nasm/nasmlib.c
H. Peter Anvin 76690a12ad NASM 0.96
2002-04-30 20:52:49 +00:00

960 lines
23 KiB
C

/* nasmlib.c library routines for the Netwide Assembler
*
* The Netwide Assembler is copyright (C) 1996 Simon Tatham and
* Julian Hall. All rights reserved. The software is
* redistributable under the licence given in the file "Licence"
* distributed in the NASM archive.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "nasm.h"
#include "nasmlib.h"
static efunc nasm_malloc_error;
#ifdef LOGALLOC
static FILE *logfp;
#endif
void nasm_set_malloc_error (efunc error) {
nasm_malloc_error = error;
#ifdef LOGALLOC
logfp = fopen ("malloc.log", "w");
setvbuf (logfp, NULL, _IOLBF, BUFSIZ);
fprintf (logfp, "null pointer is %p\n", NULL);
#endif
}
#ifdef LOGALLOC
void *nasm_malloc_log (char *file, int line, size_t size)
#else
void *nasm_malloc (size_t size)
#endif
{
void *p = malloc(size);
if (!p)
nasm_malloc_error (ERR_FATAL | ERR_NOFILE, "out of memory");
#ifdef LOGALLOC
else
fprintf(logfp, "%s %d malloc(%ld) returns %p\n",
file, line, (long)size, p);
#endif
return p;
}
#ifdef LOGALLOC
void *nasm_realloc_log (char *file, int line, void *q, size_t size)
#else
void *nasm_realloc (void *q, size_t size)
#endif
{
void *p = q ? realloc(q, size) : malloc(size);
if (!p)
nasm_malloc_error (ERR_FATAL | ERR_NOFILE, "out of memory");
#ifdef LOGALLOC
else if (q)
fprintf(logfp, "%s %d realloc(%p,%ld) returns %p\n",
file, line, q, (long)size, p);
else
fprintf(logfp, "%s %d malloc(%ld) returns %p\n",
file, line, (long)size, p);
#endif
return p;
}
#ifdef LOGALLOC
void nasm_free_log (char *file, int line, void *q)
#else
void nasm_free (void *q)
#endif
{
if (q) {
free (q);
#ifdef LOGALLOC
fprintf(logfp, "%s %d free(%p)\n",
file, line, q);
#endif
}
}
#ifdef LOGALLOC
char *nasm_strdup_log (char *file, int line, char *s)
#else
char *nasm_strdup (char *s)
#endif
{
char *p;
int size = strlen(s)+1;
p = malloc(size);
if (!p)
nasm_malloc_error (ERR_FATAL | ERR_NOFILE, "out of memory");
#ifdef LOGALLOC
else
fprintf(logfp, "%s %d strdup(%ld) returns %p\n",
file, line, (long)size, p);
#endif
strcpy (p, s);
return p;
}
#ifdef LOGALLOC
char *nasm_strndup_log (char *file, int line, char *s, size_t len)
#else
char *nasm_strndup (char *s, size_t len)
#endif
{
char *p;
int size = len+1;
p = malloc(size);
if (!p)
nasm_malloc_error (ERR_FATAL | ERR_NOFILE, "out of memory");
#ifdef LOGALLOC
else
fprintf(logfp, "%s %d strndup(%ld) returns %p\n",
file, line, (long)size, p);
#endif
strncpy (p, s, len);
p[len] = '\0';
return p;
}
int nasm_stricmp (char *s1, char *s2) {
while (*s1 && toupper(*s1) == toupper(*s2))
s1++, s2++;
if (!*s1 && !*s2)
return 0;
else if (toupper(*s1) < toupper(*s2))
return -1;
else
return 1;
}
int nasm_strnicmp (char *s1, char *s2, int n) {
while (n > 0 && *s1 && toupper(*s1) == toupper(*s2))
s1++, s2++, n--;
if ((!*s1 && !*s2) || n==0)
return 0;
else if (toupper(*s1) < toupper(*s2))
return -1;
else
return 1;
}
#define lib_isnumchar(c) ( isalnum(c) || (c) == '$')
#define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
long readnum (char *str, int *error) {
char *r = str, *q;
long radix;
unsigned long result, checklimit;
int warn = FALSE;
*error = FALSE;
while (isspace(*r)) r++; /* find start of number */
q = r;
while (lib_isnumchar(*q)) q++; /* find end of number */
/*
* If it begins 0x, 0X or $, or ends in H, it's in hex. if it
* ends in Q, it's octal. if it ends in B, it's binary.
