mirror of
https://github.com/netwide-assembler/nasm.git
synced 2024-12-27 09:29:06 +08:00
2604 lines
73 KiB
C
2604 lines
73 KiB
C
/* ----------------------------------------------------------------------- *
|
|
*
|
|
* Copyright 1996-2009 The NASM Authors - All Rights Reserved
|
|
* See the file AUTHORS included with the NASM distribution for
|
|
* the specific copyright holders.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
|
|
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* ----------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* assemble.c code generation for the Netwide Assembler
|
|
*
|
|
* the actual codes (C syntax, i.e. octal):
|
|
* \0 - terminates the code. (Unless it's a literal of course.)
|
|
* \1..\4 - that many literal bytes follow in the code stream
|
|
* \5 - add 4 to the primary operand number (b, low octdigit)
|
|
* \6 - add 4 to the secondary operand number (a, middle octdigit)
|
|
* \7 - add 4 to both the primary and the secondary operand number
|
|
* \10..\13 - a literal byte follows in the code stream, to be added
|
|
* to the register value of operand 0..3
|
|
* \14..\17 - a signed byte immediate operand, from operand 0..3
|
|
* \20..\23 - a byte immediate operand, from operand 0..3
|
|
* \24..\27 - an unsigned byte immediate operand, from operand 0..3
|
|
* \30..\33 - a word immediate operand, from operand 0..3
|
|
* \34..\37 - select between \3[0-3] and \4[0-3] depending on 16/32 bit
|
|
* assembly mode or the operand-size override on the operand
|
|
* \40..\43 - a long immediate operand, from operand 0..3
|
|
* \44..\47 - select between \3[0-3], \4[0-3] and \5[4-7]
|
|
* depending on the address size of the instruction.
|
|
* \50..\53 - a byte relative operand, from operand 0..3
|
|
* \54..\57 - a qword immediate operand, from operand 0..3
|
|
* \60..\63 - a word relative operand, from operand 0..3
|
|
* \64..\67 - select between \6[0-3] and \7[0-3] depending on 16/32 bit
|
|
* assembly mode or the operand-size override on the operand
|
|
* \70..\73 - a long relative operand, from operand 0..3
|
|
* \74..\77 - a word constant, from the _segment_ part of operand 0..3
|
|
* \1ab - a ModRM, calculated on EA in operand a, with the spare
|
|
* field the register value of operand b.
|
|
* \140..\143 - an immediate word or signed byte for operand 0..3
|
|
* \144..\147 - or 2 (s-field) into opcode byte if operand 0..3
|
|
* is a signed byte rather than a word. Opcode byte follows.
|
|
* \150..\153 - an immediate dword or signed byte for operand 0..3
|
|
* \154..\157 - or 2 (s-field) into opcode byte if operand 0..3
|
|
* is a signed byte rather than a dword. Opcode byte follows.
|
|
* \160..\163 - this instruction uses DREX rather than REX, with the
|
|
* OC0 field set to 0, and the dest field taken from
|
|
* operand 0..3.
|
|
* \164..\167 - this instruction uses DREX rather than REX, with the
|
|
* OC0 field set to 1, and the dest field taken from
|
|
* operand 0..3.
|
|
* \171 - placement of DREX suffix in the absence of an EA
|
|
* \172\ab - the register number from operand a in bits 7..4, with
|
|
* the 4-bit immediate from operand b in bits 3..0.
|
|
* \173\xab - the register number from operand a in bits 7..4, with
|
|
* the value b in bits 3..0.
|
|
* \174\a - the register number from operand a in bits 7..4, and
|
|
* an arbitrary value in bits 3..0 (assembled as zero.)
|
|
* \2ab - a ModRM, calculated on EA in operand a, with the spare
|
|
* field equal to digit b.
|
|
* \250..\253 - same as \150..\153, except warn if the 64-bit operand
|
|
* is not equal to the truncated and sign-extended 32-bit
|
|
* operand; used for 32-bit immediates in 64-bit mode.
|
|
* \254..\257 - a signed 32-bit operand to be extended to 64 bits.
|
|
* \260..\263 - this instruction uses VEX/XOP rather than REX, with the
|
|
* V field taken from operand 0..3.
|
|
* \270 - this instruction uses VEX/XOP rather than REX, with the
|
|
* V field set to 1111b.
|
|
*
|
|
* VEX/XOP prefixes are followed by the sequence:
|
|
* \tmm\wlp where mm is the M field; and wlp is:
|
|
* 00 0ww lpp
|
|
* [w0] ww = 0 for W = 0
|
|
* [w1] ww = 1 for W = 1
|
|
* [wx] ww = 2 for W don't care (always assembled as 0)
|
|
* [ww] ww = 3 for W used as REX.W
|
|
*
|
|
* t = 0 for VEX (C4/C5), t = 1 for XOP (8F).
|
|
*
|
|
* \274..\277 - a signed byte immediate operand, from operand 0..3,
|
|
* which is to be extended to the operand size.
|
|
* \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
|
|
* \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
|
|
* \312 - (disassembler only) invalid with non-default address size.
|
|
* \313 - indicates fixed 64-bit address size, 0x67 invalid.
|
|
* \314 - (disassembler only) invalid with REX.B
|
|
* \315 - (disassembler only) invalid with REX.X
|
|
* \316 - (disassembler only) invalid with REX.R
|
|
* \317 - (disassembler only) invalid with REX.W
|
|
* \320 - indicates fixed 16-bit operand size, i.e. optional 0x66.
|
|
* \321 - indicates fixed 32-bit operand size, i.e. optional 0x66.
|
|
* \322 - indicates that this instruction is only valid when the
|
|
* operand size is the default (instruction to disassembler,
|
|
* generates no code in the assembler)
|
|
* \323 - indicates fixed 64-bit operand size, REX on extensions only.
|
|
* \324 - indicates 64-bit operand size requiring REX prefix.
|
|
* \325 - instruction which always uses spl/bpl/sil/dil
|
|
* \330 - a literal byte follows in the code stream, to be added
|
|
* to the condition code value of the instruction.
|
|
* \331 - instruction not valid with REP prefix. Hint for
|
|
* disassembler only; for SSE instructions.
|
|
* \332 - REP prefix (0xF2 byte) used as opcode extension.
|
|
* \333 - REP prefix (0xF3 byte) used as opcode extension.
|
|
* \334 - LOCK prefix used as REX.R (used in non-64-bit mode)
|
|
* \335 - disassemble a rep (0xF3 byte) prefix as repe not rep.
|
|
* \336 - force a REP(E) prefix (0xF2) even if not specified.
|
|
* \337 - force a REPNE prefix (0xF3) even if not specified.
|
|
* \336-\337 are still listed as prefixes in the disassembler.
|
|
* \340 - reserve <operand 0> bytes of uninitialized storage.
|
|
* Operand 0 had better be a segmentless constant.
|
|
* \341 - this instruction needs a WAIT "prefix"
|
|
* \344,\345 - the PUSH/POP (respectively) codes for CS, DS, ES, SS
|
|
* (POP is never used for CS) depending on operand 0
|
|
* \346,\347 - the second byte of PUSH/POP codes for FS, GS, depending
|
|
* on operand 0
|
|
* \360 - no SSE prefix (== \364\331)
|
|
* \361 - 66 SSE prefix (== \366\331)
|
|
* \362 - F2 SSE prefix (== \364\332)
|
|
* \363 - F3 SSE prefix (== \364\333)
|
|
* \364 - operand-size prefix (0x66) not permitted
|
|
* \365 - address-size prefix (0x67) not permitted
|
|
* \366 - operand-size prefix (0x66) used as opcode extension
|
|
* \367 - address-size prefix (0x67) used as opcode extension
|
|
* \370,\371,\372 - match only if operand 0 meets byte jump criteria.
|
|
* 370 is used for Jcc, 371 is used for JMP.
|
|
* \373 - assemble 0x03 if bits==16, 0x05 if bits==32;
|
|
* used for conditional jump over longer jump
|
|
*/
|
|
|
|
#include "compiler.h"
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <inttypes.h>
|
|
|
|
#include "nasm.h"
|
|
#include "nasmlib.h"
|
|
#include "assemble.h"
|
|
#include "insns.h"
|
|
#include "tables.h"
|
|
|
|
enum match_result {
|
|
/*
|
|
* Matching errors. These should be sorted so that more specific
|
|
* errors come later in the sequence.
|
|
*/
|
|
MERR_INVALOP,
|
|
MERR_OPSIZEMISSING,
|
|
MERR_OPSIZEMISMATCH,
|
|
MERR_BADCPU,
|
|
MERR_BADMODE,
|
|
/*
|
|
* Matching success; the conditional ones first
|
|
*/
|
|
MOK_JUMP, /* Matching OK but needs jmp_match() */
|
|
MOK_GOOD /* Matching unconditionally OK */
|
|
};
|
|
|
|
typedef struct {
|
|
int sib_present; /* is a SIB byte necessary? */
|
|
int bytes; /* # of bytes of offset needed */
|
|
int size; /* lazy - this is sib+bytes+1 */
|
|
uint8_t modrm, sib, rex, rip; /* the bytes themselves */
|
|
} ea;
|
|
|
|
static uint32_t cpu; /* cpu level received from nasm.c */
|
|
static efunc errfunc;
|
|
static struct ofmt *outfmt;
|
|
static ListGen *list;
|
|
|
|
static int64_t calcsize(int32_t, int64_t, int, insn *, const uint8_t *);
|
|
static void gencode(int32_t segment, int64_t offset, int bits,
|
|
insn * ins, const struct itemplate *temp,
|
|
int64_t insn_end);
|
|
static enum match_result find_match(const struct itemplate **tempp,
|
|
insn *instruction,
|
|
int32_t segment, int64_t offset, int bits);
|
|
static enum match_result matches(const struct itemplate *, insn *, int bits);
|
|
static int32_t regflag(const operand *);
|
|
static int32_t regval(const operand *);
|
|
static int rexflags(int, int32_t, int);
|
|
static int op_rexflags(const operand *, int);
|
|
static ea *process_ea(operand *, ea *, int, int, int, int32_t);
|
|
static void add_asp(insn *, int);
|
|
|
|
static int has_prefix(insn * ins, enum prefix_pos pos, enum prefixes prefix)
|
|
{
|
|
return ins->prefixes[pos] == prefix;
|
|
}
|
|
|
|
static void assert_no_prefix(insn * ins, enum prefix_pos pos)
|
|
{
|
|
if (ins->prefixes[pos])
|
|
errfunc(ERR_NONFATAL, "invalid %s prefix",
|
|
prefix_name(ins->prefixes[pos]));
|
|
}
|
|
|
|
static const char *size_name(int size)
|
|
{
|
|
switch (size) {
|
|
case 1:
|
|
return "byte";
|
|
case 2:
|
|
return "word";
|
|
case 4:
|
|
return "dword";
|
|
case 8:
|
|
return "qword";
|
|
case 10:
|
|
return "tword";
|
|
case 16:
|
|
return "oword";
|
|
case 32:
|
|
return "yword";
|
|
default:
|
|
return "???";
|
|
}
|
|
}
|
|
|
|
static void warn_overflow(int size, const struct operand *o)
|
|
{
|
|
if (size < 8 && o->wrt == NO_SEG && o->segment == NO_SEG) {
|
|
int64_t lim = ((int64_t)1 << (size*8))-1;
|
|
int64_t data = o->offset;
|
|
|
|
if (data < ~lim || data > lim)
|
|
errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
|
|
"%s data exceeds bounds", size_name(size));
|
|
}
|
|
}
|
|
/*
|
|
* This routine wrappers the real output format's output routine,
|
|
* in order to pass a copy of the data off to the listing file
|
|
* generator at the same time.
