nasm/output/outbin.c
H. Peter Anvin 5253f58c36 Add generic perfect string hashes, use for directives
Add a generic facility for generating perfect string hashes, where all
that is needed is an enum and a string table.  The existing mechanism
using a custom Perl script wrapped around a module continues to be
available for any use case where this particular approach isn't
sophisticated enough.

Much of this patch comes from renaming "enum directives" to "enum
directive" as a result of the string hash generator expecting a set of
uniform naming conventions.

Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2017-04-03 00:27:07 -07:00

1714 lines
55 KiB
C

/* ----------------------------------------------------------------------- *
*
* Copyright 1996-2013 The NASM Authors - All Rights Reserved
* See the file AUTHORS included with the NASM distribution for
* the specific copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following
* conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ----------------------------------------------------------------------- */
/*
* outbin.c output routines for the Netwide Assembler to produce
* flat-form binary files
*/
/* This is the extended version of NASM's original binary output
* format. It is backward compatible with the original BIN format,
* and contains support for multiple sections and advanced section
* ordering.
*
* Feature summary:
*
* - Users can create an arbitrary number of sections; they are not
* limited to just ".text", ".data", and ".bss".
*
* - Sections can be either progbits or nobits type.
*
* - You can specify that they be aligned at a certian boundary
* following the previous section ("align="), or positioned at an
* arbitrary byte-granular location ("start=").
*
* - You can specify a "virtual" start address for a section, which
* will be used for the calculation for all address references
* with respect to that section ("vstart=").
*
* - The ORG directive, as well as the section/segment directive
* arguments ("align=", "start=", "vstart="), can take a critical
* expression as their value. For example: "align=(1 << 12)".
*
* - You can generate map files using the 'map' directive.
*
*/
/* Uncomment the following define if you want sections to adapt
* their progbits/nobits state depending on what type of
* instructions are issued, rather than defaulting to progbits.
* Note that this behavior violates the specification.
#define ABIN_SMART_ADAPT
*/
#include "compiler.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "nasm.h"
#include "nasmlib.h"
#include "error.h"
#include "saa.h"
#include "stdscan.h"
#include "labels.h"
#include "eval.h"
#include "outform.h"
#include "outlib.h"
#ifdef OF_BIN
static FILE *rf = NULL;
static void (*do_output)(void);
/* Section flags keep track of which attributes the user has defined. */
#define START_DEFINED 0x001
#define ALIGN_DEFINED 0x002
#define FOLLOWS_DEFINED 0x004
#define VSTART_DEFINED 0x008
#define VALIGN_DEFINED 0x010
#define VFOLLOWS_DEFINED 0x020
#define TYPE_DEFINED 0x040
#define TYPE_PROGBITS 0x080
#define TYPE_NOBITS 0x100
/* This struct is used to keep track of symbols for map-file generation. */
static struct bin_label {
char *name;
struct bin_label *next;
} *no_seg_labels, **nsl_tail;
static struct Section {
char *name;
struct SAA *contents;
int64_t length; /* section length in bytes */
/* Section attributes */
int flags; /* see flag definitions above */
uint64_t align; /* section alignment */
uint64_t valign; /* notional section alignment */
uint64_t start; /* section start address */
uint64_t vstart; /* section virtual start address */
char *follows; /* the section that this one will follow */
char *vfollows; /* the section that this one will notionally follow */
int32_t start_index; /* NASM section id for non-relocated version */
int32_t vstart_index; /* the NASM section id */
struct bin_label *labels; /* linked-list of label handles for map output. */
struct bin_label **labels_end; /* Holds address of end of labels list. */
struct Section *prev; /* Points to previous section (implicit follows). */
struct Section *next; /* This links sections with a defined start address. */
/* The extended bin format allows for sections to have a "virtual"
* start address. This is accomplished by creating two sections:
* one beginning at the Load Memory Address and the other beginning
* at the Virtual Memory Address. The LMA section is only used to
* define the section.<section_name>.start label, but there isn't
* any other good way for us to handle that label.
