mirror of
https://github.com/netwide-assembler/nasm.git
synced 2024-11-21 03:14:19 +08:00
817 lines
23 KiB
C
817 lines
23 KiB
C
/* eval.c expression evaluator for the Netwide Assembler
|
|
*
|
|
* The Netwide Assembler is copyright (C) 1996 Simon Tatham and
|
|
* Julian Hall. All rights reserved. The software is
|
|
* redistributable under the licence given in the file "Licence"
|
|
* distributed in the NASM archive.
|
|
*
|
|
* initial version 27/iii/95 by Simon Tatham
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stddef.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include <inttypes.h>
|
|
|
|
#include "nasm.h"
|
|
#include "nasmlib.h"
|
|
#include "eval.h"
|
|
#include "labels.h"
|
|
|
|
#define TEMPEXPRS_DELTA 128
|
|
#define TEMPEXPR_DELTA 8
|
|
|
|
static scanner scan; /* Address of scanner routine */
|
|
static efunc error; /* Address of error reporting routine */
|
|
static lfunc labelfunc; /* Address of label routine */
|
|
|
|
static struct ofmt *outfmt; /* Structure of addresses of output routines */
|
|
|
|
static expr **tempexprs = NULL;
|
|
static int ntempexprs;
|
|
static int tempexprs_size = 0;
|
|
|
|
static expr *tempexpr;
|
|
static int ntempexpr;
|
|
static int tempexpr_size;
|
|
|
|
static struct tokenval *tokval; /* The current token */
|
|
static int i; /* The t_type of tokval */
|
|
|
|
static void *scpriv;
|
|
static loc_t *location; /* Pointer to current line's segment,offset */
|
|
static int *opflags;
|
|
|
|
static struct eval_hints *hint;
|
|
|
|
extern int in_abs_seg; /* ABSOLUTE segment flag */
|
|
extern int32_t abs_seg; /* ABSOLUTE segment */
|
|
extern int32_t abs_offset; /* ABSOLUTE segment offset */
|
|
|
|
/*
|
|
* Unimportant cleanup is done to avoid confusing people who are trying
|
|
* to debug real memory leaks
|
|
*/
|
|
void eval_cleanup(void)
|
|
{
|
|
while (ntempexprs)
|
|
nasm_free(tempexprs[--ntempexprs]);
|
|
nasm_free(tempexprs);
|
|
}
|
|
|
|
/*
|
|
* Construct a temporary expression.
|
|
*/
|
|
static void begintemp(void)
|
|
{
|
|
tempexpr = NULL;
|
|
tempexpr_size = ntempexpr = 0;
|
|
}
|
|
|
|
static void addtotemp(int32_t type, int64_t value)
|
|
{
|
|
while (ntempexpr >= tempexpr_size) {
|
|
tempexpr_size += TEMPEXPR_DELTA;
|
|
tempexpr = nasm_realloc(tempexpr,
|
|
tempexpr_size * sizeof(*tempexpr));
|
|
}
|
|
tempexpr[ntempexpr].type = type;
|
|
tempexpr[ntempexpr++].value = value;
|
|
}
|
|
|
|
static expr *finishtemp(void)
|
|
{
|
|
addtotemp(0L, 0L); /* terminate */
|
|
while (ntempexprs >= tempexprs_size) {
|
|
tempexprs_size += TEMPEXPRS_DELTA;
|
|
tempexprs = nasm_realloc(tempexprs,
|
|
tempexprs_size * sizeof(*tempexprs));
|
|
}
|
|
return tempexprs[ntempexprs++] = tempexpr;
|
|
}
|
|
|
|
/*
|
|
* Add two vector datatypes. We have some bizarre behaviour on far-
|
|
* absolute segment types: we preserve them during addition _only_
|
|
* if one of the segments is a truly pure scalar.
