nasm/nasmlib/rbtree.c
H. Peter Anvin (Intel) 68e3802b23 rbtree: add rb_search_exact()
Sometimes we want to search for an exact key only, and reject the case
when tree->key < key. Add rb_search_exact() for this purpose, rather
than forcing the caller to perform the comparison in open code.

Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
2020-07-08 09:49:38 -07:00

260 lines
7.8 KiB
C

/* ----------------------------------------------------------------------- *
*
* Copyright 1996-2020 The NASM Authors - All Rights Reserved
* See the file AUTHORS included with the NASM distribution for
* the specific copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following
* conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ----------------------------------------------------------------------- */
/*
* rbtree.c
*
* Simple implementation of a "left-leaning threaded red-black tree"
* with 64-bit integer keys. The search operation will return the
* highest node <= the key; only search and insert are supported, but
* additional standard llrbtree operations can be coded up at will.
*
* See http://www.cs.princeton.edu/~rs/talks/LLRB/RedBlack.pdf for
* information about left-leaning red-black trees.
*
* The "threaded" part means that left and right pointers that would
* otherwise be NULL are pointers to the in-order predecessor or
* successor node. The only pointers that are NULL are the very left-
* and rightmost, for which no corresponding side node exists.
*
* This, among other things, allows for efficient predecessor and
* successor operations without requiring dedicated space for a parent
* pointer.
*
* This implementation is robust for identical key values; such keys
* will not have their insertion order preserved, and after insertion
* of unrelated keys a lookup may return a different node for the
* duplicated key, but the prev/next operations will always enumerate
* all entries.
*
* The NULL pointers at the end are considered predecessor/successor
* pointers, so if the corresponding flags are clear it is always safe
* to access the pointed-to object without an explicit NULL pointer
* check.
*/
#include "rbtree.h"
#include "nasmlib.h"
struct rbtree *rb_search(const struct rbtree *tree, uint64_t key)
{
const struct rbtree *best = NULL;
if (tree) {
while (true) {
if (tree->key > key) {
if (tree->m.flags & RBTREE_NODE_PRED)
break;
tree = tree->m.left;
} else {
best = tree;
if (tree->key == key || (tree->m.flags & RBTREE_NODE_SUCC))
break;
tree = tree->m.right;
}
}
}
return (struct rbtree *)best;
}
struct rbtree *rb_search_exact(const struct rbtree *tree, uint64_t key)
{
struct rbtree *rv;
rv = rb_search(tree, key);
return (rv && rv->key == key) ? rv : NULL;
}
/* Reds two left in a row? */
static inline bool is_red_left_left(struct rbtree *h)
{
return !(h->m.flags & RBTREE_NODE_PRED) &&
!(h->m.left->m.flags & (RBTREE_NODE_BLACK|RBTREE_NODE_PRED)) &&
!(h->m.left->m.left->m.flags & RBTREE_NODE_BLACK);
}
/* Node to the right is red? */
static inline bool is_red_right(struct rbtree *h)
{
return !(h->m.flags & RBTREE_NODE_SUCC) &&
!(h->m.right->m.flags & RBTREE_NODE_BLACK);
}
/* Both the left and right hand nodes are red? */
static inline bool is_red_both(struct rbtree *h)
{
return !(h->m.flags & (RBTREE_NODE_PRED|RBTREE_NODE_SUCC))
&& !(h->m.left->m.flags & h->m.right->m.flags & RBTREE_NODE_BLACK);
}
static inline struct rbtree *rotate_left(struct rbtree *h)
{
struct rbtree *x = h->m.right;
enum rbtree_node_flags hf = h->m.flags;
enum rbtree_node_flags xf = x->m.flags;
if (xf & RBTREE_NODE_PRED) {
h->m.right = x;
h->m.flags = (hf & RBTREE_NODE_PRED) | RBTREE_NODE_SUCC;
} else {
h->m.right = x->m.left;
h->m.flags = hf & RBTREE_NODE_PRED;
}
x->m.flags = (hf & RBTREE_NODE_BLACK) | (xf & RBTREE_NODE_SUCC);
x->m.left = h;
return x;
}
static inline struct rbtree *rotate_right(struct rbtree *h)
{
struct rbtree *x = h->m.left;
enum rbtree_node_flags hf = h->m.flags;
enum rbtree_node_flags xf = x->m.flags;
if (xf & RBTREE_NODE_SUCC) {
h->m.left = x;
h->m.flags = (hf & RBTREE_NODE_SUCC) | RBTREE_NODE_PRED;
} else {
h->m.left = x->m.right;
h->m.flags = hf & RBTREE_NODE_SUCC;
}
x->m.flags = (hf & RBTREE_NODE_BLACK) | (xf & RBTREE_NODE_PRED);
x->m.right = h;
return x;
}
static inline void color_flip(struct rbtree *h)
{
h->m.flags ^= RBTREE_NODE_BLACK;
h->m.left->m.flags ^= RBTREE_NODE_BLACK;
h->m.right->m.flags ^= RBTREE_NODE_BLACK;
}
static struct rbtree *
_rb_insert(struct rbtree *tree, struct rbtree *node);
struct rbtree *rb_insert(struct rbtree *tree, struct rbtree *node)
{
/* Initialize node as if it was the sole member of the tree */
nasm_zero(node->m);
node->m.flags = RBTREE_NODE_PRED|RBTREE_NODE_SUCC;
if (unlikely(!tree))
return node;
return _rb_insert(tree, node);
}
static struct rbtree *
_rb_insert(struct rbtree *tree, struct rbtree *node)
{
/* Recursive part of the algorithm */
/* Red on both sides? */
if (is_red_both(tree))
color_flip(tree);
if (node->key < tree->key) {
node->m.right = tree; /* Potential successor */
if (tree->m.flags & RBTREE_NODE_PRED) {
node->m.left = tree->m.left;
tree->m.flags &= ~RBTREE_NODE_PRED;
tree->m.left = node;
} else {
tree->m.left = _rb_insert(tree->m.left, node);
}
} else {
node->m.left = tree; /* Potential predecessor */
if (tree->m.flags & RBTREE_NODE_SUCC) {
node->m.right = tree->m.right;
tree->m.flags &= ~RBTREE_NODE_SUCC;
tree->m.right = node;
} else {
tree->m.right = _rb_insert(tree->m.right, node);
}
}
if (is_red_right(tree))
tree = rotate_left(tree);
if (is_red_left_left(tree))
tree = rotate_right(tree);
return tree;
}
struct rbtree *rb_first(const struct rbtree *tree)
{
if (unlikely(!tree))
return NULL;
while (!(tree->m.flags & RBTREE_NODE_PRED))
tree = tree->m.left;
return (struct rbtree *)tree;
}
struct rbtree *rb_last(const struct rbtree *tree)
{
if (unlikely(!tree))
return NULL;
while (!(tree->m.flags & RBTREE_NODE_SUCC))
tree = tree->m.right;
return (struct rbtree *)tree;
}
struct rbtree *rb_prev(const struct rbtree *node)
{
struct rbtree *np = node->m.left;
if (node->m.flags & RBTREE_NODE_PRED)
return np;
else
return rb_last(np);
}
struct rbtree *rb_next(const struct rbtree *node)
{
struct rbtree *np = node->m.right;
if (node->m.flags & RBTREE_NODE_SUCC)
return np;
else
return rb_first(np);
}