*/
} *sections, *last_section;
static struct Reloc {
struct Reloc *next;
int32_t posn;
int32_t bytes;
int32_t secref;
int32_t secrel;
struct Section *target;
} *relocs, **reloctail;
static uint64_t origin;
static int origin_defined;
/* Stuff we need for map-file generation. */
#define MAP_ORIGIN 1
#define MAP_SUMMARY 2
#define MAP_SECTIONS 4
#define MAP_SYMBOLS 8
static int map_control = 0;
static char *infile, *outfile;
extern macros_t bin_stdmac[];
static void add_reloc(struct Section *s, int32_t bytes, int32_t secref,
int32_t secrel)
{
struct Reloc *r;
r = *reloctail = nasm_malloc(sizeof(struct Reloc));
reloctail = &r->next;
r->next = NULL;
r->posn = s->length;
r->bytes = bytes;
r->secref = secref;
r->secrel = secrel;
r->target = s;
}
static struct Section *find_section_by_name(const char *name)
{
struct Section *s;
list_for_each(s, sections)
if (!strcmp(s->name, name))
break;
return s;
}
static struct Section *find_section_by_index(int32_t index)
{
struct Section *s;
list_for_each(s, sections)
if ((index == s->vstart_index) || (index == s->start_index))
break;
return s;
}
static struct Section *create_section(char *name)
{
struct Section *s = nasm_zalloc(sizeof(*s));
s->prev = last_section;
s->name = nasm_strdup(name);
s->labels_end = &(s->labels);
s->contents = saa_init(1L);
/* Register our sections with NASM. */
s->vstart_index = seg_alloc();
s->start_index = seg_alloc();
/* FIXME: Append to a tail, we need some helper */
last_section->next = s;
last_section = s;
return last_section;
}
static void bin_cleanup(void)
{
struct Section *g, **gp;
struct Section *gs = NULL, **gsp;
struct Section *s, **sp;
struct Section *nobits = NULL, **nt;
struct Section *last_progbits;
struct bin_label *l;
struct Reloc *r;
uint64_t pend;
int h;
#ifdef DEBUG
nasm_error(ERR_DEBUG,
"bin_cleanup: Sections were initially referenced in this order:\n");
for (h = 0, s = sections; s; h++, s = s->next)
fprintf(stdout, "%i. %s\n", h, s->name);
#endif
/* Assembly has completed, so now we need to generate the output file.
* Step 1: Separate progbits and nobits sections into separate lists.
* Step 2: Sort the progbits sections into their output order.
* Step 3: Compute start addresses for all progbits sections.
* Step 4: Compute vstart addresses for all sections.
* Step 5: Apply relocations.
* Step 6: Write the sections' data to the output file.
* Step 7: Generate the map file.
* Step 8: Release all allocated memory.
*/
/* To do: Smart section-type adaptation could leave some empty sections
* without a defined type (progbits/nobits). Won't fix now since this
* feature will be disabled. */
/* Step 1: Split progbits and nobits sections into separate lists. */
nt = &nobits;
/* Move nobits sections into a separate list. Also pre-process nobits
* sections' attributes. */
for (sp = &sections->next, s = sections->next; s; s = *sp) { /* Skip progbits sections. */
if (s->flags & TYPE_PROGBITS) {
sp = &s->next;
continue;
}
/* Do some special pre-processing on nobits sections' attributes. */
if (s->flags & (START_DEFINED | ALIGN_DEFINED | FOLLOWS_DEFINED)) { /* Check for a mixture of real and virtual section attributes. */
if (s->flags & (VSTART_DEFINED | VALIGN_DEFINED |
VFOLLOWS_DEFINED))
nasm_fatal(ERR_NOFILE,
"cannot mix real and virtual attributes"
" in nobits section (%s)", s->name);
/* Real and virtual attributes mean the same thing for nobits sections. */
if (s->flags & START_DEFINED) {
s->vstart = s->start;
s->flags |= VSTART_DEFINED;
}
if (s->flags & ALIGN_DEFINED) {
s->valign = s->align;
s->flags |= VALIGN_DEFINED;
}
if (s->flags & FOLLOWS_DEFINED) {
s->vfollows = s->follows;
s->flags |= VFOLLOWS_DEFINED;
s->flags &= ~FOLLOWS_DEFINED;
}
}
/* Every section must have a start address. */
if (s->flags & VSTART_DEFINED) {
s->start = s->vstart;
s->flags |= START_DEFINED;
}
/* Move the section into the nobits list. */
*sp = s->next;
s->next = NULL;
*nt = s;
nt = &s->next;
}
/* Step 2: Sort the progbits sections into their output order. */
/* In Step 2 we move around sections in groups. A group
* begins with a section (group leader) that has a user-
* defined start address or follows section. The remainder
* of the group is made up of the sections that implicitly
* follow the group leader (i.e., they were defined after
* the group leader and were not given an explicit start
* address or follows section by the user). */
/* For anyone attempting to read this code:
* g (group) points to a group of sections, the first one of which has
* a user-defined start address or follows section.