|
|
*/
|
|
static void out(int64_t offset, int32_t segto, const void *data,
|
|
enum out_type type, uint64_t size,
|
|
int32_t segment, int32_t wrt)
|
|
{
|
|
static int32_t lineno = 0; /* static!!! */
|
|
static char *lnfname = NULL;
|
|
uint8_t p[8];
|
|
|
|
if (type == OUT_ADDRESS && segment == NO_SEG && wrt == NO_SEG) {
|
|
/*
|
|
* This is a non-relocated address, and we're going to
|
|
* convert it into RAWDATA format.
|
|
*/
|
|
uint8_t *q = p;
|
|
|
|
if (size > 8) {
|
|
errfunc(ERR_PANIC, "OUT_ADDRESS with size > 8");
|
|
return;
|
|
}
|
|
|
|
WRITEADDR(q, *(int64_t *)data, size);
|
|
data = p;
|
|
type = OUT_RAWDATA;
|
|
}
|
|
|
|
list->output(offset, data, type, size);
|
|
|
|
/*
|
|
* this call to src_get determines when we call the
|
|
* debug-format-specific "linenum" function
|
|
* it updates lineno and lnfname to the current values
|
|
* returning 0 if "same as last time", -2 if lnfname
|
|
* changed, and the amount by which lineno changed,
|
|
* if it did. thus, these variables must be static
|
|
*/
|
|
|
|
if (src_get(&lineno, &lnfname)) {
|
|
outfmt->current_dfmt->linenum(lnfname, lineno, segto);
|
|
}
|
|
|
|
outfmt->output(segto, data, type, size, segment, wrt);
|
|
}
|
|
|
|
static bool jmp_match(int32_t segment, int64_t offset, int bits,
|
|
insn * ins, const uint8_t *code)
|
|
{
|
|
int64_t isize;
|
|
uint8_t c = code[0];
|
|
|
|
if ((c != 0370 && c != 0371) || (ins->oprs[0].type & STRICT))
|
|
return false;
|
|
if (!optimizing)
|
|
return false;
|
|
if (optimizing < 0 && c == 0371)
|
|
return false;
|
|
|
|
isize = calcsize(segment, offset, bits, ins, code);
|
|
|
|
if (ins->oprs[0].opflags & OPFLAG_UNKNOWN)
|
|
/* Be optimistic in pass 1 */
|
|
return true;
|
|
|
|
if (ins->oprs[0].segment != segment)
|
|
return false;
|
|
|
|
isize = ins->oprs[0].offset - offset - isize; /* isize is delta */
|
|
return (isize >= -128 && isize <= 127); /* is it byte size? */
|
|
}
|
|
|
|
int64_t assemble(int32_t segment, int64_t offset, int bits, uint32_t cp,
|
|
insn * instruction, struct ofmt *output, efunc error,
|
|
ListGen * listgen)
|
|
{
|
|
const struct itemplate *temp;
|
|
int j;
|
|
enum match_result m;
|
|
int64_t insn_end;
|
|
int32_t itimes;
|
|
int64_t start = offset;
|
|
int64_t wsize = 0; /* size for DB etc. */
|
|
|
|
errfunc = error; /* to pass to other functions */
|
|
cpu = cp;
|
|
outfmt = output; /* likewise */
|
|
list = listgen; /* and again */
|
|
|
|
switch (instruction->opcode) {
|
|
case -1:
|
|
return 0;
|
|
case I_DB:
|
|
wsize = 1;
|
|
break;
|
|
case I_DW:
|
|
wsize = 2;
|
|
break;
|
|
case I_DD:
|
|
wsize = 4;
|
|
break;
|
|
case I_DQ:
|
|
wsize = 8;
|
|
break;
|
|
case I_DT:
|
|
wsize = 10;
|
|
break;
|
|
case I_DO:
|
|
wsize = 16;
|
|
break;
|
|
case I_DY:
|
|
wsize = 32;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (wsize) {
|
|
extop *e;
|
|
int32_t t = instruction->times;
|
|
if (t < 0)
|
|
errfunc(ERR_PANIC,
|
|
"instruction->times < 0 (%ld) in assemble()", t);
|
|
|
|
while (t--) { /* repeat TIMES times */
|
|
list_for_each(e, instruction->eops) {
|
|
if (e->type == EOT_DB_NUMBER) {
|
|
if (wsize == 1) {
|
|
if (e->segment != NO_SEG)
|
|
errfunc(ERR_NONFATAL,
|
|
"one-byte relocation attempted");
|
|
else {
|
|
uint8_t out_byte = e->offset;
|
|
out(offset, segment, &out_byte,
|
|
OUT_RAWDATA, 1, NO_SEG, NO_SEG);
|
|
}
|
|
} else if (wsize > 8) {
|
|
errfunc(ERR_NONFATAL,
|
|
"integer supplied to a DT, DO or DY"
|
|
" instruction");
|
|
} else
|
|
out(offset, segment, &e->offset,
|
|
OUT_ADDRESS, wsize, e->segment, e->wrt);
|
|
offset += wsize;
|
|
} else if (e->type == EOT_DB_STRING ||
|
|
e->type == EOT_DB_STRING_FREE) {
|
|
int align;
|
|
|
|
out(offset, segment, e->stringval,
|
|
OUT_RAWDATA, e->stringlen, NO_SEG, NO_SEG);
|
|
align = e->stringlen % wsize;
|
|
|
|
if (align) {
|
|
align = wsize - align;
|
|
out(offset, segment, zero_buffer,
|
|
OUT_RAWDATA, align, NO_SEG, NO_SEG);
|
|
}
|
|
offset += e->stringlen + align;
|
|
}
|
|
}
|
|
if (t > 0 && t == instruction->times - 1) {
|
|
/*
|
|
* Dummy call to list->output to give the offset to the
|
|
* listing module.
|
|
*/
|
|
list->output(offset, NULL, OUT_RAWDATA, 0);
|
|
list->uplevel(LIST_TIMES);
|
|
}
|
|
}
|
|
if (instruction->times > 1)
|
|
list->downlevel(LIST_TIMES);
|
|
return offset - start;
|
|
}
|
|
|
|
if (instruction->opcode == I_INCBIN) {
|
|
const char *fname = instruction->eops->stringval;
|
|
FILE *fp;
|
|
|
|
fp = fopen(fname, "rb");
|
|
if (!fp) {
|
|
error(ERR_NONFATAL, "`incbin': unable to open file `%s'",
|
|
fname);
|
|
} else if (fseek(fp, 0L, SEEK_END) < 0) {
|
|
error(ERR_NONFATAL, "`incbin': unable to seek on file `%s'",
|
|
fname);
|
|
} else {
|
|
static char buf[4096];
|
|
size_t t = instruction->times;
|
|
size_t base = 0;
|
|
size_t len;
|
|
|
|
len = ftell(fp);
|
|
if (instruction->eops->next) {
|
|
base = instruction->eops->next->offset;
|
|
len -= base;
|
|
if (instruction->eops->next->next &&
|
|
len > (size_t)instruction->eops->next->next->offset)
|
|
len = (size_t)instruction->eops->next->next->offset;
|
|
}
|
|
/*
|
|
* Dummy call to list->output to give the offset to the
|
|
* listing module.
|
|
*/
|
|
list->output(offset, NULL, OUT_RAWDATA, 0);
|
|
list->uplevel(LIST_INCBIN);
|
|
while (t--) {
|
|
size_t l;
|
|
|
|
fseek(fp, base, SEEK_SET);
|
|
l = len;
|
|
while (l > 0) {
|
|
int32_t m;
|
|
m = fread(buf, 1, l > sizeof(buf) ? sizeof(buf) : l, fp);
|
|
if (!m) {
|
|
/*
|
|
* This shouldn't happen unless the file
|
|
* actually changes while we are reading
|
|
* it.
|
|
*/
|
|
error(ERR_NONFATAL,
|
|
"`incbin': unexpected EOF while"
|
|
" reading file `%s'", fname);
|
|
t = 0; /* Try to exit cleanly */
|
|
break;
|
|
}
|
|
out(offset, segment, buf, OUT_RAWDATA, m,
|
|
NO_SEG, NO_SEG);
|
|
l -= m;
|
|
}
|
|
}
|
|
list->downlevel(LIST_INCBIN);
|
|
if (instruction->times > 1) {
|
|
/*
|
|
* Dummy call to list->output to give the offset to the
|
|
* listing module.
|
|
*/
|
|
list->output(offset, NULL, OUT_RAWDATA, 0);
|
|
list->uplevel(LIST_TIMES);
|
|
list->downlevel(LIST_TIMES);
|
|
}
|
|
fclose(fp);
|
|
return instruction->times * len;
|
|
}
|
|
return 0; /* if we're here, there's an error */
|
|
}
|
|
|
|
/* Check to see if we need an address-size prefix */
|
|
add_asp(instruction, bits);
|
|
|
|
m = find_match(&temp, instruction, segment, offset, bits);
|
|
|
|
if (m == MOK_GOOD) {
|
|
/* Matches! */
|
|
int64_t insn_size = calcsize(segment, offset, bits,
|
|
instruction, temp->code);
|
|
itimes = instruction->times;
|
|
if (insn_size < 0) /* shouldn't be, on pass two */
|
|
error(ERR_PANIC, "errors made it through from pass one");
|
|
else
|
|
while (itimes--) {
|
|
for (j = 0; j < MAXPREFIX; j++) {
|
|
uint8_t c = 0;
|
|
switch (instruction->prefixes[j]) {
|
|
case P_WAIT:
|
|
c = 0x9B;
|
|
break;
|
|
case P_LOCK:
|
|
c = 0xF0;
|
|
break;
|
|
case P_REPNE:
|
|
case P_REPNZ:
|
|
c = 0xF2;
|
|
break;
|
|
case P_REPE:
|
|
case P_REPZ:
|
|
case P_REP:
|
|
c = 0xF3;
|
|
break;
|
|
case R_CS:
|
|
if (bits == 64) {
|
|
error(ERR_WARNING | ERR_PASS2,
|
|
"cs segment base generated, but will be ignored in 64-bit mode");
|
|
}
|
|
c = 0x2E;
|
|
break;
|
|
case R_DS:
|
|
if (bits == 64) {
|
|
error(ERR_WARNING | ERR_PASS2,
|
|
"ds segment base generated, but will be ignored in 64-bit mode");
|
|
}
|
|
c = 0x3E;
|
|
break;
|
|
case R_ES:
|
|
if (bits == 64) {
|
|
error(ERR_WARNING | ERR_PASS2,
|
|
"es segment base generated, but will be ignored in 64-bit mode");
|
|
}
|
|
c = 0x26;
|
|
break;
|
|
case R_FS:
|
|
c = 0x64;
|
|
break;
|
|
case R_GS:
|
|
c = 0x65;
|
|
break;
|
|
case R_SS:
|
|
if (bits == 64) {
|
|
error(ERR_WARNING | ERR_PASS2,
|
|
"ss segment base generated, but will be ignored in 64-bit mode");
|
|
}
|
|
c = 0x36;
|
|
break;
|
|
case R_SEGR6:
|
|
case R_SEGR7:
|
|
error(ERR_NONFATAL,
|
|
"segr6 and segr7 cannot be used as prefixes");
|
|
break;
|
|
case P_A16:
|
|
if (bits == 64) {
|
|
error(ERR_NONFATAL,
|
|
"16-bit addressing is not supported "
|
|
"in 64-bit mode");
|
|
} else if (bits != 16)
|
|
c = 0x67;
|
|
break;
|
|
case P_A32:
|
|
if (bits != 32)
|
|
c = 0x67;
|
|
break;
|
|
case P_A64:
|
|
if (bits != 64) {
|
|
error(ERR_NONFATAL,
|
|
"64-bit addressing is only supported "
|
|
"in 64-bit mode");
|
|
}
|
|
break;
|
|
case P_ASP:
|
|
c = 0x67;
|
|
break;
|
|
case P_O16:
|
|
if (bits != 16)
|
|
c = 0x66;
|
|
break;
|
|
case P_O32:
|
|
if (bits == 16)
|
|
c = 0x66;
|
|
break;
|
|
case P_O64:
|
|
/* REX.W */
|
|
break;
|
|
case P_OSP:
|
|
c = 0x66;
|
|
break;
|
|
case P_none:
|
|
break;
|
|
default:
|
|
error(ERR_PANIC, "invalid instruction prefix");
|
|
}
|
|
if (c != 0) {
|
|
out(offset, segment, &c, OUT_RAWDATA, 1,
|
|
NO_SEG, NO_SEG);
|
|
offset++;
|
|
}
|
|
}
|
|
insn_end = offset + insn_size;
|
|
gencode(segment, offset, bits, instruction,
|
|
temp, insn_end);
|
|
offset += insn_size;
|
|
if (itimes > 0 && itimes == instruction->times - 1) {
|
|
/*
|
|
* Dummy call to list->output to give the offset to the
|
|
* listing module.