* Otherwise, it's ordinary decimal.
*/
if (*r=='0' && (r[1]=='x' || r[1]=='X'))
radix = 16, r += 2;
else if (*r=='$')
radix = 16, r++;
else if (q[-1]=='H' || q[-1]=='h')
radix = 16 , q--;
else if (q[-1]=='Q' || q[-1]=='q')
radix = 8 , q--;
else if (q[-1]=='B' || q[-1]=='b')
radix = 2 , q--;
else
radix = 10;
/*
* If this number has been found for us by something other than
* the ordinary scanners, then it might be malformed by having
* nothing between the prefix and the suffix. Check this case
* now.
*/
if (r >= q) {
*error = TRUE;
return 0;
}
/*
* `checklimit' must be 2**32 / radix. We can't do that in
* 32-bit arithmetic, which we're (probably) using, so we
* cheat: since we know that all radices we use are even, we
* can divide 2**31 by radix/2 instead.
*/
checklimit = 0x80000000UL / (radix>>1);
result = 0;
while (*r && r < q) {
if (*r<'0' || (*r>'9' && *r<'A') || numvalue(*r)>=radix) {
*error = TRUE;
return 0;
}
if (result >= checklimit)
warn = TRUE;
result = radix * result + numvalue(*r);
r++;
}
if (warn)
nasm_malloc_error (ERR_WARNING | ERR_PASS1 | ERR_WARN_NOV,
"numeric constant %s does not fit in 32 bits",
str);
return result;
}
static long next_seg;
void seg_init(void) {
next_seg = 0;
}
long seg_alloc(void) {
return (next_seg += 2) - 2;
}
void fwriteshort (int data, FILE *fp) {
fputc ((int) (data & 255), fp);
fputc ((int) ((data >> 8) & 255), fp);
}
void fwritelong (long data, FILE *fp) {
fputc ((int) (data & 255), fp);
fputc ((int) ((data >> 8) & 255), fp);
fputc ((int) ((data >> 16) & 255), fp);
fputc ((int) ((data >> 24) & 255), fp);
}
void standard_extension (char *inname, char *outname, char *extension,
efunc error) {
char *p, *q;
if (*outname) /* file name already exists, */
return; /* so do nothing */
q = inname;
p = outname;
while (*q) *p++ = *q++; /* copy, and find end of string */
*p = '\0'; /* terminate it */
while (p > outname && *--p != '.');/* find final period (or whatever) */
if (*p != '.') while (*p) p++; /* go back to end if none found */
if (!strcmp(p, extension)) { /* is the extension already there? */
if (*extension)
error(ERR_WARNING | ERR_NOFILE,
"file name already ends in `%s': "
"output will be in `nasm.out'",
extension);
else
error(ERR_WARNING | ERR_NOFILE,
"file name already has no extension: "
"output will be in `nasm.out'");
strcpy(outname, "nasm.out");
} else
strcpy(p, extension);
}
#define RAA_BLKSIZE 4096 /* this many longs allocated at once */
#define RAA_LAYERSIZE 1024 /* this many _pointers_ allocated */
typedef struct RAA RAA;
typedef union RAA_UNION RAA_UNION;
typedef struct RAA_LEAF RAA_LEAF;
typedef struct RAA_BRANCH RAA_BRANCH;
struct RAA {
/*
* Number of layers below this one to get to the real data. 0
* means this structure is a leaf, holding RAA_BLKSIZE real
* data items; 1 and above mean it's a branch, holding
* RAA_LAYERSIZE pointers to the next level branch or leaf
* structures.