* gp (g previous) holds the location of the pointer to g.
* gs (g scan) is a temp variable that we use to scan to the end of the group.
* gsp (gs previous) holds the location of the pointer to gs.
* nt (nobits tail) points to the nobits section-list tail.
*/
/* Link all 'follows' groups to their proper position. To do
* this we need to know three things: the start of the group
* to relocate (g), the section it is following (s), and the
* end of the group we're relocating (gs). */
for (gp = &sections, g = sections; g; g = gs) { /* Find the next follows group that is out of place (g). */
if (!(g->flags & FOLLOWS_DEFINED)) {
while (g->next) {
if ((g->next->flags & FOLLOWS_DEFINED) &&
strcmp(g->name, g->next->follows))
break;
g = g->next;
}
if (!g->next)
break;
gp = &g->next;
g = g->next;
}
/* Find the section that this group follows (s). */
for (sp = &sections, s = sections;
s && strcmp(s->name, g->follows);
sp = &s->next, s = s->next) ;
if (!s)
nasm_fatal(ERR_NOFILE, "section %s follows an invalid or"
" unknown section (%s)", g->name, g->follows);
if (s->next && (s->next->flags & FOLLOWS_DEFINED) &&
!strcmp(s->name, s->next->follows))
nasm_fatal(ERR_NOFILE, "sections %s and %s can't both follow"
" section %s", g->name, s->next->name, s->name);
/* Find the end of the current follows group (gs). */
for (gsp = &g->next, gs = g->next;
gs && (gs != s) && !(gs->flags & START_DEFINED);
gsp = &gs->next, gs = gs->next) {
if (gs->next && (gs->next->flags & FOLLOWS_DEFINED) &&
strcmp(gs->name, gs->next->follows)) {
gsp = &gs->next;
gs = gs->next;
break;
}
}
/* Re-link the group after its follows section. */
*gsp = s->next;
s->next = g;
*gp = gs;
}
/* Link all 'start' groups to their proper position. Once
* again we need to know g, s, and gs (see above). The main
* difference is we already know g since we sort by moving
* groups from the 'unsorted' list into a 'sorted' list (g
* will always be the first section in the unsorted list). */
for (g = sections, sections = NULL; g; g = gs) { /* Find the section that we will insert this group before (s). */
for (sp = &sections, s = sections; s; sp = &s->next, s = s->next)
if ((s->flags & START_DEFINED) && (g->start < s->start))
break;
/* Find the end of the group (gs). */
for (gs = g->next, gsp = &g->next;
gs && !(gs->flags & START_DEFINED);
gsp = &gs->next, gs = gs->next) ;
/* Re-link the group before the target section. */
*sp = g;
*gsp = s;
}
/* Step 3: Compute start addresses for all progbits sections. */
/* Make sure we have an origin and a start address for the first section. */
if (origin_defined) {
if (sections->flags & START_DEFINED) {
/* Make sure this section doesn't begin before the origin. */
if (sections->start < origin)
nasm_fatal(ERR_NOFILE, "section %s begins"
" before program origin", sections->name);
} else if (sections->flags & ALIGN_DEFINED) {
sections->start = ALIGN(origin, sections->align);
} else {
sections->start = origin;
}
} else {
if (!(sections->flags & START_DEFINED))
sections->start = 0;
origin = sections->start;
}