|
|
*/
|
|
static expr *add_vectors(expr * p, expr * q)
|
|
{
|
|
int preserve;
|
|
|
|
preserve = is_really_simple(p) || is_really_simple(q);
|
|
|
|
begintemp();
|
|
|
|
while (p->type && q->type &&
|
|
p->type < EXPR_SEGBASE + SEG_ABS &&
|
|
q->type < EXPR_SEGBASE + SEG_ABS) {
|
|
int lasttype;
|
|
|
|
if (p->type > q->type) {
|
|
addtotemp(q->type, q->value);
|
|
lasttype = q++->type;
|
|
} else if (p->type < q->type) {
|
|
addtotemp(p->type, p->value);
|
|
lasttype = p++->type;
|
|
} else { /* *p and *q have same type */
|
|
int32_t sum = p->value + q->value;
|
|
if (sum)
|
|
addtotemp(p->type, sum);
|
|
lasttype = p->type;
|
|
p++, q++;
|
|
}
|
|
if (lasttype == EXPR_UNKNOWN) {
|
|
return finishtemp();
|
|
}
|
|
}
|
|
while (p->type && (preserve || p->type < EXPR_SEGBASE + SEG_ABS)) {
|
|
addtotemp(p->type, p->value);
|
|
p++;
|
|
}
|
|
while (q->type && (preserve || q->type < EXPR_SEGBASE + SEG_ABS)) {
|
|
addtotemp(q->type, q->value);
|
|
q++;
|
|
}
|
|
|
|
return finishtemp();
|
|
}
|
|
|
|
/*
|
|
* Multiply a vector by a scalar. Strip far-absolute segment part
|
|
* if present.
|
|
*
|
|
* Explicit treatment of UNKNOWN is not required in this routine,
|
|
* since it will silently do the Right Thing anyway.
|
|
*
|
|
* If `affect_hints' is set, we also change the hint type to
|
|
* NOTBASE if a MAKEBASE hint points at a register being
|
|
* multiplied. This allows [eax*1+ebx] to hint EBX rather than EAX
|
|
* as the base register.
|
|
*/
|
|
static expr *scalar_mult(expr * vect, int32_t scalar, int affect_hints)
|
|
{
|
|
expr *p = vect;
|
|
|
|
while (p->type && p->type < EXPR_SEGBASE + SEG_ABS) {
|
|
p->value = scalar * (p->value);
|
|
if (hint && hint->type == EAH_MAKEBASE &&
|
|
p->type == hint->base && affect_hints)
|
|
hint->type = EAH_NOTBASE;
|
|
p++;
|
|
}
|
|
p->type = 0;
|
|
|
|
return vect;
|
|
}
|
|
|
|
static expr *scalarvect(int32_t scalar)
|
|
{
|
|
begintemp();
|
|
addtotemp(EXPR_SIMPLE, scalar);
|
|
return finishtemp();
|
|
}
|
|
|
|
static expr *unknown_expr(void)
|
|
{
|
|
begintemp();
|
|
addtotemp(EXPR_UNKNOWN, 1L);
|
|
return finishtemp();
|
|
}
|
|
|
|
/*
|
|
* The SEG operator: calculate the segment part of a relocatable
|
|
* value. Return NULL, as usual, if an error occurs. Report the
|
|
* error too.
|
|
*/
|
|
static expr *segment_part(expr * e)
|
|
{
|
|
int32_t seg;
|
|
|
|
if (is_unknown(e))
|
|
return unknown_expr();
|
|
|
|
if (!is_reloc(e)) {
|
|
error(ERR_NONFATAL, "cannot apply SEG to a non-relocatable value");
|
|
return NULL;
|
|
}
|
|
|
|
seg = reloc_seg(e);
|
|
if (seg == NO_SEG) {
|
|
error(ERR_NONFATAL, "cannot apply SEG to a non-relocatable value");
|
|
return NULL;
|
|
} else if (seg & SEG_ABS) {
|
|
return scalarvect(seg & ~SEG_ABS);
|
|
} else if (seg & 1) {
|
|
error(ERR_NONFATAL, "SEG applied to something which"
|
|
" is already a segment base");
|
|
return NULL;
|
|
} else {
|
|
int32_t base = outfmt->segbase(seg + 1);
|
|
|
|
begintemp();
|
|
addtotemp((base == NO_SEG ? EXPR_UNKNOWN : EXPR_SEGBASE + base),
|
|
1L);
|
|
return finishtemp();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Recursive-descent parser. Called with a single boolean operand,
|
|
* which is TRUE if the evaluation is critical (i.e. unresolved
|
|
* symbols are an error condition). Must update the global `i' to
|
|
* reflect the token after the parsed string. May return NULL.
|
|
*
|
|
* evaluate() should report its own errors: on return it is assumed
|
|
* that if NULL has been returned, the error has already been
|
|
* reported.