|
|
*/
|
|
list->output(offset, NULL, OUT_RAWDATA, 0);
|
|
list->uplevel(LIST_TIMES);
|
|
}
|
|
}
|
|
if (instruction->times > 1)
|
|
list->downlevel(LIST_TIMES);
|
|
return offset - start;
|
|
} else {
|
|
/* No match */
|
|
switch (m) {
|
|
case MERR_OPSIZEMISSING:
|
|
error(ERR_NONFATAL, "operation size not specified");
|
|
break;
|
|
case MERR_OPSIZEMISMATCH:
|
|
error(ERR_NONFATAL, "mismatch in operand sizes");
|
|
break;
|
|
case MERR_BADCPU:
|
|
error(ERR_NONFATAL, "no instruction for this cpu level");
|
|
break;
|
|
case MERR_BADMODE:
|
|
error(ERR_NONFATAL, "instruction not supported in %d-bit mode",
|
|
bits);
|
|
break;
|
|
default:
|
|
error(ERR_NONFATAL,
|
|
"invalid combination of opcode and operands");
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int64_t insn_size(int32_t segment, int64_t offset, int bits, uint32_t cp,
|
|
insn * instruction, efunc error)
|
|
{
|
|
const struct itemplate *temp;
|
|
enum match_result m;
|
|
|
|
errfunc = error; /* to pass to other functions */
|
|
cpu = cp;
|
|
|
|
if (instruction->opcode == -1)
|
|
return 0;
|
|
|
|
if (instruction->opcode == I_DB || instruction->opcode == I_DW ||
|
|
instruction->opcode == I_DD || instruction->opcode == I_DQ ||
|
|
instruction->opcode == I_DT || instruction->opcode == I_DO ||
|
|
instruction->opcode == I_DY) {
|
|
extop *e;
|
|
int32_t isize, osize, wsize = 0; /* placate gcc */
|
|
|
|
isize = 0;
|
|
switch (instruction->opcode) {
|
|
case I_DB:
|
|
wsize = 1;
|
|
break;
|
|
case I_DW:
|
|
wsize = 2;
|
|
break;
|
|
case I_DD:
|
|
wsize = 4;
|
|
break;
|
|
case I_DQ:
|
|
wsize = 8;
|
|
break;
|
|
case I_DT:
|
|
wsize = 10;
|
|
break;
|
|
case I_DO:
|
|
wsize = 16;
|
|
break;
|
|
case I_DY:
|
|
wsize = 32;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
list_for_each(e, instruction->eops) {
|
|
int32_t align;
|
|
|
|
osize = 0;
|
|
if (e->type == EOT_DB_NUMBER)
|
|
osize = 1;
|
|
else if (e->type == EOT_DB_STRING ||
|
|
e->type == EOT_DB_STRING_FREE)
|
|
osize = e->stringlen;
|
|
|
|
align = (-osize) % wsize;
|
|
if (align < 0)
|
|
align += wsize;
|
|
isize += osize + align;
|
|
}
|
|
return isize * instruction->times;
|
|
}
|
|
|
|
if (instruction->opcode == I_INCBIN) {
|
|
const char *fname = instruction->eops->stringval;
|
|
FILE *fp;
|
|
size_t len;
|
|
|
|
fp = fopen(fname, "rb");
|
|
if (!fp)
|
|
error(ERR_NONFATAL, "`incbin': unable to open file `%s'",
|
|
fname);
|
|
else if (fseek(fp, 0L, SEEK_END) < 0)
|
|
error(ERR_NONFATAL, "`incbin': unable to seek on file `%s'",
|
|
fname);
|
|
else {
|
|
len = ftell(fp);
|
|
fclose(fp);
|
|
if (instruction->eops->next) {
|
|
len -= instruction->eops->next->offset;
|
|
if (instruction->eops->next->next &&
|
|
len > (size_t)instruction->eops->next->next->offset) {
|
|
len = (size_t)instruction->eops->next->next->offset;
|
|
}
|
|
}
|
|
return instruction->times * len;
|
|
}
|
|
return 0; /* if we're here, there's an error */
|
|
}
|
|
|
|
/* Check to see if we need an address-size prefix */
|
|
add_asp(instruction, bits);
|
|
|
|
m = find_match(&temp, instruction, segment, offset, bits);
|
|
if (m == MOK_GOOD) {
|
|
/* we've matched an instruction. */
|
|
int64_t isize;
|
|
const uint8_t *codes = temp->code;
|
|
int j;
|
|
|
|
isize = calcsize(segment, offset, bits, instruction, codes);
|
|
if (isize < 0)
|
|
return -1;
|
|
for (j = 0; j < MAXPREFIX; j++) {
|
|
switch (instruction->prefixes[j]) {
|
|
case P_A16:
|
|
if (bits != 16)
|
|
isize++;
|
|
break;
|
|
case P_A32:
|
|
if (bits != 32)
|
|
isize++;
|
|
break;
|
|
case P_O16:
|
|
if (bits != 16)
|
|
isize++;
|
|
break;
|
|
case P_O32:
|
|
if (bits == 16)
|
|
isize++;
|
|
break;
|
|
case P_A64:
|
|
case P_O64:
|
|
case P_none:
|
|
break;
|
|
default:
|
|
isize++;
|
|
break;
|
|
}
|
|
}
|
|
return isize * instruction->times;
|
|
} else {
|
|
return -1; /* didn't match any instruction */
|
|
}
|
|
}
|
|
|
|
static bool possible_sbyte(operand *o)
|
|
{
|
|
return o->wrt == NO_SEG && o->segment == NO_SEG &&
|
|
!(o->opflags & OPFLAG_UNKNOWN) &&
|
|
optimizing >= 0 && !(o->type & STRICT);
|
|
}
|
|
|
|
/* check that opn[op] is a signed byte of size 16 or 32 */
|
|
static bool is_sbyte16(operand *o)
|
|
{
|
|
int16_t v;
|
|
|
|
if (!possible_sbyte(o))
|
|
return false;
|
|
|
|
v = o->offset;
|
|
return v >= -128 && v <= 127;
|
|
}
|
|
|
|
static bool is_sbyte32(operand *o)
|
|
{
|
|
int32_t v;
|
|
|
|
if (!possible_sbyte(o))
|
|
return false;
|
|
|
|
v = o->offset;
|
|
return v >= -128 && v <= 127;
|
|
}
|
|
|
|
/* Common construct */
|
|
#define case4(x) case (x): case (x)+1: case (x)+2: case (x)+3
|
|
|
|
static int64_t calcsize(int32_t segment, int64_t offset, int bits,
|
|
insn * ins, const uint8_t *codes)
|
|
{
|
|
int64_t length = 0;
|
|
uint8_t c;
|
|
int rex_mask = ~0;
|
|
int op1, op2;
|
|
struct operand *opx;
|
|
uint8_t opex = 0;
|
|
|
|
ins->rex = 0; /* Ensure REX is reset */
|
|
|
|
if (ins->prefixes[PPS_OSIZE] == P_O64)
|
|
ins->rex |= REX_W;
|
|
|
|
(void)segment; /* Don't warn that this parameter is unused */
|
|
(void)offset; /* Don't warn that this parameter is unused */
|
|
|
|
while (*codes) {
|
|
c = *codes++;
|
|
op1 = (c & 3) + ((opex & 1) << 2);
|
|
op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
|
|
opx = &ins->oprs[op1];
|
|
opex = 0; /* For the next iteration */
|
|
|
|
switch (c) {
|
|
case 01:
|
|
case 02:
|
|
case 03:
|
|
case 04:
|
|
codes += c, length += c;
|
|
break;
|
|
|
|
case 05:
|
|
case 06:
|
|
case 07:
|
|
opex = c;
|
|
break;
|
|
|
|
case4(010):
|
|
ins->rex |=
|
|
op_rexflags(opx, REX_B|REX_H|REX_P|REX_W);
|
|
codes++, length++;
|
|
break;
|
|
|
|
case4(014):
|
|
case4(020):
|
|
case4(024):
|
|
length++;
|
|
break;
|
|
|
|
case4(030):
|
|
length += 2;
|
|
break;
|
|
|
|
case4(034):
|
|
if (opx->type & (BITS16 | BITS32 | BITS64))
|
|
length += (opx->type & BITS16) ? 2 : 4;
|
|
else
|
|
length += (bits == 16) ? 2 : 4;
|
|
break;
|
|
|
|
case4(040):
|
|
length += 4;
|
|
break;
|
|
|
|
case4(044):
|
|
length += ins->addr_size >> 3;
|
|
break;
|
|
|
|
case4(050):
|
|
length++;
|
|
break;
|
|
|
|
case4(054):
|
|
length += 8; /* MOV reg64/imm */
|
|
break;
|
|
|
|
case4(060):
|
|
length += 2;
|
|
break;
|
|
|
|
case4(064):
|
|
if (opx->type & (BITS16 | BITS32 | BITS64))
|
|
length += (opx->type & BITS16) ? 2 : 4;
|
|
else
|
|
length += (bits == 16) ? 2 : 4;
|
|
break;
|
|
|
|
case4(070):
|
|
length += 4;
|
|
break;
|
|
|
|
case4(074):
|
|
length += 2;
|
|
break;
|
|
|
|
case4(0140):
|
|
length += is_sbyte16(opx) ? 1 : 2;
|
|
break;
|
|
|
|
case4(0144):
|
|
codes++;
|
|
length++;
|
|
break;
|
|
|
|
case4(0150):
|
|
length += is_sbyte32(opx) ? 1 : 4;
|
|
break;
|
|
|
|
case4(0154):
|
|
codes++;
|
|
length++;
|
|
break;
|
|
|
|
case4(0160):
|
|
length++;
|
|
ins->rex |= REX_D;
|
|
ins->drexdst = regval(opx);
|
|
break;
|
|
|
|
case4(0164):
|
|
length++;
|
|
ins->rex |= REX_D|REX_OC;
|
|
ins->drexdst = regval(opx);
|
|
break;
|
|
|
|
case 0171:
|
|
break;
|
|
|
|
case 0172:
|
|
case 0173:
|
|
case 0174:
|
|
codes++;
|
|
length++;
|
|
break;
|
|
|
|
case4(0250):
|
|
length += is_sbyte32(opx) ? 1 : 4;
|
|
break;
|
|
|
|
case4(0254):
|
|
length += 4;
|
|
break;
|
|
|
|
case4(0260):
|
|
ins->rex |= REX_V;
|
|
ins->drexdst = regval(opx);
|
|
ins->vex_cm = *codes++;
|
|
ins->vex_wlp = *codes++;
|
|
break;
|
|
|
|
case 0270:
|
|
ins->rex |= REX_V;
|
|
ins->drexdst = 0;
|
|
ins->vex_cm = *codes++;
|
|
ins->vex_wlp = *codes++;
|
|
break;
|
|
|
|
case4(0274):
|
|
length++;
|
|
break;
|
|
|
|
case4(0300):
|
|
break;
|
|
|
|
case 0310:
|
|
if (bits == 64)
|
|
return -1;
|
|
length += (bits != 16) && !has_prefix(ins, PPS_ASIZE, P_A16);