sections->flags |= START_DEFINED;
/* Make sure each section has an explicit start address. If it
* doesn't, then compute one based its alignment and the end of
* the previous section. */
for (pend = sections->start, g = s = sections; g; g = g->next) { /* Find the next section that could cause an overlap situation
* (has a defined start address, and is not zero length). */
if (g == s)
for (s = g->next;
s && ((s->length == 0) || !(s->flags & START_DEFINED));
s = s->next) ;
/* Compute the start address of this section, if necessary. */
if (!(g->flags & START_DEFINED)) { /* Default to an alignment of 4 if unspecified. */
if (!(g->flags & ALIGN_DEFINED)) {
g->align = 4;
g->flags |= ALIGN_DEFINED;
}
/* Set the section start address. */
g->start = ALIGN(pend, g->align);
g->flags |= START_DEFINED;
}
/* Ugly special case for progbits sections' virtual attributes:
* If there is a defined valign, but no vstart and no vfollows, then
* we valign after the previous progbits section. This case doesn't
* really make much sense for progbits sections with a defined start
* address, but it is possible and we must do *something*.
* Not-so-ugly special case:
* If a progbits section has no virtual attributes, we set the
* vstart equal to the start address. */
if (!(g->flags & (VSTART_DEFINED | VFOLLOWS_DEFINED))) {
if (g->flags & VALIGN_DEFINED)
g->vstart = ALIGN(pend, g->valign);
else
g->vstart = g->start;
g->flags |= VSTART_DEFINED;
}
/* Ignore zero-length sections. */
if (g->start < pend)
continue;
/* Compute the span of this section. */
pend = g->start + g->length;
/* Check for section overlap. */
if (s) {
if (s->start < origin)
nasm_fatal(ERR_NOFILE, "section %s beings before program origin",
s->name);
if (g->start > s->start)
nasm_fatal(ERR_NOFILE, "sections %s ~ %s and %s overlap!",
gs->name, g->name, s->name);
if (pend > s->start)
nasm_fatal(ERR_NOFILE, "sections %s and %s overlap!",
g->name, s->name);
}
/* Remember this section as the latest >0 length section. */
gs = g;
}
/* Step 4: Compute vstart addresses for all sections. */
/* Attach the nobits sections to the end of the progbits sections. */
for (s = sections; s->next; s = s->next) ;
s->next = nobits;
last_progbits = s;
/*
* Scan for sections that don't have a vstart address. If we find
* one we'll attempt to compute its vstart. If we can't compute
* the vstart, we leave it alone and come back to it in a
* subsequent scan. We continue scanning and re-scanning until
* we've gone one full cycle without computing any vstarts.
*/
do { /* Do one full scan of the sections list. */
for (h = 0, g = sections; g; g = g->next) {
if (g->flags & VSTART_DEFINED)
continue;
/* Find the section that this one virtually follows. */
if (g->flags & VFOLLOWS_DEFINED) {
for (s = sections; s && strcmp(g->vfollows, s->name);
s = s->next) ;
if (!s)
nasm_fatal(ERR_NOFILE,
"section %s vfollows unknown section (%s)",
g->name, g->vfollows);
} else if (g->prev != NULL)
for (s = sections; s && (s != g->prev); s = s->next) ;
/* The .bss section is the only one with prev = NULL.