*/
int layers;
/*
* Number of real data items spanned by one position in the
* `data' array at this level. This number is 1, trivially, for
* a leaf (level 0): for a level 1 branch it should be
* RAA_BLKSIZE, and for a level 2 branch it's
* RAA_LAYERSIZE*RAA_BLKSIZE.
*/
long stepsize;
union RAA_UNION {
struct RAA_LEAF {
long data[RAA_BLKSIZE];
} l;
struct RAA_BRANCH {
struct RAA *data[RAA_LAYERSIZE];
} b;
} u;
};
#define LEAFSIZ (sizeof(RAA)-sizeof(RAA_UNION)+sizeof(RAA_LEAF))
#define BRANCHSIZ (sizeof(RAA)-sizeof(RAA_UNION)+sizeof(RAA_BRANCH))
#define LAYERSIZ(r) ( (r)->layers==0 ? RAA_BLKSIZE : RAA_LAYERSIZE )
static struct RAA *real_raa_init (int layers) {
struct RAA *r;
if (layers == 0) {
r = nasm_malloc (LEAFSIZ);
memset (r->u.l.data, 0, sizeof(r->u.l.data));
r->layers = 0;
r->stepsize = 1L;
} else {
r = nasm_malloc (BRANCHSIZ);
memset (r->u.b.data, 0, sizeof(r->u.b.data));
r->layers = layers;
r->stepsize = RAA_BLKSIZE;
while (--layers)
r->stepsize *= RAA_LAYERSIZE;
}
return r;
}
struct RAA *raa_init (void) {
return real_raa_init (0);
}
void raa_free (struct RAA *r) {
if (r->layers == 0)
nasm_free (r);
else {
struct RAA **p;
for (p = r->u.b.data; p - r->u.b.data < RAA_LAYERSIZE; p++)
if (*p)
raa_free (*p);
}
}
long raa_read (struct RAA *r, long posn) {
if (posn > r->stepsize * LAYERSIZ(r))
return 0L;
while (r->layers > 0) {
ldiv_t l;
l = ldiv (posn, r->stepsize);
r = r->u.b.data[l.quot];
posn = l.rem;
if (!r) /* better check this */
return 0L;
}
return r->u.l.data[posn];
}
struct RAA *raa_write (struct RAA *r, long posn, long value) {
struct RAA *result;
if (posn < 0)
nasm_malloc_error (ERR_PANIC, "negative position in raa_write");
while (r->stepsize * LAYERSIZ(r) < posn) {
/*
* Must go up a layer.
*/
struct RAA *s;
s = nasm_malloc (BRANCHSIZ);
memset (s->u.b.data, 0, sizeof(r->u.b.data));
s->layers = r->layers + 1;
s->stepsize = RAA_LAYERSIZE * r->stepsize;
s->u.b.data[0] = r;
r = s;
}
result = r;
while (r->layers > 0) {
ldiv_t l;
struct RAA **s;
l = ldiv (posn, r->stepsize);
s = &r->u.b.data[l.quot];
if (!*s)
*s = real_raa_init (r->layers - 1);
r = *s;
posn = l.rem;
}
r->u.l.data[posn] = value;
return result;
}
#define SAA_MAXLEN 8192
struct SAA {
/*
* members `end' and `elem_len' are only valid in first link in
* list; `rptr' and `rpos' are used for reading
*/
struct SAA *next, *end, *rptr;
long elem_len, length, posn, start, rpos;
char *data;
};
struct SAA *saa_init (long elem_len) {
struct SAA *s;
if (elem_len > SAA_MAXLEN)
nasm_malloc_error (ERR_PANIC | ERR_NOFILE, "SAA with huge elements");
s = nasm_malloc (sizeof(struct SAA));
s->posn = s->start = 0L;
s->elem_len = elem_len;
s->length = SAA_MAXLEN - (SAA_MAXLEN % elem_len);
s->data = nasm_malloc (s->length);
s->next = NULL;
s->end = s;
return s;
}
void saa_free (struct SAA *s) {
struct SAA *t;
while (s) {
t = s->next;
nasm_free (s->data);
nasm_free (s);
s = t;
}
}
void *saa_wstruct (struct SAA *s) {
void *p;
if (s->end->length - s->end->posn < s->elem_len) {