|
|
break;
|
|
|
|
case 0311:
|
|
length += (bits != 32) && !has_prefix(ins, PPS_ASIZE, P_A32);
|
|
break;
|
|
|
|
case 0312:
|
|
break;
|
|
|
|
case 0313:
|
|
if (bits != 64 || has_prefix(ins, PPS_ASIZE, P_A16) ||
|
|
has_prefix(ins, PPS_ASIZE, P_A32))
|
|
return -1;
|
|
break;
|
|
|
|
case4(0314):
|
|
break;
|
|
|
|
case 0320:
|
|
length += (bits != 16);
|
|
break;
|
|
|
|
case 0321:
|
|
length += (bits == 16);
|
|
break;
|
|
|
|
case 0322:
|
|
break;
|
|
|
|
case 0323:
|
|
rex_mask &= ~REX_W;
|
|
break;
|
|
|
|
case 0324:
|
|
ins->rex |= REX_W;
|
|
break;
|
|
|
|
case 0325:
|
|
ins->rex |= REX_NH;
|
|
break;
|
|
|
|
case 0330:
|
|
codes++, length++;
|
|
break;
|
|
|
|
case 0331:
|
|
break;
|
|
|
|
case 0332:
|
|
case 0333:
|
|
length++;
|
|
break;
|
|
|
|
case 0334:
|
|
ins->rex |= REX_L;
|
|
break;
|
|
|
|
case 0335:
|
|
break;
|
|
|
|
case 0336:
|
|
if (!ins->prefixes[PPS_LREP])
|
|
ins->prefixes[PPS_LREP] = P_REP;
|
|
break;
|
|
|
|
case 0337:
|
|
if (!ins->prefixes[PPS_LREP])
|
|
ins->prefixes[PPS_LREP] = P_REPNE;
|
|
break;
|
|
|
|
case 0340:
|
|
if (ins->oprs[0].segment != NO_SEG)
|
|
errfunc(ERR_NONFATAL, "attempt to reserve non-constant"
|
|
" quantity of BSS space");
|
|
else
|
|
length += ins->oprs[0].offset;
|
|
break;
|
|
|
|
case 0341:
|
|
if (!ins->prefixes[PPS_WAIT])
|
|
ins->prefixes[PPS_WAIT] = P_WAIT;
|
|
break;
|
|
|
|
case4(0344):
|
|
length++;
|
|
break;
|
|
|
|
case 0360:
|
|
break;
|
|
|
|
case 0361:
|
|
case 0362:
|
|
case 0363:
|
|
length++;
|
|
break;
|
|
|
|
case 0364:
|
|
case 0365:
|
|
break;
|
|
|
|
case 0366:
|
|
case 0367:
|
|
length++;
|
|
break;
|
|
|
|
case 0370:
|
|
case 0371:
|
|
case 0372:
|
|
break;
|
|
|
|
case 0373:
|
|
length++;
|
|
break;
|
|
|
|
case4(0100):
|
|
case4(0110):
|
|
case4(0120):
|
|
case4(0130):
|
|
case4(0200):
|
|
case4(0204):
|
|
case4(0210):
|
|
case4(0214):
|
|
case4(0220):
|
|
case4(0224):
|
|
case4(0230):
|
|
case4(0234):
|
|
{
|
|
ea ea_data;
|
|
int rfield;
|
|
int32_t rflags;
|
|
struct operand *opy = &ins->oprs[op2];
|
|
|
|
ea_data.rex = 0; /* Ensure ea.REX is initially 0 */
|
|
|
|
if (c <= 0177) {
|
|
/* pick rfield from operand b (opx) */
|
|
rflags = regflag(opx);
|
|
rfield = nasm_regvals[opx->basereg];
|
|
} else {
|
|
rflags = 0;
|
|
rfield = c & 7;
|
|
}
|
|
if (!process_ea(opy, &ea_data, bits,
|
|
ins->addr_size, rfield, rflags)) {
|
|
errfunc(ERR_NONFATAL, "invalid effective address");
|
|
return -1;
|
|
} else {
|
|
ins->rex |= ea_data.rex;
|
|
length += ea_data.size;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
errfunc(ERR_PANIC, "internal instruction table corrupt"
|
|
": instruction code \\%o (0x%02X) given", c, c);
|
|
break;
|
|
}
|
|
}
|
|
|
|
ins->rex &= rex_mask;
|
|
|
|
if (ins->rex & REX_NH) {
|
|
if (ins->rex & REX_H) {
|
|
errfunc(ERR_NONFATAL, "instruction cannot use high registers");
|
|
return -1;
|
|
}
|
|
ins->rex &= ~REX_P; /* Don't force REX prefix due to high reg */
|
|
}
|
|
|
|
if (ins->rex & REX_V) {
|
|
int bad32 = REX_R|REX_W|REX_X|REX_B;
|
|
|
|
if (ins->rex & REX_H) {
|
|
errfunc(ERR_NONFATAL, "cannot use high register in vex instruction");
|
|
return -1;
|
|
}
|
|
switch (ins->vex_wlp & 030) {
|
|
case 000:
|
|
case 020:
|
|
ins->rex &= ~REX_W;
|
|
break;
|
|
case 010:
|
|
ins->rex |= REX_W;
|
|
bad32 &= ~REX_W;
|
|
break;
|
|
case 030:
|
|
/* Follow REX_W */
|
|
break;
|
|
}
|
|
|
|
if (bits != 64 && ((ins->rex & bad32) || ins->drexdst > 7)) {
|
|
errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
|
|
return -1;
|
|
}
|
|
if (ins->vex_cm != 1 || (ins->rex & (REX_W|REX_R|REX_B)))
|
|
length += 3;
|
|
else
|
|
length += 2;
|
|
} else if (ins->rex & REX_D) {
|
|
if (ins->rex & REX_H) {
|
|
errfunc(ERR_NONFATAL, "cannot use high register in drex instruction");
|
|
return -1;
|
|
}
|
|
if (bits != 64 && ((ins->rex & (REX_R|REX_W|REX_X|REX_B)) ||
|
|
ins->drexdst > 7)) {
|
|
errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
|
|
return -1;
|
|
}
|
|
length++;
|
|
} else if (ins->rex & REX_REAL) {
|
|
if (ins->rex & REX_H) {
|
|
errfunc(ERR_NONFATAL, "cannot use high register in rex instruction");
|
|
return -1;
|
|
} else if (bits == 64) {
|
|
length++;
|
|
} else if ((ins->rex & REX_L) &&
|
|
!(ins->rex & (REX_P|REX_W|REX_X|REX_B)) &&
|
|
cpu >= IF_X86_64) {
|
|
/* LOCK-as-REX.R */
|
|
assert_no_prefix(ins, PPS_LREP);
|
|
length++;
|
|
} else {
|
|
errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
#define EMIT_REX() \
|
|
if (!(ins->rex & (REX_D|REX_V)) && (ins->rex & REX_REAL) && (bits == 64)) { \
|
|
ins->rex = (ins->rex & REX_REAL)|REX_P; \
|
|
out(offset, segment, &ins->rex, OUT_RAWDATA, 1, NO_SEG, NO_SEG); \
|
|
ins->rex = 0; \
|
|
offset += 1; \
|
|
}
|
|
|
|
static void gencode(int32_t segment, int64_t offset, int bits,
|
|
insn * ins, const struct itemplate *temp,
|
|
int64_t insn_end)
|
|
{
|
|
static char condval[] = { /* conditional opcodes */
|
|
0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xF, 0xD, 0xC, 0xE, 0x6, 0x2,
|
|
0x3, 0x7, 0x3, 0x5, 0xE, 0xC, 0xD, 0xF, 0x1, 0xB, 0x9, 0x5,
|
|
0x0, 0xA, 0xA, 0xB, 0x8, 0x4
|
|
};
|
|
uint8_t c;
|
|
uint8_t bytes[4];
|
|
int64_t size;
|
|
int64_t data;
|
|
int op1, op2;
|
|
struct operand *opx;
|
|
const uint8_t *codes = temp->code;
|
|
uint8_t opex = 0;
|
|
|
|
while (*codes) {
|
|
c = *codes++;
|
|
op1 = (c & 3) + ((opex & 1) << 2);
|
|
op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
|
|
opx = &ins->oprs[op1];
|
|
opex = 0; /* For the next iteration */
|
|
|
|
switch (c) {
|
|
case 01:
|
|
case 02:
|
|
case 03:
|
|
case 04:
|
|
EMIT_REX();
|
|
out(offset, segment, codes, OUT_RAWDATA, c, NO_SEG, NO_SEG);
|
|
codes += c;
|
|
offset += c;
|
|
break;
|
|
|
|
case 05:
|
|
case 06:
|
|
case 07:
|
|
opex = c;
|
|
break;
|
|
|
|
case4(010):
|
|
EMIT_REX();
|
|
bytes[0] = *codes++ + (regval(opx) & 7);
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
|
|
offset += 1;
|
|
break;
|
|
|
|
case4(014):
|
|
/* The test for BITS8 and SBYTE here is intended to avoid
|
|
warning on optimizer actions due to SBYTE, while still
|
|
warn on explicit BYTE directives. Also warn, obviously,
|
|
if the optimizer isn't enabled. */
|
|
if (((opx->type & BITS8) ||
|
|
!(opx->type & temp->opd[op1] & BYTENESS)) &&
|
|
(opx->offset < -128 || opx->offset > 127)) {
|
|
errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
|
|
"signed byte value exceeds bounds");
|
|
}
|
|
if (opx->segment != NO_SEG) {
|
|
data = opx->offset;
|
|
out(offset, segment, &data, OUT_ADDRESS, 1,
|
|
opx->segment, opx->wrt);
|
|
} else {
|
|
bytes[0] = opx->offset;
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
|
|
NO_SEG);
|
|
}
|
|
offset += 1;
|
|
break;
|
|
|
|
case4(020):
|
|
if (opx->offset < -256 || opx->offset > 255) {
|
|
errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
|
|
"byte value exceeds bounds");
|
|
}
|
|
if (opx->segment != NO_SEG) {
|
|
data = opx->offset;
|
|
out(offset, segment, &data, OUT_ADDRESS, 1,
|
|
opx->segment, opx->wrt);
|
|
} else {
|
|
bytes[0] = opx->offset;
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
|
|
NO_SEG);
|
|
}
|
|
offset += 1;
|
|
break;
|
|
|
|
case4(024):
|
|
if (opx->offset < 0 || opx->offset > 255)
|
|
errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
|
|
"unsigned byte value exceeds bounds");
|
|
if (opx->segment != NO_SEG) {
|
|
data = opx->offset;
|
|
out(offset, segment, &data, OUT_ADDRESS, 1,
|
|
opx->segment, opx->wrt);
|
|
} else {
|
|
bytes[0] = opx->offset;
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
|
|
NO_SEG);
|
|
}
|
|
offset += 1;
|
|
break;
|
|
|
|