In this case we implicitly follow the last progbits
section. */
else
s = last_progbits;
/* If the section we're following has a vstart, we can proceed. */
if (s->flags & VSTART_DEFINED) { /* Default to virtual alignment of four. */
if (!(g->flags & VALIGN_DEFINED)) {
g->valign = 4;
g->flags |= VALIGN_DEFINED;
}
/* Compute the vstart address. */
g->vstart = ALIGN(s->vstart + s->length, g->valign);
g->flags |= VSTART_DEFINED;
h++;
/* Start and vstart mean the same thing for nobits sections. */
if (g->flags & TYPE_NOBITS)
g->start = g->vstart;
}
}
} while (h);
/* Now check for any circular vfollows references, which will manifest
* themselves as sections without a defined vstart. */
for (h = 0, s = sections; s; s = s->next) {
if (!(s->flags & VSTART_DEFINED)) { /* Non-fatal errors after assembly has completed are generally a
* no-no, but we'll throw a fatal one eventually so it's ok. */
nasm_error(ERR_NONFATAL, "cannot compute vstart for section %s",
s->name);
h++;
}
}
if (h)
nasm_fatal(ERR_NOFILE, "circular vfollows path detected");
#ifdef DEBUG
nasm_error(ERR_DEBUG,
"bin_cleanup: Confirm final section order for output file:\n");
for (h = 0, s = sections; s && (s->flags & TYPE_PROGBITS);
h++, s = s->next)
fprintf(stdout, "%i. %s\n", h, s->name);
#endif
/* Step 5: Apply relocations. */
/* Prepare the sections for relocating. */
list_for_each(s, sections)
saa_rewind(s->contents);
/* Apply relocations. */
list_for_each(r, relocs) {
uint8_t *p, mydata[8];
int64_t l;
int b;
nasm_assert(r->bytes <= 8);
memset(mydata, 0, sizeof(mydata));
saa_fread(r->target->contents, r->posn, mydata, r->bytes);
p = mydata;
l = 0;
for (b = r->bytes - 1; b >= 0; b--)
l = (l << 8) + mydata[b];
s = find_section_by_index(r->secref);
if (s) {
if (r->secref == s->start_index)
l += s->start;
else
l += s->vstart;
}
s = find_section_by_index(r->secrel);
if (s) {
if (r->secrel == s->start_index)
l -= s->start;
else
l -= s->vstart;
}
WRITEADDR(p, l, r->bytes);
saa_fwrite(r->target->contents, r->posn, mydata, r->bytes);
}
/* Step 6: Write the section data to the output file. */
do_output();
/* Step 7: Generate the map file. */
if (map_control) {
static const char not_defined[] = "not defined";
/* Display input and output file names. */
fprintf(rf, "\n- NASM Map file ");
for (h = 63; h; h--)
fputc('-', rf);
fprintf(rf, "\n\nSource file: %s\nOutput file: %s\n\n",
infile, outfile);
if (map_control & MAP_ORIGIN) { /* Display program origin. */
fprintf(rf, "-- Program origin ");
for (h = 61; h; h--)
fputc('-', rf);
fprintf(rf, "\n\n%08"PRIX64"\n\n", origin);
}
/* Display sections summary. */
if (map_control & MAP_SUMMARY) {
fprintf(rf, "-- Sections (summary) ");
for (h = 57; h; h--)
fputc('-', rf);
fprintf(rf, "\n\nVstart Start Stop "
"Length Class Name\n");
list_for_each(s, sections) {
fprintf(rf, "%16"PRIX64" %16"PRIX64" %16"PRIX64" %08"PRIX64" ",
s->vstart, s->start, s->start + s->length,
s->length);
if (s->flags & TYPE_PROGBITS)
fprintf(rf, "progbits ");
else
fprintf(rf, "nobits ");
fprintf(rf, "%s\n", s->name);
}
fprintf(rf, "\n");
}
/* Display detailed section information. */
if (map_control & MAP_SECTIONS) {
fprintf(rf, "-- Sections (detailed) ");