s->end->next = nasm_malloc (sizeof(struct SAA));
s->end->next->start = s->end->start + s->end->posn;
s->end = s->end->next;
s->end->length = s->length;
s->end->next = NULL;
s->end->posn = 0L;
s->end->data = nasm_malloc (s->length);
}
p = s->end->data + s->end->posn;
s->end->posn += s->elem_len;
return p;
}
void saa_wbytes (struct SAA *s, void *data, long len) {
char *d = data;
while (len > 0) {
long l = s->end->length - s->end->posn;
if (l > len)
l = len;
if (l > 0) {
if (d) {
memcpy (s->end->data + s->end->posn, d, l);
d += l;
} else
memset (s->end->data + s->end->posn, 0, l);
s->end->posn += l;
len -= l;
}
if (len > 0) {
s->end->next = nasm_malloc (sizeof(struct SAA));
s->end->next->start = s->end->start + s->end->posn;
s->end = s->end->next;
s->end->length = s->length;
s->end->next = NULL;
s->end->posn = 0L;
s->end->data = nasm_malloc (s->length);
}
}
}
void saa_rewind (struct SAA *s) {
s->rptr = s;
s->rpos = 0L;
}
void *saa_rstruct (struct SAA *s) {
void *p;
if (!s->rptr)
return NULL;
if (s->rptr->posn - s->rpos < s->elem_len) {
s->rptr = s->rptr->next;
if (!s->rptr)
return NULL; /* end of array */
s->rpos = 0L;
}
p = s->rptr->data + s->rpos;
s->rpos += s->elem_len;
return p;
}
void *saa_rbytes (struct SAA *s, long *len) {
void *p;
if (!s->rptr)
return NULL;
p = s->rptr->data + s->rpos;
*len = s->rptr->posn - s->rpos;
s->rptr = s->rptr->next;
s->rpos = 0L;
return p;
}
void saa_rnbytes (struct SAA *s, void *data, long len) {
char *d = data;
while (len > 0) {
long l;
if (!s->rptr)
return;
l = s->rptr->posn - s->rpos;
if (l > len)
l = len;
if (l > 0) {
memcpy (d, s->rptr->data + s->rpos, l);
d += l;
s->rpos += l;
len -= l;
}
if (len > 0) {
s->rptr = s->rptr->next;
s->rpos = 0L;
}
}
}
void saa_fread (struct SAA *s, long posn, void *data, long len) {
struct SAA *p;
long pos;
char *cdata = data;
if (!s->rptr || posn > s->rptr->start + s->rpos)
saa_rewind (s);
while (posn >= s->rptr->start + s->rptr->posn) {
s->rptr = s->rptr->next;
if (!s->rptr)
return; /* what else can we do?! */
}
p = s->rptr;
pos = posn - s->rptr->start;
while (len) {
long l = s->rptr->posn - pos;
if (l > len)
l = len;
memcpy (cdata, s->rptr->data+pos, l);
len -= l;
cdata += l;
p = p->next;
if (!p)
return;
pos = 0L;
}
}
void saa_fwrite (struct SAA *s, long posn, void *data, long len) {
struct SAA *p;
long pos;
char *cdata = data;
if (!s->rptr || posn > s->rptr->start + s->rpos)
saa_rewind (s);
while (posn >= s->rptr->start + s->rptr->posn) {
s->rptr = s->rptr->next;
if (!s->rptr)
return; /* what else can we do?! */
}
p = s->rptr;
pos = posn - s->rptr->start;
while (len) {
long l = s->rptr->posn - pos;
if (l > len)
l = len;
memcpy (s->rptr->data+pos, cdata, l);
len -= l;
cdata += l;
p = p->next;
if (!p)
return;
pos = 0L;
}
}
void saa_fpwrite (struct SAA *s, FILE *fp) {
char *data;
long len;
saa_rewind (s);
while ( (data = saa_rbytes (s, &len)) )
fwrite (data, 1, len, fp);
}
/*
* Register, instruction, condition-code and prefix keywords used
* by the scanner.