|
|
*/
|
|
|
|
/*
|
|
* Grammar parsed is:
|
|
*
|
|
* expr : bexpr [ WRT expr6 ]
|
|
* bexpr : rexp0 or expr0 depending on relative-mode setting
|
|
* rexp0 : rexp1 [ {||} rexp1...]
|
|
* rexp1 : rexp2 [ {^^} rexp2...]
|
|
* rexp2 : rexp3 [ {&&} rexp3...]
|
|
* rexp3 : expr0 [ {=,==,<>,!=,<,>,<=,>=} expr0 ]
|
|
* expr0 : expr1 [ {|} expr1...]
|
|
* expr1 : expr2 [ {^} expr2...]
|
|
* expr2 : expr3 [ {&} expr3...]
|
|
* expr3 : expr4 [ {<<,>>} expr4...]
|
|
* expr4 : expr5 [ {+,-} expr5...]
|
|
* expr5 : expr6 [ {*,/,%,//,%%} expr6...]
|
|
* expr6 : { ~,+,-,SEG } expr6
|
|
* | (bexpr)
|
|
* | symbol
|
|
* | $
|
|
* | number
|
|
*/
|
|
|
|
static expr *rexp0(int), *rexp1(int), *rexp2(int), *rexp3(int);
|
|
|
|
static expr *expr0(int), *expr1(int), *expr2(int), *expr3(int);
|
|
static expr *expr4(int), *expr5(int), *expr6(int);
|
|
|
|
static expr *(*bexpr) (int);
|
|
|
|
static expr *rexp0(int critical)
|
|
{
|
|
expr *e, *f;
|
|
|
|
e = rexp1(critical);
|
|
if (!e)
|
|
return NULL;
|
|
|
|
while (i == TOKEN_DBL_OR) {
|
|
i = scan(scpriv, tokval);
|
|
f = rexp1(critical);
|
|
if (!f)
|
|
return NULL;
|
|
if (!(is_simple(e) || is_just_unknown(e)) ||
|
|
!(is_simple(f) || is_just_unknown(f))) {
|
|
error(ERR_NONFATAL, "`|' operator may only be applied to"
|
|
" scalar values");
|
|
}
|
|
|
|
if (is_just_unknown(e) || is_just_unknown(f))
|
|
e = unknown_expr();
|
|
else
|
|
e = scalarvect((int32_t)(reloc_value(e) || reloc_value(f)));
|
|
}
|
|
return e;
|
|
}
|
|
|
|
static expr *rexp1(int critical)
|
|
{
|
|
expr *e, *f;
|
|
|
|
e = rexp2(critical);
|
|
if (!e)
|
|
return NULL;
|
|
|
|
while (i == TOKEN_DBL_XOR) {
|
|
i = scan(scpriv, tokval);
|
|
f = rexp2(critical);
|
|
if (!f)
|
|
return NULL;
|
|
if (!(is_simple(e) || is_just_unknown(e)) ||
|
|
!(is_simple(f) || is_just_unknown(f))) {
|
|
error(ERR_NONFATAL, "`^' operator may only be applied to"
|
|
" scalar values");
|
|
}
|
|
|
|
if (is_just_unknown(e) || is_just_unknown(f))
|
|
e = unknown_expr();
|
|
else
|
|
e = scalarvect((int32_t)(!reloc_value(e) ^ !reloc_value(f)));
|
|
}
|
|
return e;
|
|
}
|
|
|
|
static expr *rexp2(int critical)
|
|
{
|
|
expr *e, *f;
|
|
|
|
e = rexp3(critical);
|
|
if (!e)
|
|
return NULL;
|
|
while (i == TOKEN_DBL_AND) {
|
|
i = scan(scpriv, tokval);
|
|
f = rexp3(critical);
|
|
if (!f)
|
|
return NULL;
|
|
if (!(is_simple(e) || is_just_unknown(e)) ||
|
|
!(is_simple(f) || is_just_unknown(f))) {
|
|
error(ERR_NONFATAL, "`&' operator may only be applied to"
|
|
" scalar values");
|
|
}
|
|
if (is_just_unknown(e) || is_just_unknown(f))
|
|
e = unknown_expr();
|
|
else
|
|
e = scalarvect((int32_t)(reloc_value(e) && reloc_value(f)));
|
|
}
|
|
return e;
|
|
}
|
|
|
|
static expr *rexp3(int critical)
|
|
{
|
|
expr *e, *f;
|
|
int32_t v;