case4(030):
|
|
warn_overflow(2, opx);
|
|
data = opx->offset;
|
|
out(offset, segment, &data, OUT_ADDRESS, 2,
|
|
opx->segment, opx->wrt);
|
|
offset += 2;
|
|
break;
|
|
|
|
case4(034):
|
|
if (opx->type & (BITS16 | BITS32))
|
|
size = (opx->type & BITS16) ? 2 : 4;
|
|
else
|
|
size = (bits == 16) ? 2 : 4;
|
|
warn_overflow(size, opx);
|
|
data = opx->offset;
|
|
out(offset, segment, &data, OUT_ADDRESS, size,
|
|
opx->segment, opx->wrt);
|
|
offset += size;
|
|
break;
|
|
|
|
case4(040):
|
|
warn_overflow(4, opx);
|
|
data = opx->offset;
|
|
out(offset, segment, &data, OUT_ADDRESS, 4,
|
|
opx->segment, opx->wrt);
|
|
offset += 4;
|
|
break;
|
|
|
|
case4(044):
|
|
data = opx->offset;
|
|
size = ins->addr_size >> 3;
|
|
warn_overflow(size, opx);
|
|
out(offset, segment, &data, OUT_ADDRESS, size,
|
|
opx->segment, opx->wrt);
|
|
offset += size;
|
|
break;
|
|
|
|
case4(050):
|
|
if (opx->segment != segment)
|
|
errfunc(ERR_NONFATAL,
|
|
"short relative jump outside segment");
|
|
data = opx->offset - insn_end;
|
|
if (data > 127 || data < -128)
|
|
errfunc(ERR_NONFATAL, "short jump is out of range");
|
|
bytes[0] = data;
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
|
|
offset += 1;
|
|
break;
|
|
|
|
case4(054):
|
|
data = (int64_t)opx->offset;
|
|
out(offset, segment, &data, OUT_ADDRESS, 8,
|
|
opx->segment, opx->wrt);
|
|
offset += 8;
|
|
break;
|
|
|
|
case4(060):
|
|
if (opx->segment != segment) {
|
|
data = opx->offset;
|
|
out(offset, segment, &data,
|
|
OUT_REL2ADR, insn_end - offset,
|
|
opx->segment, opx->wrt);
|
|
} else {
|
|
data = opx->offset - insn_end;
|
|
out(offset, segment, &data,
|
|
OUT_ADDRESS, 2, NO_SEG, NO_SEG);
|
|
}
|
|
offset += 2;
|
|
break;
|
|
|
|
case4(064):
|
|
if (opx->type & (BITS16 | BITS32 | BITS64))
|
|
size = (opx->type & BITS16) ? 2 : 4;
|
|
else
|
|
size = (bits == 16) ? 2 : 4;
|
|
if (opx->segment != segment) {
|
|
data = opx->offset;
|
|
out(offset, segment, &data,
|
|
size == 2 ? OUT_REL2ADR : OUT_REL4ADR,
|
|
insn_end - offset, opx->segment, opx->wrt);
|
|
} else {
|
|
data = opx->offset - insn_end;
|
|
out(offset, segment, &data,
|
|
OUT_ADDRESS, size, NO_SEG, NO_SEG);
|
|
}
|
|
offset += size;
|
|
break;
|
|
|
|
case4(070):
|
|
if (opx->segment != segment) {
|
|
data = opx->offset;
|
|
out(offset, segment, &data,
|
|
OUT_REL4ADR, insn_end - offset,
|
|
opx->segment, opx->wrt);
|
|
} else {
|
|
data = opx->offset - insn_end;
|
|
out(offset, segment, &data,
|
|
OUT_ADDRESS, 4, NO_SEG, NO_SEG);
|
|
}
|
|
offset += 4;
|
|
break;
|
|
|
|
case4(074):
|
|
if (opx->segment == NO_SEG)
|
|
errfunc(ERR_NONFATAL, "value referenced by FAR is not"
|
|
" relocatable");
|
|
data = 0;
|
|
out(offset, segment, &data, OUT_ADDRESS, 2,
|
|
outfmt->segbase(1 + opx->segment),
|
|
opx->wrt);
|
|
offset += 2;
|
|
break;
|
|
|
|
case4(0140):
|
|
data = opx->offset;
|
|
warn_overflow(2, opx);
|
|
if (is_sbyte16(opx)) {
|
|
bytes[0] = data;
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
|
|
NO_SEG);
|
|
offset++;
|
|
} else {
|
|
out(offset, segment, &data, OUT_ADDRESS, 2,
|
|
opx->segment, opx->wrt);
|
|
offset += 2;
|
|
}
|
|
break;
|
|
|
|
case4(0144):
|
|
EMIT_REX();
|
|
bytes[0] = *codes++;
|
|
if (is_sbyte16(opx))
|
|
bytes[0] |= 2; /* s-bit */
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
|
|
offset++;
|
|
break;
|
|
|
|
case4(0150):
|
|
data = opx->offset;
|
|
warn_overflow(4, opx);
|
|
if (is_sbyte32(opx)) {
|
|
bytes[0] = data;
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
|
|
NO_SEG);
|
|
offset++;
|
|
} else {
|
|
out(offset, segment, &data, OUT_ADDRESS, 4,
|
|
opx->segment, opx->wrt);
|
|
offset += 4;
|
|
}
|
|
break;
|
|
|
|
case4(0154):
|
|
EMIT_REX();
|
|
bytes[0] = *codes++;
|
|
if (is_sbyte32(opx))
|
|
bytes[0] |= 2; /* s-bit */
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
|
|
offset++;
|
|
break;
|
|
|
|
case4(0160):
|
|
case4(0164):
|
|
break;
|
|
|
|
case 0171:
|
|
bytes[0] =
|
|
(ins->drexdst << 4) |
|
|
(ins->rex & REX_OC ? 0x08 : 0) |
|
|
(ins->rex & (REX_R|REX_X|REX_B));
|
|
ins->rex = 0;
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
|
|
offset++;
|
|
break;
|
|
|
|
case 0172:
|
|
c = *codes++;
|
|
opx = &ins->oprs[c >> 3];
|
|
bytes[0] = nasm_regvals[opx->basereg] << 4;
|
|
opx = &ins->oprs[c & 7];
|
|
if (opx->segment != NO_SEG || opx->wrt != NO_SEG) {
|
|
errfunc(ERR_NONFATAL,
|
|
"non-absolute expression not permitted as argument %d",
|
|
c & 7);
|
|
} else {
|
|
if (opx->offset & ~15) {
|
|
errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
|
|
"four-bit argument exceeds bounds");
|
|
}
|
|
bytes[0] |= opx->offset & 15;
|
|
}
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
|
|
offset++;
|
|
break;
|
|
|
|
case 0173:
|
|
c = *codes++;
|
|
opx = &ins->oprs[c >> 4];
|
|
bytes[0] = nasm_regvals[opx->basereg] << 4;
|
|
bytes[0] |= c & 15;
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
|
|
offset++;
|
|
break;
|
|
|
|
case 0174:
|
|
c = *codes++;
|
|
opx = &ins->oprs[c];
|
|
bytes[0] = nasm_regvals[opx->basereg] << 4;
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
|
|
offset++;
|
|
break;
|
|
|
|
case4(0250):
|
|
data = opx->offset;
|
|
if (opx->wrt == NO_SEG && opx->segment == NO_SEG &&
|
|
(int32_t)data != (int64_t)data) {
|
|
errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
|
|
"signed dword immediate exceeds bounds");
|
|
}
|
|
if (is_sbyte32(opx)) {
|
|
bytes[0] = data;
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
|
|
NO_SEG);
|
|
offset++;
|
|
} else {
|
|
out(offset, segment, &data, OUT_ADDRESS, 4,
|
|
opx->segment, opx->wrt);
|
|
offset += 4;
|
|
}
|
|
break;
|
|
|
|
case4(0254):
|
|
data = opx->offset;
|
|
if (opx->wrt == NO_SEG && opx->segment == NO_SEG &&
|
|
(int32_t)data != (int64_t)data) {
|
|
errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
|
|
"signed dword immediate exceeds bounds");
|
|
}
|
|
out(offset, segment, &data, OUT_ADDRESS, 4,
|
|
opx->segment, opx->wrt);
|
|
offset += 4;
|
|
break;
|
|
|
|
case4(0260):
|
|
case 0270:
|
|
codes += 2;
|
|
if (ins->vex_cm != 1 || (ins->rex & (REX_W|REX_X|REX_B))) {
|
|
bytes[0] = (ins->vex_cm >> 6) ? 0x8f : 0xc4;
|
|
bytes[1] = (ins->vex_cm & 31) | ((~ins->rex & 7) << 5);
|
|
bytes[2] = ((ins->rex & REX_W) << (7-3)) |
|
|
((~ins->drexdst & 15)<< 3) | (ins->vex_wlp & 07);
|
|
out(offset, segment, &bytes, OUT_RAWDATA, 3, NO_SEG, NO_SEG);
|
|
offset += 3;
|
|
} else {
|
|
bytes[0] = 0xc5;
|
|
bytes[1] = ((~ins->rex & REX_R) << (7-2)) |
|
|
((~ins->drexdst & 15) << 3) | (ins->vex_wlp & 07);
|
|
out(offset, segment, &bytes, OUT_RAWDATA, 2, NO_SEG, NO_SEG);
|
|
offset += 2;
|
|
}
|
|
break;
|
|
|
|
case4(0274):
|
|
{
|
|
uint64_t uv, um;
|
|
int s;
|
|
|
|
if (ins->rex & REX_W)
|
|
s = 64;
|
|
else if (ins->prefixes[PPS_OSIZE] == P_O16)
|
|
s = 16;
|
|
else if (ins->prefixes[PPS_OSIZE] == P_O32)
|
|
s = 32;
|
|
else
|
|
s = bits;
|
|
|
|
um = (uint64_t)2 << (s-1);
|
|
uv = opx->offset;
|
|
|
|
if (uv > 127 && uv < (uint64_t)-128 &&
|
|
(uv < um-128 || uv > um-1)) {
|
|
errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
|
|
"signed byte value exceeds bounds");
|
|
}
|
|
if (opx->segment != NO_SEG) {
|
|
data = uv;
|
|
out(offset, segment, &data, OUT_ADDRESS, 1,
|
|
opx->segment, opx->wrt);
|
|
} else {
|
|
bytes[0] = uv;
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
|
|
NO_SEG);
|
|
}
|
|
offset += 1;
|
|
break;
|
|
}
|
|
|
|
case4(0300):
|
|
break;
|
|
|
|
case 0310:
|
|
if (bits == 32 && !has_prefix(ins, PPS_ASIZE, P_A16)) {
|
|
*bytes = 0x67;
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
|
|
offset += 1;
|
|
} else
|
|