*/
#include "names.c"
static char *special_names[] = {
"byte", "dword", "far", "long", "near", "nosplit", "qword",
"short", "to", "tword", "word"
};
static char *prefix_names[] = {
"a16", "a32", "lock", "o16", "o32", "rep", "repe", "repne",
"repnz", "repz", "times"
};
/*
* Standard scanner routine used by parser.c and some output
* formats. It keeps a succession of temporary-storage strings in
* stdscan_tempstorage, which can be cleared using stdscan_reset.
*/
static char **stdscan_tempstorage = NULL;
static int stdscan_tempsize = 0, stdscan_templen = 0;
#define STDSCAN_TEMP_DELTA 256
static void stdscan_pop(void) {
nasm_free (stdscan_tempstorage[--stdscan_templen]);
}
void stdscan_reset(void) {
while (stdscan_templen > 0)
stdscan_pop();
}
static char *stdscan_copy(char *p, int len) {
char *text;
text = nasm_malloc(len+1);
strncpy (text, p, len);
text[len] = '\0';
if (stdscan_templen >= stdscan_tempsize) {
stdscan_tempsize += STDSCAN_TEMP_DELTA;
stdscan_tempstorage = nasm_realloc(stdscan_tempstorage,
stdscan_tempsize*sizeof(char *));
}
stdscan_tempstorage[stdscan_templen++] = text;
return text;
}
char *stdscan_bufptr = NULL;
int stdscan (void *private_data, struct tokenval *tv) {
char ourcopy[256], *r, *s;
while (isspace(*stdscan_bufptr)) stdscan_bufptr++;
if (!*stdscan_bufptr)
return tv->t_type = 0;
/* we have a token; either an id, a number or a char */
if (isidstart(*stdscan_bufptr) ||
(*stdscan_bufptr == '$' && isidstart(stdscan_bufptr[1]))) {
/* now we've got an identifier */
int i;
int is_sym = FALSE;
if (*stdscan_bufptr == '$') {
is_sym = TRUE;
stdscan_bufptr++;
}
r = stdscan_bufptr++;
while (isidchar(*stdscan_bufptr)) stdscan_bufptr++;
tv->t_charptr = stdscan_copy(r, stdscan_bufptr - r);
for (s=tv->t_charptr, r=ourcopy; *s; s++)
*r++ = tolower (*s);
*r = '\0';
if (is_sym)
return tv->t_type = TOKEN_ID;/* bypass all other checks */
/* right, so we have an identifier sitting in temp storage. now,
* is it actually a register or instruction name, or what? */
if ((tv->t_integer=bsi(ourcopy, reg_names,
elements(reg_names)))>=0) {
tv->t_integer += EXPR_REG_START;
return tv->t_type = TOKEN_REG;
} else if ((tv->t_integer=bsi(ourcopy, insn_names,
elements(insn_names)))>=0) {
return tv->t_type = TOKEN_INSN;
}
for (i=0; i<elements(icn); i++)
if (!strncmp(ourcopy, icn[i], strlen(icn[i]))) {
char *p = ourcopy + strlen(icn[i]);
tv->t_integer = ico[i];
if ((tv->t_inttwo=bsi(p, conditions,
elements(conditions)))>=0)
return tv->t_type = TOKEN_INSN;
}
if ((tv->t_integer=bsi(ourcopy, prefix_names,
elements(prefix_names)))>=0) {
tv->t_integer += PREFIX_ENUM_START;
return tv->t_type = TOKEN_PREFIX;
}
if ((tv->t_integer=bsi(ourcopy, special_names,
elements(special_names)))>=0)
return tv->t_type = TOKEN_SPECIAL;
if (!strcmp(ourcopy, "seg"))
return tv->t_type = TOKEN_SEG;
if (!strcmp(ourcopy, "wrt"))
return tv->t_type = TOKEN_WRT;
return tv->t_type = TOKEN_ID;
} else if (*stdscan_bufptr == '$' && !isnumchar(stdscan_bufptr[1])) {
/*
* It's a $ sign with no following hex number; this must
* mean it's a Here token ($), evaluating to the current
* assembly location, or a Base token ($$), evaluating to
* the base of the current segment.
