nasm/perllib/phash.ph
H. Peter Anvin a59795c986 Use the crc64 we already use as the perfect hash function prehash
Use the same crc64 that we already use for the symbol table hash as
the perfect hash function prehash.  We appear to get radically faster
convergence this way, and the crc64 is probably *faster*, since the
table likely to be resident in memory.
2007-10-02 17:40:00 -07:00

227 lines
4.7 KiB
Perl

# -*- perl -*-
#
# Perfect Minimal Hash Generator written in Perl, which produces
# C output.
#
# Requires the CPAN Graph module (tested against 0.81, 0.83, 0.84)
#
use Graph::Undirected;
require 'random_sv_vectors.ph';
require 'crc64.ph';
#
# Compute the prehash for a key
#
# prehash(key, sv, N)
#
sub prehash($$$) {
my($key, $n, $sv) = @_;
my @c = crc64($sv, $key);
# Create a bipartite graph...
$k1 = (($c[1] & ($n-1)) << 1) + 0; # low word
$k2 = (($c[0] & ($n-1)) << 1) + 1; # high word
return ($k1, $k2);
}
#
# Walk the assignment graph
#
sub walk_graph($$$) {
my($gr,$n,$v) = @_;
my $nx;
# print STDERR "Vertex $n value $v\n";
$gr->set_vertex_attribute($n,"val",$v);
foreach $nx ($gr->neighbors($n)) {
die unless ($gr->has_edge_attribute($n, $nx, "hash"));
my $e = $gr->get_edge_attribute($n, $nx, "hash");
# print STDERR "Edge $n=$nx value $e: ";
if ($gr->has_vertex_attribute($nx, "val")) {
die if ($v+$gr->get_vertex_attribute($nx, "val") != $e);
# print STDERR "ok\n";
} else {
walk_graph($gr, $nx, $e-$v);
}
}
}
#
# Generate the function assuming a given N.
#
# gen_hash_n(N, sv, \%data, run)
#
sub gen_hash_n($$$$) {
my($n, $sv, $href, $run) = @_;
my @keys = keys(%{$href});
my $i, $sv, @g;
my $gr;
my $k, $v;
my $gsize = 2*$n;
$gr = Graph::Undirected->new;
for ($i = 0; $i < $gsize; $i++) {
$gr->add_vertex($i);
}
foreach $k (@keys) {
my ($pf1, $pf2) = prehash($k, $n, $sv);
my $e = ${$href}{$k};
if ($gr->has_edge($pf1, $pf2)) {
my $xkey = $gr->get_edge_attribute($pf1, $pf2, "key");
my ($xp1, $xp2) = prehash($xkey, $n, $sv);
if (defined($run)) {
print STDERR "$run: Collision: $pf1=$pf2 $k with ";
print STDERR "$xkey ($xp1,$xp2)\n";
}
return;
}
# print STDERR "Edge $pf1=$pf2 value $e from $k\n";
$gr->add_edge($pf1, $pf2);
$gr->set_edge_attribute($pf1, $pf2, "hash", $e);
$gr->set_edge_attribute($pf1, $pf2, "key", $k);
}
# At this point, we're good if the graph is acyclic.
if ($gr->is_cyclic) {
if (defined($run)) {
print STDERR "$run: Graph is cyclic\n";
}
return;
}
if (defined($run)) {
print STDERR "$run: Graph OK, computing vertices...\n";
}
# Now we need to assign values to each vertex, so that for each
# edge, the sum of the values for the two vertices give the value
# for the edge (which is our hash index.) Since the graph is
# acyclic, this is always doable.
for ($i = 0; $i < $gsize; $i++) {
if ($gr->degree($i)) {
# This vertex has neighbors (is used)
if (!$gr->has_vertex_attribute($i, "val")) {
walk_graph($gr,$i,0); # First vertex in a cluster
}
push(@g, $gr->get_vertex_attribute($i, "val"));
} else {
# Unused vertex
push(@g, undef);
}
}
# for ($i = 0; $i < $n; $i++) {
# print STDERR "Vertex ", $i, ": ", $g[$i], "\n";
# }
if (defined($run)) {
printf STDERR "$run: Done: n = $n, sv = [0x%08x, 0x%08x]\n",
$$sv[0], $$sv[1];
}
return ($n, $sv, \@g);
}
#
# Driver for generating the function
#
# gen_perfect_hash(\%data)
#
sub gen_perfect_hash($) {
my($href) = @_;
my @keys = keys(%{$href});
my @hashinfo;
my $n, $i, $j, $sv, $maxj;
my $run = 1;
# Minimal power of 2 value for N with enough wiggle room.
# The scaling constant must be larger than 0.5 in order for the
# algorithm to ever terminate.
my $room = scalar(@keys)*0.7;
$n = 1;
while ($n < $room) {
$n <<= 1;
}
# Number of times to try...
$maxj = scalar @random_sv_vectors;
for ($i = 0; $i < 4; $i++) {
print STDERR "Trying n = $n...\n";
for ($j = 0; $j < $maxj; $j++) {
$sv = $random_sv_vectors[$j];
@hashinfo = gen_hash_n($n, $sv, $href, $run++);
return @hashinfo if (defined(@hashinfo));
}
$n <<= 1;
$maxj >>= 1;
}
return;
}
#
# Read input file
#
sub read_input() {
my $key,$val;
my %out;
my $x = 0;
while (defined($l = <STDIN>)) {
chomp $l;
$l =~ s/\s*(\#.*|)$//;
next if ($l eq '');
if ($l =~ /^([^=]+)\=([^=]+)$/) {
$out{$1} = $2;
$x = $2;
} else {
$out{$l} = $x;
}
$x++;
}
return %out;
}
#
# Verify that the hash table is actually correct...
#
sub verify_hash_table($$)
{
my ($href, $hashinfo) = @_;
my ($n, $sv, $g) = @{$hashinfo};
my $k;
my $err = 0;
foreach $k (keys(%$href)) {
my ($pf1, $pf2) = prehash($k, $n, $sv);
my $g1 = ${$g}[$pf1];
my $g2 = ${$g}[$pf2];
if ($g1+$g2 != ${$href}{$k}) {
printf STDERR "%s(%d,%d): %d+%d = %d != %d\n",
$k, $pf1, $pf2, $g1, $g2, $g1+$g2, ${$href}{$k};
$err = 1;
} else {
# printf STDERR "%s: %d+%d = %d ok\n",
# $k, $g1, $g2, $g1+$g2;
}
}
die "$0: hash validation error\n" if ($err);
}
1;