d += l;
} else
memset(s->end->data + s->end->posn, 0, l);
s->end->posn += l;
len -= l;
}
if (len > 0) {
s->end->next = nasm_malloc(sizeof(struct SAA));
s->end->next->start = s->end->start + s->end->posn;
s->end = s->end->next;
s->end->length = s->length;
s->end->next = NULL;
s->end->posn = 0L;
s->end->data = nasm_malloc(s->length);
}
}
}
void saa_rewind(struct SAA *s)
{
s->rptr = s;
s->rpos = 0L;
}
void *saa_rstruct(struct SAA *s)
{
void *p;
if (!s->rptr)
return NULL;
if (s->rptr->posn - s->rpos < s->elem_len) {
s->rptr = s->rptr->next;
if (!s->rptr)
return NULL; /* end of array */
s->rpos = 0L;
}
p = s->rptr->data + s->rpos;
s->rpos += s->elem_len;
return p;
}
void *saa_rbytes(struct SAA *s, int32_t *len)
{
void *p;
if (!s->rptr)
return NULL;
p = s->rptr->data + s->rpos;
*len = s->rptr->posn - s->rpos;
s->rptr = s->rptr->next;
s->rpos = 0L;
return p;
}
void saa_rnbytes(struct SAA *s, void *data, int32_t len)
{
char *d = data;
while (len > 0) {
int32_t l;
if (!s->rptr)
return;
l = s->rptr->posn - s->rpos;
if (l > len)
l = len;
if (l > 0) {
memcpy(d, s->rptr->data + s->rpos, l);
d += l;
s->rpos += l;
len -= l;
}
if (len > 0) {
s->rptr = s->rptr->next;
s->rpos = 0L;
}
}
}
void saa_fread(struct SAA *s, int32_t posn, void *data, int32_t len)
{
struct SAA *p;
int64_t pos;
char *cdata = data;
if (!s->rptr || posn < s->rptr->start)
saa_rewind(s);
p = s->rptr;
while (posn >= p->start + p->posn) {
p = p->next;
if (!p)
return; /* what else can we do?! */
}
pos = posn - p->start;
while (len) {
int64_t l = p->posn - pos;
if (l > len)
l = len;
memcpy(cdata, p->data + pos, l);
len -= l;
cdata += l;
p = p->next;
if (!p)
return;
pos = 0LL;
}
s->rptr = p;
}
void saa_fwrite(struct SAA *s, int32_t posn, void *data, int32_t len)
{
struct SAA *p;
int64_t pos;
char *cdata = data;
if (!s->rptr || posn < s->rptr->start)
saa_rewind(s);
p = s->rptr;
while (posn >= p->start + p->posn) {
p = p->next;
if (!p)
return; /* what else can we do?! */
}
pos = posn - p->start;
while (len) {
int64_t l = p->posn - pos;
if (l > len)
l = len;
memcpy(p->data + pos, cdata, l);
len -= l;
cdata += l;
p = p->next;
if (!p)
return;
pos = 0LL;
}
s->rptr = p;
}
void saa_fpwrite(struct SAA *s, FILE * fp)
{
char *data;
int32_t len;
saa_rewind(s);
// while ((data = saa_rbytes(s, &len)))
for (; (data = saa_rbytes(s, &len));)
fwrite(data, 1, len, fp);
}
/*
* Common list of prefix names
*/
static const char *prefix_names[] = {
"a16", "a32", "lock", "o16", "o32", "rep", "repe", "repne",
"repnz", "repz", "times"
};
const char *prefix_name(int token)
{
unsigned int prefix = token-PREFIX_ENUM_START;
if (prefix > sizeof prefix_names / sizeof(const char *))
return NULL;
return prefix_names[prefix];
}
/*
* Return TRUE if the argument is a simple scalar. (Or a far-
* absolute, which counts.)
*/
int is_simple(expr * vect)
{
while (vect->type && !vect->value)
vect++;
if (!vect->type)
return 1;
if (vect->type != EXPR_SIMPLE)
return 0;
do {
vect++;
} while (vect->type && !vect->value);
if (vect->type && vect->type < EXPR_SEGBASE + SEG_ABS)
return 0;
return 1;
}
/*
* Return TRUE if the argument is a simple scalar, _NOT_ a far-
* absolute.
*/
int is_really_simple(expr * vect)
{
while (vect->type && !vect->value)
vect++;
if (!vect->type)
return 1;
if (vect->type != EXPR_SIMPLE)
return 0;
do {
vect++;
} while (vect->type && !vect->value);
if (vect->type)
return 0;
return 1;
}
/*
* Return TRUE if the argument is relocatable (i.e. a simple
* scalar, plus at most one segment-base, plus possibly a WRT).
*/
int is_reloc(expr * vect)
{
while (vect->type && !vect->value) /* skip initial value-0 terms */
vect++;
if (!vect->type) /* trivially return TRUE if nothing */
return 1; /* is present apart from value-0s */
if (vect->type < EXPR_SIMPLE) /* FALSE if a register is present */
return 0;
if (vect->type == EXPR_SIMPLE) { /* skip over a pure number term... */
do {
vect++;
} while (vect->type && !vect->value);
if (!vect->type) /* ...returning TRUE if that's all */
return 1;
}
if (vect->type == EXPR_WRT) { /* skip over a WRT term... */
do {
vect++;
} while (vect->type && !vect->value);
if (!vect->type) /* ...returning TRUE if that's all */
return 1;
}
if (vect->value != 0 && vect->value != 1)
return 0; /* segment base multiplier non-unity */
do { /* skip over _one_ seg-base term... */
vect++;
} while (vect->type && !vect->value);
if (!vect->type) /* ...returning TRUE if that's all */
return 1;
return 0; /* And return FALSE if there's more */
}
/*
* Return TRUE if the argument contains an `unknown' part.