*/
stdscan_bufptr++;
if (*stdscan_bufptr == '$') {
stdscan_bufptr++;
return tv->t_type = TOKEN_BASE;
}
return tv->t_type = TOKEN_HERE;
} else if (isnumstart(*stdscan_bufptr)) { /* now we've got a number */
int rn_error;
r = stdscan_bufptr++;
while (isnumchar(*stdscan_bufptr))
stdscan_bufptr++;
if (*stdscan_bufptr == '.') {
/*
* a floating point constant
*/
stdscan_bufptr++;
while (isnumchar(*stdscan_bufptr)) {
stdscan_bufptr++;
}
tv->t_charptr = stdscan_copy(r, stdscan_bufptr - r);
return tv->t_type = TOKEN_FLOAT;
}
r = stdscan_copy(r, stdscan_bufptr - r);
tv->t_integer = readnum(r, &rn_error);
stdscan_pop();
if (rn_error)
return tv->t_type = TOKEN_ERRNUM;/* some malformation occurred */
tv->t_charptr = NULL;
return tv->t_type = TOKEN_NUM;
} else if (*stdscan_bufptr == '\'' ||
*stdscan_bufptr == '"') {/* a char constant */
char quote = *stdscan_bufptr++, *r;
r = tv->t_charptr = stdscan_bufptr;
while (*stdscan_bufptr && *stdscan_bufptr != quote) stdscan_bufptr++;
tv->t_inttwo = stdscan_bufptr - r; /* store full version */
if (!*stdscan_bufptr)
return tv->t_type = TOKEN_ERRNUM; /* unmatched quotes */
tv->t_integer = 0;
r = stdscan_bufptr++; /* skip over final quote */
while (quote != *--r) {
tv->t_integer = (tv->t_integer<<8) + (unsigned char) *r;
}
return tv->t_type = TOKEN_NUM;
} else if (*stdscan_bufptr == ';') { /* a comment has happened - stay */
return tv->t_type = 0;
} else if (stdscan_bufptr[0] == '>' && stdscan_bufptr[1] == '>') {
stdscan_bufptr += 2;
return tv->t_type = TOKEN_SHR;
} else if (stdscan_bufptr[0] == '<' && stdscan_bufptr[1] == '<') {
stdscan_bufptr += 2;
return tv->t_type = TOKEN_SHL;
} else if (stdscan_bufptr[0] == '/' && stdscan_bufptr[1] == '/') {
stdscan_bufptr += 2;
return tv->t_type = TOKEN_SDIV;
} else if (stdscan_bufptr[0] == '%' && stdscan_bufptr[1] == '%') {
stdscan_bufptr += 2;
return tv->t_type = TOKEN_SMOD;
} else if (stdscan_bufptr[0] == '=' && stdscan_bufptr[1] == '=') {
stdscan_bufptr += 2;
return tv->t_type = TOKEN_EQ;
} else if (stdscan_bufptr[0] == '<' && stdscan_bufptr[1] == '>') {
stdscan_bufptr += 2;
return tv->t_type = TOKEN_NE;
} else if (stdscan_bufptr[0] == '!' && stdscan_bufptr[1] == '=') {
stdscan_bufptr += 2;
return tv->t_type = TOKEN_NE;
} else if (stdscan_bufptr[0] == '<' && stdscan_bufptr[1] == '=') {
stdscan_bufptr += 2;
return tv->t_type = TOKEN_LE;
} else if (stdscan_bufptr[0] == '>' && stdscan_bufptr[1] == '=') {
stdscan_bufptr += 2;
return tv->t_type = TOKEN_GE;
} else if (stdscan_bufptr[0] == '&' && stdscan_bufptr[1] == '&') {
stdscan_bufptr += 2;
return tv->t_type = TOKEN_DBL_AND;
} else if (stdscan_bufptr[0] == '^' && stdscan_bufptr[1] == '^') {
stdscan_bufptr += 2;
return tv->t_type = TOKEN_DBL_XOR;
} else if (stdscan_bufptr[0] == '|' && stdscan_bufptr[1] == '|') {
stdscan_bufptr += 2;
return tv->t_type = TOKEN_DBL_OR;
} else /* just an ordinary char */
return tv->t_type = (unsigned char) (*stdscan_bufptr++);
}
/*
* Return TRUE if the argument is a simple scalar. (Or a far-
* absolute, which counts.)