offset += 0;
|
|
break;
|
|
|
|
case 0311:
|
|
if (bits != 32 && !has_prefix(ins, PPS_ASIZE, P_A32)) {
|
|
*bytes = 0x67;
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
|
|
offset += 1;
|
|
} else
|
|
offset += 0;
|
|
break;
|
|
|
|
case 0312:
|
|
break;
|
|
|
|
case 0313:
|
|
ins->rex = 0;
|
|
break;
|
|
|
|
case4(0314):
|
|
break;
|
|
|
|
case 0320:
|
|
if (bits != 16) {
|
|
*bytes = 0x66;
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
|
|
offset += 1;
|
|
} else
|
|
offset += 0;
|
|
break;
|
|
|
|
case 0321:
|
|
if (bits == 16) {
|
|
*bytes = 0x66;
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
|
|
offset += 1;
|
|
} else
|
|
offset += 0;
|
|
break;
|
|
|
|
case 0322:
|
|
case 0323:
|
|
break;
|
|
|
|
case 0324:
|
|
ins->rex |= REX_W;
|
|
break;
|
|
|
|
case 0325:
|
|
break;
|
|
|
|
case 0330:
|
|
*bytes = *codes++ ^ condval[ins->condition];
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
|
|
offset += 1;
|
|
break;
|
|
|
|
case 0331:
|
|
break;
|
|
|
|
case 0332:
|
|
case 0333:
|
|
*bytes = c - 0332 + 0xF2;
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
|
|
offset += 1;
|
|
break;
|
|
|
|
case 0334:
|
|
if (ins->rex & REX_R) {
|
|
*bytes = 0xF0;
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
|
|
offset += 1;
|
|
}
|
|
ins->rex &= ~(REX_L|REX_R);
|
|
break;
|
|
|
|
case 0335:
|
|
break;
|
|
|
|
case 0336:
|
|
case 0337:
|
|
break;
|
|
|
|
case 0340:
|
|
if (ins->oprs[0].segment != NO_SEG)
|
|
errfunc(ERR_PANIC, "non-constant BSS size in pass two");
|
|
else {
|
|
int64_t size = ins->oprs[0].offset;
|
|
if (size > 0)
|
|
out(offset, segment, NULL,
|
|
OUT_RESERVE, size, NO_SEG, NO_SEG);
|
|
offset += size;
|
|
}
|
|
break;
|
|
|
|
case 0341:
|
|
break;
|
|
|
|
case 0344:
|
|
case 0345:
|
|
bytes[0] = c & 1;
|
|
switch (ins->oprs[0].basereg) {
|
|
case R_CS:
|
|
bytes[0] += 0x0E;
|
|
break;
|
|
case R_DS:
|
|
bytes[0] += 0x1E;
|
|
break;
|
|
case R_ES:
|
|
bytes[0] += 0x06;
|
|
break;
|
|
case R_SS:
|
|
bytes[0] += 0x16;
|
|
break;
|
|
default:
|
|
errfunc(ERR_PANIC,
|
|
"bizarre 8086 segment register received");
|
|
}
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
|
|
offset++;
|
|
break;
|
|
|
|
case 0346:
|
|
case 0347:
|
|
bytes[0] = c & 1;
|
|
switch (ins->oprs[0].basereg) {
|
|
case R_FS:
|
|
bytes[0] += 0xA0;
|
|
break;
|
|
case R_GS:
|
|
bytes[0] += 0xA8;
|
|
break;
|
|
default:
|
|
errfunc(ERR_PANIC,
|
|
"bizarre 386 segment register received");
|
|
}
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
|
|
offset++;
|
|
break;
|
|
|
|
case 0360:
|
|
break;
|
|
|
|
case 0361:
|
|
bytes[0] = 0x66;
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
|
|
offset += 1;
|
|
break;
|
|
|
|
case 0362:
|
|
case 0363:
|
|
bytes[0] = c - 0362 + 0xf2;
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
|
|
offset += 1;
|
|
break;
|
|
|
|
case 0364:
|
|
case 0365:
|
|
break;
|
|
|
|
case 0366:
|
|
case 0367:
|
|
*bytes = c - 0366 + 0x66;
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
|
|
offset += 1;
|
|
break;
|
|
|
|
case 0370:
|
|
case 0371:
|
|
case 0372:
|
|
break;
|
|
|
|
case 0373:
|
|
*bytes = bits == 16 ? 3 : 5;
|
|
out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
|
|
offset += 1;
|
|
break;
|
|
|
|
case4(0100):
|
|
case4(0110):
|
|
case4(0120):
|
|
case4(0130):
|
|
case4(0200):
|
|
case4(0204):
|
|
case4(0210):
|
|
case4(0214):
|
|
case4(0220):
|
|
case4(0224):
|
|
case4(0230):
|
|
case4(0234):
|
|
{
|
|
ea ea_data;
|
|
int rfield;
|
|
int32_t rflags;
|
|
uint8_t *p;
|
|
int32_t s;
|
|
enum out_type type;
|
|
struct operand *opy = &ins->oprs[op2];
|
|
|
|
if (c <= 0177) {
|
|
/* pick rfield from operand b (opx) */
|
|
rflags = regflag(opx);
|
|
rfield = nasm_regvals[opx->basereg];
|
|
} else {
|
|
/* rfield is constant */
|
|
rflags = 0;
|
|
rfield = c & 7;
|
|
}
|
|
|
|
if (!process_ea(opy, &ea_data, bits, ins->addr_size,
|
|
rfield, rflags)) {
|
|
errfunc(ERR_NONFATAL, "invalid effective address");
|
|
}
|
|
|
|
|
|
p = bytes;
|
|
*p++ = ea_data.modrm;
|
|
if (ea_data.sib_present)
|
|
*p++ = ea_data.sib;
|
|
|
|
/* DREX suffixes come between the SIB and the displacement */
|
|
if (ins->rex & REX_D) {
|
|
*p++ = (ins->drexdst << 4) |
|
|
(ins->rex & REX_OC ? 0x08 : 0) |
|
|
(ins->rex & (REX_R|REX_X|REX_B));
|
|
ins->rex = 0;
|
|
}
|
|
|
|
s = p - bytes;
|
|
out(offset, segment, bytes, OUT_RAWDATA, s, NO_SEG, NO_SEG);
|
|
|
|
/*
|
|
* Make sure the address gets the right offset in case
|
|
* the line breaks in the .lst file (BR 1197827)
|
|
*/
|
|
offset += s;
|
|
s = 0;
|
|
|
|
switch (ea_data.bytes) {
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
case 2:
|
|
case 4:
|
|
case 8:
|
|
data = opy->offset;
|
|
warn_overflow(ea_data.bytes, opy);
|
|
s += ea_data.bytes;
|
|
if (ea_data.rip) {
|
|
if (opy->segment == segment) {
|
|
data -= insn_end;
|
|
out(offset, segment, &data, OUT_ADDRESS,
|
|
ea_data.bytes, NO_SEG, NO_SEG);
|
|
} else {
|
|
out(offset, segment, &data, OUT_REL4ADR,
|
|
insn_end - offset, opy->segment, opy->wrt);
|
|
}
|
|
} else {
|
|
type = OUT_ADDRESS;
|
|
out(offset, segment, &data, OUT_ADDRESS,
|
|
ea_data.bytes, opy->segment, opy->wrt);
|
|
}
|
|
break;
|
|
default:
|
|
/* Impossible! */
|
|
errfunc(ERR_PANIC,
|
|
"Invalid amount of bytes (%d) for offset?!",
|
|
ea_data.bytes);
|
|
break;
|
|
}
|
|
offset += s;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
errfunc(ERR_PANIC, "internal instruction table corrupt"
|
|
": instruction code \\%o (0x%02X) given", c, c);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int32_t regflag(const operand * o)
|
|
{
|
|
if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
|
|
errfunc(ERR_PANIC, "invalid operand passed to regflag()");
|
|
}
|
|
return nasm_reg_flags[o->basereg];
|
|
}
|
|
|
|
static int32_t regval(const operand * o)
|
|
{
|
|
if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
|
|
errfunc(ERR_PANIC, "invalid operand passed to regval()");
|
|
}
|
|
return nasm_regvals[o->basereg];
|
|
}
|
|
|
|
static int op_rexflags(const operand * o, int mask)
|
|
{
|
|
int32_t flags;
|
|
int val;
|
|
|
|
if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
|
|
errfunc(ERR_PANIC, "invalid operand passed to op_rexflags()");
|
|
}
|
|
|
|
flags = nasm_reg_flags[o->basereg];
|
|
val = nasm_regvals[o->basereg];
|
|
|
|
return rexflags(val, flags, mask);
|
|
}
|
|
|
|
static int rexflags(int val, int32_t flags, int mask)
|
|
{
|
|
int rex = 0;
|
|
|
|
if (val >= 8)
|
|
rex |= REX_B|REX_X|REX_R;
|
|
if (flags & BITS64)
|
|
rex |= REX_W;
|
|
if (!(REG_HIGH & ~flags)) /* AH, CH, DH, BH */
|
|
rex |= REX_H;
|
|
else if (!(REG8 & ~flags) && val >= 4) /* SPL, BPL, SIL, DIL */
|
|
rex |= REX_P;
|
|
|
|
return rex & mask;
|
|
}
|
|
|
|
static enum match_result find_match(const struct itemplate **tempp,
|
|
insn *instruction,
|
|
int32_t segment, int64_t offset, int bits)
|
|
{
|
|
const struct itemplate *temp;
|
|
enum match_result m, merr;
|
|
int32_t xsizeflags[MAX_OPERANDS];
|
|
bool opsizemissing = false;
|
|
int i;
|
|
|
|
for (i = 0; i < instruction->operands; i++)
|
|
xsizeflags[i] = instruction->oprs[i].type & SIZE_MASK;
|
|
|
|
merr = MERR_INVALOP;
|
|
|
|
for (temp = nasm_instructions[instruction->opcode];
|
|
temp->opcode != I_none; temp++) {
|
|
m = matches(temp, instruction, bits);
|
|
if (m == MOK_JUMP) {
|
|
if (jmp_match(segment, offset, bits, instruction, temp->code))
|
|
m = MOK_GOOD;
|
|
else
|
|
m = MERR_INVALOP;
|
|
} else if (m == MERR_OPSIZEMISSING &&
|
|
(temp->flags & IF_SMASK) != IF_SX) {
|
|
/*
|
|
* Missing operand size and a candidate for fuzzy matching...
