nasm/float.c
H. Peter Anvin 82f9f63378 float.c: clear off uninitialized warning
Remove uninitialized warning (harmless, but annoying.)
2007-09-24 20:53:48 -07:00

548 lines
13 KiB
C

/* float.c floating-point constant support for the Netwide Assembler
*
* The Netwide Assembler is copyright (C) 1996 Simon Tatham and
* Julian Hall. All rights reserved. The software is
* redistributable under the licence given in the file "Licence"
* distributed in the NASM archive.
*
* initial version 13/ix/96 by Simon Tatham
*/
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include "nasm.h"
#define TRUE 1
#define FALSE 0
#define MANT_WORDS 10 /* 112 bits + 48 for accuracy == 160 */
#define MANT_DIGITS 49 /* 50 digits don't fit in 160 bits */
/*
* guaranteed top bit of from is set
* => we only have to worry about _one_ bit shift to the left
*/
static int ieee_multiply(uint16_t *to, uint16_t *from)
{
uint32_t temp[MANT_WORDS * 2];
int i, j;
for (i = 0; i < MANT_WORDS * 2; i++)
temp[i] = 0;
for (i = 0; i < MANT_WORDS; i++)
for (j = 0; j < MANT_WORDS; j++) {
uint32_t n;
n = (uint32_t)to[i] * (uint32_t)from[j];
temp[i + j] += n >> 16;
temp[i + j + 1] += n & 0xFFFF;
}
for (i = MANT_WORDS * 2; --i;) {
temp[i - 1] += temp[i] >> 16;
temp[i] &= 0xFFFF;
}
if (temp[0] & 0x8000) {
memcpy(to, temp, 2*MANT_WORDS);
return 0;
} else {
for (i = 0; i < MANT_WORDS; i++)
to[i] = (temp[i] << 1) + !!(temp[i + 1] & 0x8000);
return -1;
}
}
static int hexval(char c)
{
if (c >= '0' && c <= '9')
return c-'0';
else if (c >= 'a' && c <= 'f')
return c-'a'+10;
else
return c-'A'+10;
}
static void ieee_flconvert_hex(char *string, uint16_t *mant,
int32_t *exponent, efunc error)
{
static const int log2tbl[16] =
{ -1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3 };
uint16_t mult[MANT_WORDS+1], *mp;
int ms;
int32_t twopwr;
int seendot, seendigit;
unsigned char c;
twopwr = 0;
seendot = seendigit = 0;
ms = 0;
mp = NULL;
memset(mult, 0, sizeof mult);
while ((c = *string++) != '\0') {
if (c == '.') {
if (!seendot)
seendot = TRUE;
else {
error(ERR_NONFATAL,
"too many periods in floating-point constant");
return;
}
} else if (isxdigit(c)) {
int v = hexval(c);
if (!seendigit && v) {
int l = log2tbl[v];
seendigit = 1;
mp = mult;
ms = 15-l;
twopwr = seendot ? twopwr-4+l : l-3;
}
if (seendigit) {
if (ms <= 0) {
*mp |= v >> -ms;
mp++;
if (mp > &mult[MANT_WORDS])
mp = &mult[MANT_WORDS]; /* Guard slot */
ms += 16;
}
*mp |= v << ms;
ms -= 4;
if (!seendot)
twopwr += 4;
} else {
if (seendot)
twopwr -= 4;
}
} else if (c == 'p' || c == 'P') {
twopwr += atoi(string);
break;
} else {
error(ERR_NONFATAL,
"floating-point constant: `%c' is invalid character",
c);
return;
}
}
if (!seendigit) {
memset(mant, 0, 2*MANT_WORDS); /* Zero */
*exponent = 0;
} else {
memcpy(mant, mult, 2*MANT_WORDS);
*exponent = twopwr;
}
}
static void ieee_flconvert(char *string, uint16_t *mant,
int32_t *exponent, efunc error)
{
char digits[MANT_DIGITS];
char *p, *q, *r;
uint16_t mult[MANT_WORDS], bit;
uint16_t *m;
int32_t tenpwr, twopwr;
int extratwos, started, seendot;
if (string[0] == '0' && (string[1] == 'x' || string[1] == 'X')) {
ieee_flconvert_hex(string+2, mant, exponent, error);
return;
}
p = digits;
tenpwr = 0;
started = seendot = FALSE;
while (*string && *string != 'E' && *string != 'e') {
if (*string == '.') {
if (!seendot)
seendot = TRUE;
else {
error(ERR_NONFATAL,
"too many periods in floating-point constant");
return;
}
} else if (*string >= '0' && *string <= '9') {
if (*string == '0' && !started) {
if (seendot)
tenpwr--;
} else {
started = TRUE;
if (p < digits + sizeof(digits))
*p++ = *string - '0';
if (!seendot)
tenpwr++;
}
} else {
error(ERR_NONFATAL,
"floating-point constant: `%c' is invalid character",
*string);
return;
}
string++;
}
if (*string) {
string++; /* eat the E */
tenpwr += atoi(string);
}
/*
* At this point, the memory interval [digits,p) contains a
* series of decimal digits zzzzzzz such that our number X
* satisfies
*
* X = 0.zzzzzzz * 10^tenpwr
*/
bit = 0x8000;
for (m = mant; m < mant + MANT_WORDS; m++)
*m = 0;
m = mant;
q = digits;
started = FALSE;
twopwr = 0;
while (m < mant + MANT_WORDS) {
uint16_t carry = 0;
while (p > q && !p[-1])
p--;
if (p <= q)
break;
for (r = p; r-- > q;) {
int i;
i = 2 * *r + carry;
if (i >= 10)
carry = 1, i -= 10;
else
carry = 0;
*r = i;
}
if (carry)
*m |= bit, started = TRUE;
if (started) {
if (bit == 1)
bit = 0x8000, m++;
else
bit >>= 1;
} else
twopwr--;
}
twopwr += tenpwr;
/*
* At this point the `mant' array contains the first six
* fractional places of a base-2^16 real number, which when
* multiplied by 2^twopwr and 5^tenpwr gives X. So now we
* really do multiply by 5^tenpwr.