|
|
|
|
e = expr0(critical);
|
|
if (!e)
|
|
return NULL;
|
|
|
|
while (i == TOKEN_EQ || i == TOKEN_LT || i == TOKEN_GT ||
|
|
i == TOKEN_NE || i == TOKEN_LE || i == TOKEN_GE) {
|
|
int j = i;
|
|
i = scan(scpriv, tokval);
|
|
f = expr0(critical);
|
|
if (!f)
|
|
return NULL;
|
|
|
|
e = add_vectors(e, scalar_mult(f, -1L, FALSE));
|
|
|
|
switch (j) {
|
|
case TOKEN_EQ:
|
|
case TOKEN_NE:
|
|
if (is_unknown(e))
|
|
v = -1; /* means unknown */
|
|
else if (!is_really_simple(e) || reloc_value(e) != 0)
|
|
v = (j == TOKEN_NE); /* unequal, so return TRUE if NE */
|
|
else
|
|
v = (j == TOKEN_EQ); /* equal, so return TRUE if EQ */
|
|
break;
|
|
default:
|
|
if (is_unknown(e))
|
|
v = -1; /* means unknown */
|
|
else if (!is_really_simple(e)) {
|
|
error(ERR_NONFATAL,
|
|
"`%s': operands differ by a non-scalar",
|
|
(j == TOKEN_LE ? "<=" : j == TOKEN_LT ? "<" : j ==
|
|
TOKEN_GE ? ">=" : ">"));
|
|
v = 0; /* must set it to _something_ */
|
|
} else {
|
|
int vv = reloc_value(e);
|
|
if (vv == 0)
|
|
v = (j == TOKEN_LE || j == TOKEN_GE);
|
|
else if (vv > 0)
|
|
v = (j == TOKEN_GE || j == TOKEN_GT);
|
|
else /* vv < 0 */
|
|
v = (j == TOKEN_LE || j == TOKEN_LT);
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (v == -1)
|
|
e = unknown_expr();
|
|
else
|
|
e = scalarvect(v);
|
|
}
|
|
return e;
|
|
}
|
|
|
|
static expr *expr0(int critical)
|
|
{
|
|
expr *e, *f;
|
|
|
|
e = expr1(critical);
|
|
if (!e)
|
|
return NULL;
|
|
|
|
while (i == '|') {
|
|
i = scan(scpriv, tokval);
|
|
f = expr1(critical);
|
|
if (!f)
|
|
return NULL;
|
|
if (!(is_simple(e) || is_just_unknown(e)) ||
|
|
!(is_simple(f) || is_just_unknown(f))) {
|
|
error(ERR_NONFATAL, "`|' operator may only be applied to"
|
|
" scalar values");
|
|
}
|
|
if (is_just_unknown(e) || is_just_unknown(f))
|
|
e = unknown_expr();
|
|
else
|
|
e = scalarvect(reloc_value(e) | reloc_value(f));
|
|
}
|
|
return e;
|
|
}
|
|
|
|
static expr *expr1(int critical)
|
|
{
|
|
expr *e, *f;
|
|
|
|
e = expr2(critical);
|
|
if (!e)
|
|
return NULL;
|
|
|
|
while (i == '^') {
|
|
i = scan(scpriv, tokval);
|
|
f = expr2(critical);
|
|
if (!f)
|
|
return NULL;
|
|
if (!(is_simple(e) || is_just_unknown(e)) ||
|
|
!(is_simple(f) || is_just_unknown(f))) {
|
|
error(ERR_NONFATAL, "`^' operator may only be applied to"
|
|
" scalar values");
|
|
}
|
|
if (is_just_unknown(e) || is_just_unknown(f))
|
|
e = unknown_expr();
|
|
else
|
|
e = scalarvect(reloc_value(e) ^ reloc_value(f));
|
|
}
|
|
return e;
|
|
}
|
|
|
|
static expr *expr2(int critical)
|
|
{
|
|
expr *e, *f;
|
|
|
|
e = expr3(critical);
|
|
if (!e)
|
|
return NULL;
|
|
|
|
while (i == '&') {
|
|
i = scan(scpriv, tokval);
|
|
f = expr3(critical);
|
|
if (!f)
|
|
return NULL;
|
|
if (!(is_simple(e) || is_just_unknown(e)) ||
|