*/
int is_unknown(expr * vect)
{
while (vect->type && vect->type < EXPR_UNKNOWN)
vect++;
return (vect->type == EXPR_UNKNOWN);
}
/*
* Return TRUE if the argument contains nothing but an `unknown'
* part.
*/
int is_just_unknown(expr * vect)
{
while (vect->type && !vect->value)
vect++;
return (vect->type == EXPR_UNKNOWN);
}
/*
* Return the scalar part of a relocatable vector. (Including
* simple scalar vectors - those qualify as relocatable.)
*/
int64_t reloc_value(expr * vect)
{
while (vect->type && !vect->value)
vect++;
if (!vect->type)
return 0;
if (vect->type == EXPR_SIMPLE)
return vect->value;
else
return 0;
}
/*
* Return the segment number of a relocatable vector, or NO_SEG for
* simple scalars.
*/
int32_t reloc_seg(expr * vect)
{
while (vect->type && (vect->type == EXPR_WRT || !vect->value))
vect++;
if (vect->type == EXPR_SIMPLE) {
do {
vect++;
} while (vect->type && (vect->type == EXPR_WRT || !vect->value));
}
if (!vect->type)
return NO_SEG;
else
return vect->type - EXPR_SEGBASE;
}
/*
* Return the WRT segment number of a relocatable vector, or NO_SEG
* if no WRT part is present.
*/
int32_t reloc_wrt(expr * vect)
{
while (vect->type && vect->type < EXPR_WRT)
vect++;
if (vect->type == EXPR_WRT) {
return vect->value;
} else
return NO_SEG;
}
/*
* Binary search.
*/
int bsi(char *string, const char **array, int size)
{
int i = -1, j = size; /* always, i < index < j */
while (j - i >= 2) {
int k = (i + j) / 2;
int l = strcmp(string, array[k]);
if (l < 0) /* it's in the first half */
j = k;
else if (l > 0) /* it's in the second half */
i = k;
else /* we've got it :) */
return k;
}
return -1; /* we haven't got it :( */
}
int bsii(char *string, const char **array, int size)
{
int i = -1, j = size; /* always, i < index < j */
while (j - i >= 2) {
int k = (i + j) / 2;
int l = nasm_stricmp(string, array[k]);
if (l < 0) /* it's in the first half */
j = k;
else if (l > 0) /* it's in the second half */
i = k;
else /* we've got it :) */
return k;
}
return -1; /* we haven't got it :( */
}
static char *file_name = NULL;
static int32_t line_number = 0;
char *src_set_fname(char *newname)
{
char *oldname = file_name;
file_name = newname;
return oldname;
}
int32_t src_set_linnum(int32_t newline)
{
int32_t oldline = line_number;
line_number = newline;
return oldline;
}
int32_t src_get_linnum(void)
{
return line_number;
}
int src_get(int32_t *xline, char **xname)
{
if (!file_name || !*xname || strcmp(*xname, file_name)) {
nasm_free(*xname);
*xname = file_name ? nasm_strdup(file_name) : NULL;
*xline = line_number;
return -2;
}
if (*xline != line_number) {
int32_t tmp = line_number - *xline;
*xline = line_number;
return tmp;
}
return 0;
}
void nasm_quote(char **str)
{
int ln = strlen(*str);
char q = (*str)[0];
char *p;
if (ln > 1 && (*str)[ln - 1] == q && (q == '"' || q == '\''))
return;
q = '"';
if (strchr(*str, q))
q = '\'';
p = nasm_malloc(ln + 3);
strcpy(p + 1, *str);
nasm_free(*str);
p[ln + 1] = p[0] = q;
p[ln + 2] = 0;
*str = p;
}
char *nasm_strcat(char *one, char *two)
{
char *rslt;
int l1 = strlen(one);
rslt = nasm_malloc(l1 + strlen(two) + 1);
strcpy(rslt, one);
strcpy(rslt + l1, two);
return rslt;
}
void null_debug_init(struct ofmt *of, void *id, FILE * fp, efunc error)
{
(void)of;
(void)id;
(void)fp;
(void)error;
}
void null_debug_linenum(const char *filename, int32_t linenumber, int32_t segto)
{
(void)filename;
(void)linenumber;
(void)segto;
}
void null_debug_deflabel(char *name, int32_t segment, int32_t offset,
int is_global, char *special)
{
(void)name;
(void)segment;
(void)offset;
(void)is_global;
(void)special;
}
void null_debug_routine(const char *directive, const char *params)
{
(void)directive;
(void)params;
}
void null_debug_typevalue(int32_t type)
{
(void)type;
}
void null_debug_output(int type, void *param)
{
(void)type;
(void)param;
}
void null_debug_cleanup(void)
{
}
struct dfmt null_debug_form = {
"Null debug format",
"null",
null_debug_init,
null_debug_linenum,
null_debug_deflabel,
null_debug_routine,
null_debug_typevalue,
null_debug_output,
null_debug_cleanup
};
struct dfmt *null_debug_arr[2] = { &null_debug_form, NULL };