*/
if (tenpwr < 0) {
for (m = mult; m < mult + MANT_WORDS; m++)
*m = 0xCCCC;
extratwos = -2;
tenpwr = -tenpwr;
} else if (tenpwr > 0) {
mult[0] = 0xA000;
for (m = mult + 1; m < mult + MANT_WORDS; m++)
*m = 0;
extratwos = 3;
} else
extratwos = 0;
while (tenpwr) {
if (tenpwr & 1)
twopwr += extratwos + ieee_multiply(mant, mult);
extratwos = extratwos * 2 + ieee_multiply(mult, mult);
tenpwr >>= 1;
}
/*
* Conversion is done. The elements of `mant' contain the first
* fractional places of a base-2^16 real number in [0.5,1)
* which we can multiply by 2^twopwr to get X. Or, of course,
* it contains zero.
*/
*exponent = twopwr;
}
/*
* Shift a mantissa to the right by i (i < 16) bits.
*/
static void ieee_shr(uint16_t *mant, int i)
{
uint16_t n = 0, m;
int j;
for (j = 0; j < MANT_WORDS; j++) {
m = (mant[j] << (16 - i)) & 0xFFFF;
mant[j] = (mant[j] >> i) | n;
n = m;
}
}
/*
* Round a mantissa off after i words.
*/
static int ieee_round(uint16_t *mant, int i)
{
if (mant[i] & 0x8000) {
do {
++mant[--i];
mant[i] &= 0xFFFF;
} while (i > 0 && !mant[i]);
return !i && !mant[i];
}
return 0;
}
#define put(a,b) ( (*(a)=(b)), ((a)[1]=(b)>>8) )
/* Set a bit, using *bigendian* bit numbering (0 = MSB) */
static void set_bit(uint16_t *mant, int bit)
{
mant[bit >> 4] |= 1 << (~bit & 15);
}
/* Produce standard IEEE formats, with implicit "1" bit; this makes
the following assumptions:
- the sign bit is the MSB, followed by the exponent.
- the sign bit plus exponent fit in 16 bits.
- the exponent bias is 2^(n-1)-1 for an n-bit exponent */
struct ieee_format {
int words;
int mantissa; /* Bits in the mantissa */
int exponent; /* Bits in the exponent */
};
static const struct ieee_format ieee_16 = { 1, 10, 5 };
static const struct ieee_format ieee_32 = { 2, 23, 8 };
static const struct ieee_format ieee_64 = { 4, 52, 11 };
static const struct ieee_format ieee_128 = { 8, 112, 15 };
/* Produce all the standard IEEE formats: 16, 32, 64, and 128 bits */
static int to_float(char *str, int32_t sign, uint8_t *result,
const struct ieee_format *fmt, efunc error)
{
uint16_t mant[MANT_WORDS], *mp;
int32_t exponent;
int32_t expmax = 1 << (fmt->exponent-1);
uint16_t implicit_one = 0x8000 >> fmt->exponent;
int i;
sign = (sign < 0 ? 0x8000L : 0L);
if (str[0] == '_') {
/* NaN or Infinity */
int32_t expmask = (1 << fmt->exponent)-1;
memset(mant, 0, sizeof mant);
mant[0] = expmask << (15-fmt->exponent); /* Exponent: all bits one */
switch (str[2]) {
case 'n': /* __nan__ */
case 'N':
case 'q': /* __qnan__ */
case 'Q':
set_bit(mant, fmt->exponent+1); /* Highest bit in mantissa */
break;
case 's': /* __snan__ */
case 'S':
set_bit(mant, fmt->exponent+fmt->mantissa); /* Last bit */
break;
case 'i': /* __infinity__ */
case 'I':
break;
}
} else {
ieee_flconvert(str, mant, &exponent, error);
if (mant[0] & 0x8000) {
/*
* Non-zero.