|
!(is_simple(f) || is_just_unknown(f))) {
|
|
error(ERR_NONFATAL, "`&' operator may only be applied to"
|
|
" scalar values");
|
|
}
|
|
if (is_just_unknown(e) || is_just_unknown(f))
|
|
e = unknown_expr();
|
|
else
|
|
e = scalarvect(reloc_value(e) & reloc_value(f));
|
|
}
|
|
return e;
|
|
}
|
|
|
|
static expr *expr3(int critical)
|
|
{
|
|
expr *e, *f;
|
|
|
|
e = expr4(critical);
|
|
if (!e)
|
|
return NULL;
|
|
|
|
while (i == TOKEN_SHL || i == TOKEN_SHR) {
|
|
int j = i;
|
|
i = scan(scpriv, tokval);
|
|
f = expr4(critical);
|
|
if (!f)
|
|
return NULL;
|
|
if (!(is_simple(e) || is_just_unknown(e)) ||
|
|
!(is_simple(f) || is_just_unknown(f))) {
|
|
error(ERR_NONFATAL, "shift operator may only be applied to"
|
|
" scalar values");
|
|
} else if (is_just_unknown(e) || is_just_unknown(f)) {
|
|
e = unknown_expr();
|
|
} else
|
|
switch (j) {
|
|
case TOKEN_SHL:
|
|
e = scalarvect(reloc_value(e) << reloc_value(f));
|
|
break;
|
|
case TOKEN_SHR:
|
|
e = scalarvect(((uint32_t)reloc_value(e)) >>
|
|
reloc_value(f));
|
|
break;
|
|
}
|
|
}
|
|
return e;
|
|
}
|
|
|
|
static expr *expr4(int critical)
|
|
{
|
|
expr *e, *f;
|
|
|
|
e = expr5(critical);
|
|
if (!e)
|
|
return NULL;
|
|
while (i == '+' || i == '-') {
|
|
int j = i;
|
|
i = scan(scpriv, tokval);
|
|
f = expr5(critical);
|
|
if (!f)
|
|
return NULL;
|
|
switch (j) {
|
|
case '+':
|
|
e = add_vectors(e, f);
|
|
break;
|
|
case '-':
|
|
e = add_vectors(e, scalar_mult(f, -1L, FALSE));
|
|
break;
|
|
}
|
|
}
|
|
return e;
|
|
}
|
|
|
|
static expr *expr5(int critical)
|
|
{
|
|
expr *e, *f;
|
|
|
|
e = expr6(critical);
|
|
if (!e)
|
|
return NULL;
|
|
while (i == '*' || i == '/' || i == '%' ||
|
|
i == TOKEN_SDIV || i == TOKEN_SMOD) {
|
|
int j = i;
|
|
i = scan(scpriv, tokval);
|
|
f = expr6(critical);
|
|
if (!f)
|
|
return NULL;
|
|
if (j != '*' && (!(is_simple(e) || is_just_unknown(e)) ||
|
|
!(is_simple(f) || is_just_unknown(f)))) {
|
|
error(ERR_NONFATAL, "division operator may only be applied to"
|
|
" scalar values");
|
|
return NULL;
|
|
}
|
|
if (j != '*' && !is_unknown(f) && reloc_value(f) == 0) {
|
|
error(ERR_NONFATAL, "division by zero");
|
|
return NULL;
|
|
}
|
|
switch (j) {
|
|
case '*':
|
|
if (is_simple(e))
|
|
e = scalar_mult(f, reloc_value(e), TRUE);
|
|
else if (is_simple(f))
|
|
e = scalar_mult(e, reloc_value(f), TRUE);
|
|
else if (is_just_unknown(e) && is_just_unknown(f))
|
|
e = unknown_expr();
|
|
else {
|
|
error(ERR_NONFATAL, "unable to multiply two "
|
|
"non-scalar objects");
|
|
return NULL;
|
|
}
|
|
break;
|
|
case '/':
|
|
if (is_just_unknown(e) || is_just_unknown(f))
|
|
e = unknown_expr();
|
|
else
|
|
e = scalarvect(((uint32_t)reloc_value(e)) /
|
|
((uint32_t)reloc_value(f)));
|
|
break;
|
|
case '%':
|
|
