nasm/perllib/phash.ph
H. Peter Anvin 5255fd1f36 Change the token prehash function for better convergence
Combining arithmetric (add) and bitwise (xor) mixing seems to give
better result than either.

With the new prehash function, we find a valid hash much quicker.
2007-09-18 12:38:07 -07:00

244 lines
5.0 KiB
Perl

# -*- perl -*-
#
# Perfect Minimal Hash Generator written in Perl, which produces
# C output.
#
# Requires the CPAN Graph module (tested against 0.81, 0.83, 0.84)
#
use Graph::Undirected;
require 'random_sv_vectors.ph';
#
# Truncate to 32-bit integer
#
sub int32($) {
my($x) = @_;
return int($x) % 4294967296;
}
#
# 32-bit rotate
#
sub rot($$) {
my($v,$s) = @_;
$v = int32($v);
return int32(($v << $s)|($v >> (32-$s)));
}
#
# Compute the prehash for a key
#
# prehash(key, sv, N)
#
sub prehash($$$) {
my($key, $n, $sv) = @_;
my $c;
my $k1 = 0, $k2 = 0;
my $ko1, $ko2;
my($s0, $s1, $s2, $s3) = @{$sv};
foreach $c (unpack("C*", $key)) {
$ko1 = $k1; $ko2 = $k2;
$k1 = int32(rot($ko1,$s0)^int32(rot($ko2, $s1)+$c));
$k2 = int32(rot($ko2,$s2)^int32(rot($ko1, $s3)+$c));
}
# Create a bipartite graph...
$k1 = (($k1 & ($n-1)) << 1) + 0;
$k2 = (($k2 & ($n-1)) << 1) + 1;
return ($k1, $k2);
}
#
# Walk the assignment graph
#
sub walk_graph($$$) {
my($gr,$n,$v) = @_;
my $nx;
# print STDERR "Vertex $n value $v\n";
$gr->set_vertex_attribute($n,"val",$v);
foreach $nx ($gr->neighbors($n)) {
die unless ($gr->has_edge_attribute($n, $nx, "hash"));
my $e = $gr->get_edge_attribute($n, $nx, "hash");
# print STDERR "Edge $n=$nx value $e: ";
if ($gr->has_vertex_attribute($nx, "val")) {
die if ($v+$gr->get_vertex_attribute($nx, "val") != $e);
# print STDERR "ok\n";
} else {
walk_graph($gr, $nx, $e-$v);
}
}
}
#
# Generate the function assuming a given N.
#
# gen_hash_n(N, sv, \%data)
#
sub gen_hash_n($$$) {
my($n, $sv, $href) = @_;
my @keys = keys(%{$href});
my $i, $sv, @g;
my $gr;
my $k, $v;
my $gsize = 2*$n;
$gr = Graph::Undirected->new;
for ($i = 0; $i < $gsize; $i++) {
$gr->add_vertex($i);
}
foreach $k (@keys) {
my ($pf1, $pf2) = prehash($k, $n, $sv);
my $e = ${$href}{$k};
if ($gr->has_edge($pf1, $pf2)) {
my $xkey = $gr->get_edge_attribute($pf1, $pf2, "key");
my ($xp1, $xp2) = prehash($xkey, $n, $sv);
print STDERR "Collision: $pf1=$pf2 $k with ";
print STDERR "$xkey ($xp1,$xp2)\n";
return;
}
# print STDERR "Edge $pf1=$pf2 value $e from $k\n";
$gr->add_edge($pf1, $pf2);
$gr->set_edge_attribute($pf1, $pf2, "hash", $e);
$gr->set_edge_attribute($pf1, $pf2, "key", $k);
}
# At this point, we're good if the graph is acyclic.
if ($gr->is_cyclic) {
print STDERR "Graph is cyclic\n";
return;
}
print STDERR "Graph OK, computing vertices...\n";
# Now we need to assign values to each vertex, so that for each
# edge, the sum of the values for the two vertices give the value
# for the edge (which is our hash index.) Since the graph is
# acyclic, this is always doable.
for ($i = 0; $i < $gsize; $i++) {
if ($gr->degree($i)) {
# This vertex has neighbors (is used)
if (!$gr->has_vertex_attribute($i, "val")) {
walk_graph($gr,$i,0); # First vertex in a cluster
}
push(@g, $gr->get_vertex_attribute($i, "val"));
} else {
# Unused vertex
push(@g, undef);
}
}
# for ($i = 0; $i < $n; $i++) {
# print STDERR "Vertex ", $i, ": ", $g[$i], "\n";
# }
print STDERR "Done: n = $n, sv = [", join(',', @$sv), "]\n";
return ($n, $sv, \@g);
}
#
# Driver for generating the function
#
# gen_perfect_hash(\%data)
#
sub gen_perfect_hash($) {
my($href) = @_;
my @keys = keys(%{$href});
my @hashinfo;
my $n, $i, $j, $sv, $maxj;
# Minimal power of 2 value for N with enough wiggle room.
# The scaling constant must be larger than 0.5 in order for the
# algorithm to ever terminate.
my $room = scalar(@keys)*0.7;
$n = 1;
while ($n < $room) {
$n <<= 1;
}
# Number of times to try...
$maxj = scalar @random_sv_vectors;
for ($i = 0; $i < 4; $i++) {
print STDERR "Trying n = $n...\n";
for ($j = 0; $j < $maxj; $j++) {
$sv = $random_sv_vectors[$j];
@hashinfo = gen_hash_n($n, $sv, $href);
return @hashinfo if (defined(@hashinfo));
}
$n <<= 1;
$maxj >>= 1;
}
return;
}
#
# Read input file
#
sub read_input() {
my $key,$val;
my %out;
my $x = 0;
while (defined($l = <STDIN>)) {
chomp $l;
$l =~ s/\s*(\#.*|)$//;
next if ($l eq '');
if ($l =~ /^([^=]+)\=([^=]+)$/) {
$out{$1} = $2;
$x = $2;
} else {
$out{$l} = $x;
}
$x++;
}
return %out;
}
#
# Verify that the hash table is actually correct...
#
sub verify_hash_table($$)
{
my ($href, $hashinfo) = @_;
my ($n, $sv, $g) = @{$hashinfo};
my $k;
my $err = 0;
foreach $k (keys(%$href)) {
my ($pf1, $pf2) = prehash($k, $n, $sv);
my $g1 = ${$g}[$pf1];
my $g2 = ${$g}[$pf2];
if ($g1+$g2 != ${$href}{$k}) {
printf STDERR "%s(%d,%d): %d+%d = %d != %d\n",
$k, $pf1, $pf2, $g1, $g2, $g1+$g2, ${$href}{$k};
$err = 1;
} else {
# printf STDERR "%s: %d+%d = %d ok\n",
# $k, $g1, $g2, $g1+$g2;
}
}
die "$0: hash validation error\n" if ($err);
}
1;