|
|
*/
|
|
for (i = 0; i < temp->operands; i++)
|
|
xsizeflags[i] |= temp->opd[i] & SIZE_MASK;
|
|
|
|
opsizemissing = true;
|
|
}
|
|
if (m > merr)
|
|
merr = m;
|
|
if (merr == MOK_GOOD)
|
|
goto done;
|
|
}
|
|
|
|
/* No match, but see if we can get a fuzzy operand size match... */
|
|
if (!opsizemissing)
|
|
goto done;
|
|
|
|
for (i = 0; i < instruction->operands; i++) {
|
|
/* This tests if xsizeflags[i] has more than one bit set */
|
|
if ((xsizeflags[i] & (xsizeflags[i]-1)))
|
|
goto done; /* No luck */
|
|
|
|
instruction->oprs[i].type |= xsizeflags[i]; /* Set the size */
|
|
}
|
|
|
|
/* Try matching again... */
|
|
for (temp = nasm_instructions[instruction->opcode];
|
|
temp->opcode != I_none; temp++) {
|
|
m = matches(temp, instruction, bits);
|
|
if (m == MOK_JUMP) {
|
|
if (jmp_match(segment, offset, bits, instruction, temp->code))
|
|
m = MOK_GOOD;
|
|
else
|
|
m = MERR_INVALOP;
|
|
}
|
|
if (m > merr)
|
|
merr = m;
|
|
if (merr == MOK_GOOD)
|
|
goto done;
|
|
}
|
|
|
|
done:
|
|
*tempp = temp;
|
|
return merr;
|
|
}
|
|
|
|
static enum match_result matches(const struct itemplate *itemp,
|
|
insn *instruction, int bits)
|
|
{
|
|
int i, size[MAX_OPERANDS], asize, oprs;
|
|
bool opsizemissing = false;
|
|
|
|
/*
|
|
* Check the opcode
|
|
*/
|
|
if (itemp->opcode != instruction->opcode)
|
|
return MERR_INVALOP;
|
|
|
|
/*
|
|
* Count the operands
|
|
*/
|
|
if (itemp->operands != instruction->operands)
|
|
return MERR_INVALOP;
|
|
|
|
/*
|
|
* Check that no spurious colons or TOs are present
|
|
*/
|
|
for (i = 0; i < itemp->operands; i++)
|
|
if (instruction->oprs[i].type & ~itemp->opd[i] & (COLON | TO))
|
|
return MERR_INVALOP;
|
|
|
|
/*
|
|
* Process size flags
|
|
*/
|
|
switch (itemp->flags & IF_SMASK) {
|
|
case IF_SB:
|
|
asize = BITS8;
|
|
break;
|
|
case IF_SW:
|
|
asize = BITS16;
|
|
break;
|
|
case IF_SD:
|
|
asize = BITS32;
|
|
break;
|
|
case IF_SQ:
|
|
asize = BITS64;
|
|
break;
|
|
case IF_SO:
|
|
asize = BITS128;
|
|
break;
|
|
case IF_SY:
|
|
asize = BITS256;
|
|
break;
|
|
case IF_SZ:
|
|
switch (bits) {
|
|
case 16:
|
|
asize = BITS16;
|
|
break;
|
|
case 32:
|
|
asize = BITS32;
|
|
break;
|
|
case 64:
|
|
asize = BITS64;
|
|
break;
|
|
default:
|
|
asize = 0;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
asize = 0;
|
|
break;
|
|
}
|
|
|
|
if (itemp->flags & IF_ARMASK) {
|
|
/* S- flags only apply to a specific operand */
|
|
i = ((itemp->flags & IF_ARMASK) >> IF_ARSHFT) - 1;
|
|
memset(size, 0, sizeof size);
|
|
size[i] = asize;
|
|
} else {
|
|
/* S- flags apply to all operands */
|
|
for (i = 0; i < MAX_OPERANDS; i++)
|
|
size[i] = asize;
|
|
}
|
|
|
|
/*
|
|
* Check that the operand flags all match up
|
|
*/
|
|
for (i = 0; i < itemp->operands; i++) {
|
|
int32_t type = instruction->oprs[i].type;
|
|
if (!(type & SIZE_MASK))
|
|
type |= size[i];
|
|
|
|
if (itemp->opd[i] & SAME_AS) {
|
|
int j = itemp->opd[i] & ~SAME_AS;
|
|
if (type != instruction->oprs[j].type ||
|
|
instruction->oprs[i].basereg != instruction->oprs[j].basereg)
|
|
return MERR_INVALOP;
|
|
} else if (itemp->opd[i] & ~type ||
|
|
((itemp->opd[i] & SIZE_MASK) &&
|
|
((itemp->opd[i] ^ type) & SIZE_MASK))) {
|
|
if ((itemp->opd[i] & ~type & ~SIZE_MASK) || (type & SIZE_MASK))
|
|
return MERR_INVALOP;
|
|
else
|
|
opsizemissing = true;
|
|
}
|
|
}
|
|
|
|
if (opsizemissing)
|
|
return MERR_OPSIZEMISSING;
|
|
|
|
/*
|
|
* Check operand sizes
|
|
*/
|
|
if (itemp->flags & (IF_SM | IF_SM2)) {
|
|
oprs = (itemp->flags & IF_SM2 ? 2 : itemp->operands);
|
|
asize = 0;
|
|
for (i = 0; i < oprs; i++) {
|
|
if ((asize = itemp->opd[i] & SIZE_MASK) != 0) {
|
|
int j;
|
|
for (j = 0; j < oprs; j++)
|
|
size[j] = asize;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
oprs = itemp->operands;
|
|
}
|
|
|
|
for (i = 0; i < itemp->operands; i++) {
|
|
if (!(itemp->opd[i] & SIZE_MASK) &&
|
|
(instruction->oprs[i].type & SIZE_MASK & ~size[i]))
|
|
return MERR_OPSIZEMISMATCH;
|
|
}
|
|
|
|
/*
|
|
* Check template is okay at the set cpu level
|
|
*/
|
|
if (((itemp->flags & IF_PLEVEL) > cpu))
|
|
return MERR_BADCPU;
|
|
|
|
/*
|
|
* Verify the appropriate long mode flag.
|
|
*/
|
|
if ((itemp->flags & (bits == 64 ? IF_NOLONG : IF_LONG)))
|
|
return MERR_BADMODE;
|
|
|
|
/*
|
|
* Check if special handling needed for Jumps
|
|
*/
|
|
if ((itemp->code[0] & 0374) == 0370)
|
|
return MOK_JUMP;
|
|
|
|
return MOK_GOOD;
|
|
}
|
|
|
|
static ea *process_ea(operand * input, ea * output, int bits,
|
|
int addrbits, int rfield, int32_t rflags)
|
|
{
|
|
bool forw_ref = !!(input->opflags & OPFLAG_UNKNOWN);
|
|
|
|
output->rip = false;
|
|
|
|
/* REX flags for the rfield operand */
|
|
output->rex |= rexflags(rfield, rflags, REX_R|REX_P|REX_W|REX_H);
|
|
|
|
if (!(REGISTER & ~input->type)) { /* register direct */
|
|
int i;
|
|
int32_t f;
|
|
|
|
if (input->basereg < EXPR_REG_START /* Verify as Register */
|
|
|| input->basereg >= REG_ENUM_LIMIT)
|
|
return NULL;
|
|
f = regflag(input);
|
|
i = nasm_regvals[input->basereg];
|
|
|
|
if (REG_EA & ~f)
|
|
return NULL; /* Invalid EA register */
|
|
|
|
output->rex |= op_rexflags(input, REX_B|REX_P|REX_W|REX_H);
|
|
|
|
output->sib_present = false; /* no SIB necessary */
|
|
output->bytes = 0; /* no offset necessary either */
|
|
output->modrm = 0xC0 | ((rfield & 7) << 3) | (i & 7);
|
|
} else { /* it's a memory reference */
|
|
if (input->basereg == -1
|
|
&& (input->indexreg == -1 || input->scale == 0)) {
|
|
/* it's a pure offset */
|
|
if (bits == 64 && (~input->type & IP_REL)) {
|
|
int scale, index, base;
|
|
output->sib_present = true;
|
|
scale = 0;
|
|
index = 4;
|
|
base = 5;
|
|
output->sib = (scale << 6) | (index << 3) | base;
|
|
output->bytes = 4;
|
|
output->modrm = 4 | ((rfield & 7) << 3);
|
|
output->rip = false;
|
|
} else {
|
|
output->sib_present = false;
|
|
output->bytes = (addrbits != 16 ? 4 : 2);
|
|
output->modrm = (addrbits != 16 ? 5 : 6) | ((rfield & 7) << 3);
|
|
output->rip = bits == 64;
|
|
}
|
|
} else { /* it's an indirection */
|
|
int i = input->indexreg, b = input->basereg, s = input->scale;
|
|
int32_t o = input->offset, seg = input->segment;
|
|
int hb = input->hintbase, ht = input->hinttype;
|
|
int t;
|
|
int it, bt;
|
|
int32_t ix, bx; /* register flags */
|
|
|
|
if (s == 0)
|
|
i = -1; /* make this easy, at least */
|
|
|
|
if (i >= EXPR_REG_START && i < REG_ENUM_LIMIT) {
|
|
it = nasm_regvals[i];
|
|
ix = nasm_reg_flags[i];
|
|
} else {
|
|
it = -1;
|
|
ix = 0;
|
|
}
|
|
|
|
if (b >= EXPR_REG_START && b < REG_ENUM_LIMIT) {
|
|
bt = nasm_regvals[b];
|
|
bx = nasm_reg_flags[b];
|
|
} else {
|
|
bt = -1;
|
|
bx = 0;
|
|
}
|
|
|
|
/* check for a 32/64-bit memory reference... */
|
|
if ((ix|bx) & (BITS32|BITS64)) {
|
|
/* it must be a 32/64-bit memory reference. Firstly we have
|
|
* to check that all registers involved are type E/Rxx. */
|
|
int32_t sok = BITS32|BITS64;
|
|
|
|
if (it != -1) {
|
|
if (!(REG64 & ~ix) || !(REG32 & ~ix))
|
|
sok &= ix;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
if (bt != -1) {
|
|
if (REG_GPR & ~bx)
|
|
return NULL; /* Invalid register */
|
|
if (~sok & bx & SIZE_MASK)
|
|
return NULL; /* Invalid size */
|
|
sok &= bx;
|
|
}
|
|
|
|
/* While we're here, ensure the user didn't specify
|
|
WORD or QWORD. */
|
|
if (input->disp_size == 16 || input->disp_size == 64)
|
|
return NULL;
|
|
|
|
if (addrbits == 16 ||
|
|
(addrbits == 32 && !(sok & BITS32)) ||
|
|
(addrbits == 64 && !(sok & BITS64)))
|
|
return NULL;
|
|
|
|