if (is_just_unknown(e) || is_just_unknown(f))
|
|
e = unknown_expr();
|
|
else
|
|
e = scalarvect(((uint32_t)reloc_value(e)) %
|
|
((uint32_t)reloc_value(f)));
|
|
break;
|
|
case TOKEN_SDIV:
|
|
if (is_just_unknown(e) || is_just_unknown(f))
|
|
e = unknown_expr();
|
|
else
|
|
e = scalarvect(((int32_t)reloc_value(e)) /
|
|
((int32_t)reloc_value(f)));
|
|
break;
|
|
case TOKEN_SMOD:
|
|
if (is_just_unknown(e) || is_just_unknown(f))
|
|
e = unknown_expr();
|
|
else
|
|
e = scalarvect(((int32_t)reloc_value(e)) %
|
|
((int32_t)reloc_value(f)));
|
|
break;
|
|
}
|
|
}
|
|
return e;
|
|
}
|
|
|
|
static expr *expr6(int critical)
|
|
{
|
|
int32_t type;
|
|
expr *e;
|
|
int32_t label_seg, label_ofs;
|
|
|
|
if (i == '-') {
|
|
i = scan(scpriv, tokval);
|
|
e = expr6(critical);
|
|
if (!e)
|
|
return NULL;
|
|
return scalar_mult(e, -1L, FALSE);
|
|
} else if (i == '+') {
|
|
i = scan(scpriv, tokval);
|
|
return expr6(critical);
|
|
} else if (i == '~') {
|
|
i = scan(scpriv, tokval);
|
|
e = expr6(critical);
|
|
if (!e)
|
|
return NULL;
|
|
if (is_just_unknown(e))
|
|
return unknown_expr();
|
|
else if (!is_simple(e)) {
|
|
error(ERR_NONFATAL, "`~' operator may only be applied to"
|
|
" scalar values");
|
|
return NULL;
|
|
}
|
|
return scalarvect(~reloc_value(e));
|
|
} else if (i == '!') {
|
|
i = scan(scpriv, tokval);
|
|
e = expr6(critical);
|
|
if (!e)
|
|
return NULL;
|
|
if (is_just_unknown(e))
|
|
return unknown_expr();
|
|
else if (!is_simple(e)) {
|
|
error(ERR_NONFATAL, "`!' operator may only be applied to"
|
|
" scalar values");
|
|
return NULL;
|
|
}
|
|
return scalarvect(!reloc_value(e));
|
|
} else if (i == TOKEN_SEG) {
|
|
i = scan(scpriv, tokval);
|
|
e = expr6(critical);
|
|
if (!e)
|
|
return NULL;
|
|
e = segment_part(e);
|
|
if (!e)
|
|
return NULL;
|
|
if (is_unknown(e) && critical) {
|
|
error(ERR_NONFATAL, "unable to determine segment base");
|
|
return NULL;
|
|
}
|
|
return e;
|
|
} else if (i == '(') {
|
|
i = scan(scpriv, tokval);
|
|
e = bexpr(critical);
|
|
if (!e)
|
|
return NULL;
|
|
if (i != ')') {
|
|
error(ERR_NONFATAL, "expecting `)'");
|
|
return NULL;
|
|
}
|
|
i = scan(scpriv, tokval);
|
|
return e;
|
|
} else if (i == TOKEN_NUM || i == TOKEN_REG || i == TOKEN_ID ||
|
|
i == TOKEN_HERE || i == TOKEN_BASE) {
|
|
begintemp();
|
|
switch (i) {
|
|
case TOKEN_NUM:
|
|
addtotemp(EXPR_SIMPLE, tokval->t_integer);
|
|
break;
|
|
case TOKEN_REG:
|
|
addtotemp(tokval->t_integer, 1L);
|
|
if (hint && hint->type == EAH_NOHINT)
|
|
hint->base = tokval->t_integer, hint->type = EAH_MAKEBASE;
|
|
break;
|
|
case TOKEN_ID:
|
|
case TOKEN_HERE:
|
|
case TOKEN_BASE:
|
|
/*
|
|
* If !location->known, this indicates that no
|
|
* symbol, Here or Base references are valid because we
|
|
* are in preprocess-only mode.