*/
exponent--;
if (exponent >= 2-expmax && exponent <= expmax) {
/*
* Normalised.
*/
exponent += expmax;
ieee_shr(mant, fmt->exponent);
ieee_round(mant, fmt->words);
/* did we scale up by one? */
if (mant[0] & (implicit_one << 1)) {
ieee_shr(mant, 1);
exponent++;
}
mant[0] &= (implicit_one-1); /* remove leading one */
mant[0] |= exponent << (15 - fmt->exponent);
} else if (exponent < 2-expmax &&
exponent >= 2-expmax-fmt->mantissa) {
/*
* Denormal.
*/
int shift = -(exponent + expmax-2-fmt->exponent);
int sh = shift % 16, wds = shift / 16;
ieee_shr(mant, sh);
if (ieee_round(mant, fmt->words - wds)
|| (sh > 0 && (mant[0] & (0x8000 >> (sh - 1))))) {
ieee_shr(mant, 1);
if (sh == 0)
mant[0] |= 0x8000;
exponent++;
}
if (wds) {
for (i = fmt->words-1; i >= wds; i--)
mant[i] = mant[i-wds];
for (; i >= 0; i--)
mant[i] = 0;
}
} else {
if (exponent > 0) {
error(ERR_NONFATAL, "overflow in floating-point constant");
return 0;
} else {
memset(mant, 0, 2*fmt->words);
}
}
} else {
/* Zero */
memset(mant, 0, 2*fmt->words);
}
}
mant[0] |= sign;
for (mp = &mant[fmt->words], i = 0; i < fmt->words; i++) {
uint16_t m = *--mp;
put(result, m);
result += 2;
}
return 1; /* success */
}
/* 80-bit format with 64-bit mantissa *including an explicit integer 1*
and 15-bit exponent. */
static int to_ldoub(char *str, int32_t sign, uint8_t *result,
efunc error)
{
uint16_t mant[MANT_WORDS];
int32_t exponent;
sign = (sign < 0 ? 0x8000L : 0L);
if (str[0] == '_') {
uint16_t is_snan = 0, is_qnan = 0x8000;
switch (str[2]) {
case 'n':
case 'N':
case 'q':
case 'Q':
is_qnan = 0xc000;
break;
case 's':
case 'S':
is_snan = 1;
break;
case 'i':
case 'I':
break;
}
put(result + 0, is_snan);
put(result + 2, 0);
put(result + 4, 0);
put(result + 6, is_qnan);
put(result + 8, 0x7fff|sign);
return 1;
}
ieee_flconvert(str, mant, &exponent, error);
if (mant[0] & 0x8000) {
/*
* Non-zero.
*/
exponent--;
if (exponent >= -16383 && exponent <= 16384) {
/*
* Normalised.
*/
exponent += 16383;
if (ieee_round(mant, 4)) /* did we scale up by one? */
ieee_shr(mant, 1), mant[0] |= 0x8000, exponent++;
put(result + 0, mant[3]);
put(result + 2, mant[2]);
put(result + 4, mant[1]);
put(result + 6, mant[0]);
put(result + 8, exponent | sign);
} else if (exponent < -16383 && exponent >= -16446) {
/*
* Denormal.
*/
int shift = -(exponent + 16383);
int sh = shift % 16, wds = shift / 16;
ieee_shr(mant, sh);
if (ieee_round(mant, 4 - wds)
|| (sh > 0 && (mant[0] & (0x8000 >> (sh - 1))))) {
ieee_shr(mant, 1);
if (sh == 0)
mant[0] |= 0x8000;
exponent++;
}
put(result + 0, (wds <= 3 ? mant[3 - wds] : 0));
put(result + 2, (wds <= 2 ? mant[2 - wds] : 0));
put(result + 4, (wds <= 1 ? mant[1 - wds] : 0));
put(result + 6, (wds == 0 ? mant[0] : 0));
put(result + 8, sign);
} else {
if (exponent > 0) {
error(ERR_NONFATAL, "overflow in floating-point constant");
return 0;
} else {
goto zero;
}
}
} else {
/*
* Zero.
*/
zero:
put(result + 0, 0);
put(result + 2, 0);
put(result + 4, 0);
put(result + 6, 0);
put(result + 8, sign);
}
return 1;
}
int float_const(char *number, int32_t sign, uint8_t *result, int bytes,
efunc error)
{
switch (bytes) {
case 2:
return to_float(number, sign, result, &ieee_16, error);
case 4:
return to_float(number, sign, result, &ieee_32, error);
case 8:
return to_float(number, sign, result, &ieee_64, error);
case 10:
return to_ldoub(number, sign, result, error);
case 16:
return to_float(number, sign, result, &ieee_128, error);
default:
error(ERR_PANIC, "strange value %d passed to float_const", bytes);
return 0;
}
}