/* now reorganize base/index */
|
|
if (s == 1 && bt != it && bt != -1 && it != -1 &&
|
|
((hb == b && ht == EAH_NOTBASE)
|
|
|| (hb == i && ht == EAH_MAKEBASE))) {
|
|
/* swap if hints say so */
|
|
t = bt, bt = it, it = t;
|
|
t = bx, bx = ix, ix = t;
|
|
}
|
|
if (bt == it) /* convert EAX+2*EAX to 3*EAX */
|
|
bt = -1, bx = 0, s++;
|
|
if (bt == -1 && s == 1 && !(hb == it && ht == EAH_NOTBASE)) {
|
|
/* make single reg base, unless hint */
|
|
bt = it, bx = ix, it = -1, ix = 0;
|
|
}
|
|
if (((s == 2 && it != REG_NUM_ESP
|
|
&& !(input->eaflags & EAF_TIMESTWO)) || s == 3
|
|
|| s == 5 || s == 9) && bt == -1)
|
|
bt = it, bx = ix, s--; /* convert 3*EAX to EAX+2*EAX */
|
|
if (it == -1 && (bt & 7) != REG_NUM_ESP
|
|
&& (input->eaflags & EAF_TIMESTWO))
|
|
it = bt, ix = bx, bt = -1, bx = 0, s = 1;
|
|
/* convert [NOSPLIT EAX] to sib format with 0x0 displacement */
|
|
if (s == 1 && it == REG_NUM_ESP) {
|
|
/* swap ESP into base if scale is 1 */
|
|
t = it, it = bt, bt = t;
|
|
t = ix, ix = bx, bx = t;
|
|
}
|
|
if (it == REG_NUM_ESP
|
|
|| (s != 1 && s != 2 && s != 4 && s != 8 && it != -1))
|
|
return NULL; /* wrong, for various reasons */
|
|
|
|
output->rex |= rexflags(it, ix, REX_X);
|
|
output->rex |= rexflags(bt, bx, REX_B);
|
|
|
|
if (it == -1 && (bt & 7) != REG_NUM_ESP) {
|
|
/* no SIB needed */
|
|
int mod, rm;
|
|
|
|
if (bt == -1) {
|
|
rm = 5;
|
|
mod = 0;
|
|
} else {
|
|
rm = (bt & 7);
|
|
if (rm != REG_NUM_EBP && o == 0 &&
|
|
seg == NO_SEG && !forw_ref &&
|
|
!(input->eaflags &
|
|
(EAF_BYTEOFFS | EAF_WORDOFFS)))
|
|
mod = 0;
|
|
else if (input->eaflags & EAF_BYTEOFFS ||
|
|
(o >= -128 && o <= 127 && seg == NO_SEG
|
|
&& !forw_ref
|
|
&& !(input->eaflags & EAF_WORDOFFS)))
|
|
mod = 1;
|
|
else
|
|
mod = 2;
|
|
}
|
|
|
|
output->sib_present = false;
|
|
output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
|
|
output->modrm = (mod << 6) | ((rfield & 7) << 3) | rm;
|
|
} else {
|
|
/* we need a SIB */
|
|
int mod, scale, index, base;
|
|
|
|
if (it == -1)
|
|
index = 4, s = 1;
|
|
else
|
|
index = (it & 7);
|
|
|
|
switch (s) {
|
|
case 1:
|
|
scale = 0;
|
|
break;
|
|
case 2:
|
|
scale = 1;
|
|
break;
|
|
case 4:
|
|
scale = 2;
|
|
break;
|
|
case 8:
|
|
scale = 3;
|
|
break;
|
|
default: /* then what the smeg is it? */
|
|
return NULL; /* panic */
|
|
}
|
|
|
|
if (bt == -1) {
|
|
base = 5;
|
|
mod = 0;
|
|
} else {
|
|
base = (bt & 7);
|
|
if (base != REG_NUM_EBP && o == 0 &&
|
|
seg == NO_SEG && !forw_ref &&
|
|
!(input->eaflags &
|
|
(EAF_BYTEOFFS | EAF_WORDOFFS)))
|
|
mod = 0;
|
|
else if (input->eaflags & EAF_BYTEOFFS ||
|
|
(o >= -128 && o <= 127 && seg == NO_SEG
|
|
&& !forw_ref
|
|
&& !(input->eaflags & EAF_WORDOFFS)))
|
|
mod = 1;
|
|
else
|
|
mod = 2;
|
|
}
|
|
|
|
output->sib_present = true;
|
|
output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
|
|
output->modrm = (mod << 6) | ((rfield & 7) << 3) | 4;
|
|
output->sib = (scale << 6) | (index << 3) | base;
|
|
}
|
|
} else { /* it's 16-bit */
|
|
int mod, rm;
|
|
|
|
/* check for 64-bit long mode */
|
|
if (addrbits == 64)
|
|
return NULL;
|
|
|
|
/* check all registers are BX, BP, SI or DI */
|
|
if ((b != -1 && b != R_BP && b != R_BX && b != R_SI
|
|
&& b != R_DI) || (i != -1 && i != R_BP && i != R_BX
|
|
&& i != R_SI && i != R_DI))
|
|
return NULL;
|
|
|
|
/* ensure the user didn't specify DWORD/QWORD */
|
|
if (input->disp_size == 32 || input->disp_size == 64)
|
|
return NULL;
|
|
|
|
if (s != 1 && i != -1)
|
|
return NULL; /* no can do, in 16-bit EA */
|
|
if (b == -1 && i != -1) {
|
|
int tmp = b;
|
|
b = i;
|
|
i = tmp;
|
|
} /* swap */
|
|
if ((b == R_SI || b == R_DI) && i != -1) {
|
|
int tmp = b;
|
|
b = i;
|
|
i = tmp;
|
|
}
|
|
/* have BX/BP as base, SI/DI index */
|
|
if (b == i)
|
|
return NULL; /* shouldn't ever happen, in theory */
|
|
if (i != -1 && b != -1 &&
|
|
(i == R_BP || i == R_BX || b == R_SI || b == R_DI))
|
|
return NULL; /* invalid combinations */
|
|
if (b == -1) /* pure offset: handled above */
|
|
return NULL; /* so if it gets to here, panic! */
|
|
|
|
rm = -1;
|
|
if (i != -1)
|
|
switch (i * 256 + b) {
|
|
case R_SI * 256 + R_BX:
|
|
rm = 0;
|
|
break;
|
|
case R_DI * 256 + R_BX:
|
|
rm = 1;
|
|
break;
|
|
case R_SI * 256 + R_BP:
|
|
rm = 2;
|
|
break;
|
|
case R_DI * 256 + R_BP:
|
|
rm = 3;
|
|
break;
|
|
} else
|
|
switch (b) {
|
|
case R_SI:
|
|
rm = 4;
|
|
break;
|
|
case R_DI:
|
|
rm = 5;
|
|
break;
|
|
case R_BP:
|
|
rm = 6;
|
|
break;
|
|
case R_BX:
|
|
rm = 7;
|
|
break;
|
|
}
|
|
if (rm == -1) /* can't happen, in theory */
|
|
return NULL; /* so panic if it does */
|
|
|
|
if (o == 0 && seg == NO_SEG && !forw_ref && rm != 6 &&
|
|
!(input->eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
|
|
mod = 0;
|
|
else if (input->eaflags & EAF_BYTEOFFS ||
|
|
(o >= -128 && o <= 127 && seg == NO_SEG
|
|
&& !forw_ref
|
|
&& !(input->eaflags & EAF_WORDOFFS)))
|
|
mod = 1;
|
|
else
|
|
mod = 2;
|
|
|
|
output->sib_present = false; /* no SIB - it's 16-bit */
|
|
output->bytes = mod; /* bytes of offset needed */
|
|
output->modrm = (mod << 6) | ((rfield & 7) << 3) | rm;
|
|
}
|
|
}
|
|
}
|
|
|
|
output->size = 1 + output->sib_present + output->bytes;
|
|
return output;
|
|
}
|
|
|
|
static void add_asp(insn *ins, int addrbits)
|
|
{
|
|
int j, valid;
|
|
int defdisp;
|
|
|
|
valid = (addrbits == 64) ? 64|32 : 32|16;
|
|
|
|
switch (ins->prefixes[PPS_ASIZE]) {
|
|
case P_A16:
|
|
valid &= 16;
|
|
break;
|
|
case P_A32:
|
|
valid &= 32;
|
|
break;
|
|
case P_A64:
|
|
valid &= 64;
|
|
break;
|
|
case P_ASP:
|
|
valid &= (addrbits == 32) ? 16 : 32;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
for (j = 0; j < ins->operands; j++) {
|
|
if (!(MEMORY & ~ins->oprs[j].type)) {
|
|
int32_t i, b;
|
|
|
|
/* Verify as Register */
|
|
if (ins->oprs[j].indexreg < EXPR_REG_START
|
|
|| ins->oprs[j].indexreg >= REG_ENUM_LIMIT)
|
|
i = 0;
|
|
else
|
|
i = nasm_reg_flags[ins->oprs[j].indexreg];
|
|
|
|
/* Verify as Register */
|
|
if (ins->oprs[j].basereg < EXPR_REG_START
|
|
|| ins->oprs[j].basereg >= REG_ENUM_LIMIT)
|
|
b = 0;
|
|
else
|
|
b = nasm_reg_flags[ins->oprs[j].basereg];
|
|
|
|
if (ins->oprs[j].scale == 0)
|
|
i = 0;
|
|
|
|
if (!i && !b) {
|
|
int ds = ins->oprs[j].disp_size;
|
|
if ((addrbits != 64 && ds > 8) ||
|
|
(addrbits == 64 && ds == 16))
|
|
valid &= ds;
|
|
} else {
|
|
if (!(REG16 & ~b))
|
|
valid &= 16;
|
|
if (!(REG32 & ~b))
|
|
valid &= 32;
|
|
if (!(REG64 & ~b))
|
|
valid &= 64;
|
|
|
|
if (!(REG16 & ~i))
|
|
valid &= 16;
|
|
if (!(REG32 & ~i))
|
|
valid &= 32;
|
|
if (!(REG64 & ~i))
|
|
valid &= 64;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (valid & addrbits) {
|
|
ins->addr_size = addrbits;
|
|
} else if (valid & ((addrbits == 32) ? 16 : 32)) {
|
|
/* Add an address size prefix */
|
|
enum prefixes pref = (addrbits == 32) ? P_A16 : P_A32;
|
|
ins->prefixes[PPS_ASIZE] = pref;
|
|
ins->addr_size = (addrbits == 32) ? 16 : 32;
|
|
} else {
|
|
/* Impossible... */
|
|
errfunc(ERR_NONFATAL, "impossible combination of address sizes");
|
|
ins->addr_size = addrbits; /* Error recovery */
|
|
}
|
|
|
|
defdisp = ins->addr_size == 16 ? 16 : 32;
|
|
|
|
for (j = 0; j < ins->operands; j++) {
|
|
if (!(MEM_OFFS & ~ins->oprs[j].type) &&
|
|
(ins->oprs[j].disp_size ? ins->oprs[j].disp_size : defdisp)
|
|
!= ins->addr_size) {
|
|
/* mem_offs sizes must match the address size; if not,
|
|
strip the MEM_OFFS bit and match only EA instructions */
|
|
ins->oprs[j].type &= ~(MEM_OFFS & ~MEMORY);
|
|
}
|
|
}
|
|
}
|