|
|
*/
|
|
if (!location->known) {
|
|
error(ERR_NONFATAL,
|
|
"%s not supported in preprocess-only mode",
|
|
(i == TOKEN_ID ? "symbol references" :
|
|
i == TOKEN_HERE ? "`$'" : "`$$'"));
|
|
addtotemp(EXPR_UNKNOWN, 1L);
|
|
break;
|
|
}
|
|
|
|
type = EXPR_SIMPLE; /* might get overridden by UNKNOWN */
|
|
if (i == TOKEN_BASE) {
|
|
label_seg = in_abs_seg ? abs_seg : location->segment;
|
|
label_ofs = 0;
|
|
} else if (i == TOKEN_HERE) {
|
|
label_seg = in_abs_seg ? abs_seg : location->segment;
|
|
label_ofs = in_abs_seg ? abs_offset : location->offset;
|
|
} else {
|
|
if (!labelfunc(tokval->t_charptr, &label_seg, &label_ofs)) {
|
|
if (critical == 2) {
|
|
error(ERR_NONFATAL, "symbol `%s' undefined",
|
|
tokval->t_charptr);
|
|
return NULL;
|
|
} else if (critical == 1) {
|
|
error(ERR_NONFATAL,
|
|
"symbol `%s' not defined before use",
|
|
tokval->t_charptr);
|
|
return NULL;
|
|
} else {
|
|
if (opflags)
|
|
*opflags |= 1;
|
|
type = EXPR_UNKNOWN;
|
|
label_seg = NO_SEG;
|
|
label_ofs = 1;
|
|
}
|
|
}
|
|
if (opflags && is_extern(tokval->t_charptr))
|
|
*opflags |= OPFLAG_EXTERN;
|
|
}
|
|
addtotemp(type, label_ofs);
|
|
if (label_seg != NO_SEG)
|
|
addtotemp(EXPR_SEGBASE + label_seg, 1L);
|
|
break;
|
|
}
|
|
i = scan(scpriv, tokval);
|
|
return finishtemp();
|
|
} else {
|
|
error(ERR_NONFATAL, "expression syntax error");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
void eval_global_info(struct ofmt *output, lfunc lookup_label,
|
|
loc_t * locp)
|
|
{
|
|
outfmt = output;
|
|
labelfunc = lookup_label;
|
|
location = locp;
|
|
}
|
|
|
|
expr *evaluate(scanner sc, void *scprivate, struct tokenval *tv,
|
|
int *fwref, int critical, efunc report_error,
|
|
struct eval_hints *hints)
|
|
{
|
|
expr *e;
|
|
expr *f = NULL;
|
|
|
|
hint = hints;
|
|
if (hint)
|
|
hint->type = EAH_NOHINT;
|
|
|
|
if (critical & CRITICAL) {
|
|
critical &= ~CRITICAL;
|
|
bexpr = rexp0;
|
|
} else
|
|
bexpr = expr0;
|
|
|
|
scan = sc;
|
|
scpriv = scprivate;
|
|
tokval = tv;
|
|
error = report_error;
|
|
opflags = fwref;
|
|
|
|
if (tokval->t_type == TOKEN_INVALID)
|
|
i = scan(scpriv, tokval);
|
|
else
|
|
i = tokval->t_type;
|
|
|
|
while (ntempexprs) /* initialize temporary storage */
|
|
nasm_free(tempexprs[--ntempexprs]);
|
|
|
|
e = bexpr(critical);
|
|
if (!e)
|
|
return NULL;
|
|
|
|
if (i == TOKEN_WRT) {
|
|
i = scan(scpriv, tokval); /* eat the WRT */
|
|
f = expr6(critical);
|
|
if (!f)
|
|
return NULL;
|
|
}
|
|
e = scalar_mult(e, 1L, FALSE); /* strip far-absolute segment part */
|
|
if (f) {
|
|
expr *g;
|
|
if (is_just_unknown(f))
|
|
g = unknown_expr();
|
|
else {
|
|
int64_t value;
|
|
begintemp();
|
|
if (!is_reloc(f)) {
|
|
error(ERR_NONFATAL, "invalid right-hand operand to WRT");
|
|
return NULL;
|
|
}
|
|
value = reloc_seg(f);
|
|
if (value == NO_SEG)
|
|
value = reloc_value(f) | SEG_ABS;
|
|
else if (!(value & SEG_ABS) && !(value % 2) && critical) {
|
|
error(ERR_NONFATAL, "invalid right-hand operand to WRT");
|
|
return NULL;
|
|
}
|
|
addtotemp(EXPR_WRT, value);
|
|
g = finishtemp();
|
|
}
|
|
e = add_vectors(e, g);
|
|
}
|
|
return e;
|
|
}
|