for (h = 56; h; h--)
fputc('-', rf);
fprintf(rf, "\n\n");
list_for_each(s, sections) {
fprintf(rf, "---- Section %s ", s->name);
for (h = 65 - strlen(s->name); h; h--)
fputc('-', rf);
fprintf(rf, "\n\nclass: ");
if (s->flags & TYPE_PROGBITS)
fprintf(rf, "progbits");
else
fprintf(rf, "nobits");
fprintf(rf, "\nlength: %16"PRIX64"\nstart: %16"PRIX64""
"\nalign: ", s->length, s->start);
if (s->flags & ALIGN_DEFINED)
fprintf(rf, "%16"PRIX64"", s->align);
else
fputs(not_defined, rf);
fprintf(rf, "\nfollows: ");
if (s->flags & FOLLOWS_DEFINED)
fprintf(rf, "%s", s->follows);
else
fputs(not_defined, rf);
fprintf(rf, "\nvstart: %16"PRIX64"\nvalign: ", s->vstart);
if (s->flags & VALIGN_DEFINED)
fprintf(rf, "%16"PRIX64"", s->valign);
else
fputs(not_defined, rf);
fprintf(rf, "\nvfollows: ");
if (s->flags & VFOLLOWS_DEFINED)
fprintf(rf, "%s", s->vfollows);
else
fputs(not_defined, rf);
fprintf(rf, "\n\n");
}
}
/* Display symbols information. */
if (map_control & MAP_SYMBOLS) {
int32_t segment;
int64_t offset;
fprintf(rf, "-- Symbols ");
for (h = 68; h; h--)
fputc('-', rf);
fprintf(rf, "\n\n");
if (no_seg_labels) {
fprintf(rf, "---- No Section ");
for (h = 63; h; h--)
fputc('-', rf);
fprintf(rf, "\n\nValue Name\n");
list_for_each(l, no_seg_labels) {
lookup_label(l->name, &segment, &offset);
fprintf(rf, "%08"PRIX64" %s\n", offset, l->name);
}
fprintf(rf, "\n\n");
}
list_for_each(s, sections) {
if (s->labels) {
fprintf(rf, "---- Section %s ", s->name);
for (h = 65 - strlen(s->name); h; h--)
fputc('-', rf);
fprintf(rf, "\n\nReal Virtual Name\n");
list_for_each(l, s->labels) {
lookup_label(l->name, &segment, &offset);
fprintf(rf, "%16"PRIX64" %16"PRIX64" %s\n",
s->start + offset, s->vstart + offset,
l->name);
}
fprintf(rf, "\n");
}
}
}
}
/* Close the report file. */
if (map_control && (rf != stdout) && (rf != stderr))
fclose(rf);
/* Step 8: Release all allocated memory. */
/* Free sections, label pointer structs, etc.. */
while (sections) {
s = sections;
sections = s->next;
saa_free(s->contents);
nasm_free(s->name);
if (s->flags & FOLLOWS_DEFINED)
nasm_free(s->follows);
if (s->flags & VFOLLOWS_DEFINED)
nasm_free(s->vfollows);
while (s->labels) {
l = s->labels;
s->labels = l->next;
nasm_free(l);
}
nasm_free(s);
}
/* Free no-section labels. */
while (no_seg_labels) {
l = no_seg_labels;
no_seg_labels = l->next;
nasm_free(l);
}
/* Free relocation structures. */
while (relocs) {
r = relocs->next;
nasm_free(relocs);
relocs = r;
}
}
static void bin_out(int32_t segto, const void *data,
enum out_type type, uint64_t size,
int32_t segment, int32_t wrt)
{
uint8_t *p, mydata[8];
struct Section *s;
if (wrt != NO_SEG) {
wrt = NO_SEG; /* continue to do _something_ */
nasm_error(ERR_NONFATAL, "WRT not supported by binary output format");
}
/* Handle absolute-assembly (structure definitions). */
if (segto == NO_SEG) {
if (type != OUT_RESERVE)
nasm_error(ERR_NONFATAL, "attempt to assemble code in"
" [ABSOLUTE] space");
return;
}
/* Find the segment we are targeting. */
s = find_section_by_index(segto);
if (!s)
nasm_panic(0, "code directed to nonexistent segment?");
/* "Smart" section-type adaptation code. */
if (!(s->flags & TYPE_DEFINED)) {