*/
int is_simple (expr *vect) {
while (vect->type && !vect->value)
vect++;
if (!vect->type)
return 1;
if (vect->type != EXPR_SIMPLE)
return 0;
do {
vect++;
} while (vect->type && !vect->value);
if (vect->type && vect->type < EXPR_SEGBASE+SEG_ABS) return 0;
return 1;
}
/*
* Return TRUE if the argument is a simple scalar, _NOT_ a far-
* absolute.
*/
int is_really_simple (expr *vect) {
while (vect->type && !vect->value)
vect++;
if (!vect->type)
return 1;
if (vect->type != EXPR_SIMPLE)
return 0;
do {
vect++;
} while (vect->type && !vect->value);
if (vect->type) return 0;
return 1;
}
/*
* Return TRUE if the argument is relocatable (i.e. a simple
* scalar, plus at most one segment-base, plus possibly a WRT).
*/
int is_reloc (expr *vect) {
while (vect->type && !vect->value)
vect++;
if (!vect->type)
return 1;
if (vect->type < EXPR_SIMPLE)
return 0;
if (vect->type == EXPR_SIMPLE) {
do {
vect++;
} while (vect->type && !vect->value);
if (!vect->type)
return 1;
}
if (vect->type != EXPR_WRT && vect->value != 0 && vect->value != 1)
return 0; /* segment base multiplier non-unity */
do {
vect++;
} while (vect->type && (vect->type == EXPR_WRT || !vect->value));
if (!vect->type)
return 1;
return 0;
}
/*
* Return TRUE if the argument contains an `unknown' part.
*/
int is_unknown(expr *vect) {
while (vect->type && vect->type < EXPR_UNKNOWN)
vect++;
return (vect->type == EXPR_UNKNOWN);
}
/*
* Return TRUE if the argument contains nothing but an `unknown'
* part.
*/
int is_just_unknown(expr *vect) {
while (vect->type && !vect->value)
vect++;
return (vect->type == EXPR_UNKNOWN);
}
/*
* Return the scalar part of a relocatable vector. (Including
* simple scalar vectors - those qualify as relocatable.)
*/
long reloc_value (expr *vect) {
while (vect->type && !vect->value)
vect++;
if (!vect->type) return 0;
if (vect->type == EXPR_SIMPLE)
return vect->value;
else
return 0;
}
/*
* Return the segment number of a relocatable vector, or NO_SEG for
* simple scalars.
*/
long reloc_seg (expr *vect) {
while (vect->type && (vect->type == EXPR_WRT || !vect->value))
vect++;
if (vect->type == EXPR_SIMPLE) {
do {
vect++;
} while (vect->type && (vect->type == EXPR_WRT || !vect->value));
}
if (!vect->type)
return NO_SEG;
else
return vect->type - EXPR_SEGBASE;
}
/*
* Return the WRT segment number of a relocatable vector, or NO_SEG
* if no WRT part is present.
*/
long reloc_wrt (expr *vect) {
while (vect->type && vect->type < EXPR_WRT)
vect++;
if (vect->type == EXPR_WRT) {
return vect->value;
} else
return NO_SEG;
}
/*
* Binary search.
*/
int bsi (char *string, char **array, int size) {
int i = -1, j = size; /* always, i < index < j */
while (j-i >= 2) {
int k = (i+j)/2;
int l = strcmp(string, array[k]);
if (l<0) /* it's in the first half */
j = k;
else if (l>0) /* it's in the second half */
i = k;
else /* we've got it :) */
return k;
}
return -1; /* we haven't got it :( */
}