if (type == OUT_RESERVE)
s->flags |= TYPE_DEFINED | TYPE_NOBITS;
else
s->flags |= TYPE_DEFINED | TYPE_PROGBITS;
}
if ((s->flags & TYPE_NOBITS) && (type != OUT_RESERVE))
nasm_error(ERR_WARNING, "attempt to initialize memory in a"
" nobits section: ignored");
switch (type) {
case OUT_ADDRESS:
{
int asize = abs((int)size);
if (segment != NO_SEG && !find_section_by_index(segment)) {
if (segment % 2)
nasm_error(ERR_NONFATAL, "binary output format does not support"
" segment base references");
else
nasm_error(ERR_NONFATAL, "binary output format does not support"
" external references");
segment = NO_SEG;
}
if (s->flags & TYPE_PROGBITS) {
if (segment != NO_SEG)
add_reloc(s, asize, segment, -1L);
p = mydata;
WRITEADDR(p, *(int64_t *)data, asize);
saa_wbytes(s->contents, mydata, asize);
}
/*
* Reassign size with sign dropped, we will need it
* for section length calculation.
*/
size = asize;
break;
}
case OUT_RAWDATA:
if (s->flags & TYPE_PROGBITS)
saa_wbytes(s->contents, data, size);
break;
case OUT_RESERVE:
if (s->flags & TYPE_PROGBITS) {
nasm_error(ERR_WARNING, "uninitialized space declared in"
" %s section: zeroing", s->name);
saa_wbytes(s->contents, NULL, size);
}
break;
case OUT_REL1ADR:
case OUT_REL2ADR:
case OUT_REL4ADR:
case OUT_REL8ADR:
{
int64_t addr = *(int64_t *)data - size;
size = realsize(type, size);
if (segment != NO_SEG && !find_section_by_index(segment)) {
if (segment % 2)
nasm_error(ERR_NONFATAL, "binary output format does not support"
" segment base references");
else
nasm_error(ERR_NONFATAL, "binary output format does not support"
" external references");
segment = NO_SEG;
}
if (s->flags & TYPE_PROGBITS) {
add_reloc(s, size, segment, segto);
p = mydata;
WRITEADDR(p, addr - s->length, size);
saa_wbytes(s->contents, mydata, size);
}
break;
}
default:
nasm_error(ERR_NONFATAL, "unsupported relocation type %d\n", type);
break;
}
s->length += size;
}
static void bin_deflabel(char *name, int32_t segment, int64_t offset,
int is_global, char *special)
{
(void)segment; /* Don't warn that this parameter is unused */
(void)offset; /* Don't warn that this parameter is unused */
if (special)
nasm_error(ERR_NONFATAL, "binary format does not support any"
" special symbol types");
else if (name[0] == '.' && name[1] == '.' && name[2] != '@')
nasm_error(ERR_NONFATAL, "unrecognised special symbol `%s'", name);
else if (is_global == 2)
nasm_error(ERR_NONFATAL, "binary output format does not support common"
" variables");
else {
struct Section *s;
struct bin_label ***ltp;
/* Remember label definition so we can look it up later when
* creating the map file. */
s = find_section_by_index(segment);
if (s)
ltp = &(s->labels_end);
else
ltp = &nsl_tail;
(**ltp) = nasm_malloc(sizeof(struct bin_label));
(**ltp)->name = name;
(**ltp)->next = NULL;
*ltp = &((**ltp)->next);
}
}
/* These constants and the following function are used
* by bin_secname() to parse attribute assignments. */
enum { ATTRIB_START, ATTRIB_ALIGN, ATTRIB_FOLLOWS,
ATTRIB_VSTART, ATTRIB_VALIGN, ATTRIB_VFOLLOWS,
ATTRIB_NOBITS, ATTRIB_PROGBITS
};
static int bin_read_attribute(char **line, int *attribute,
uint64_t *value)
{
expr *e;
int attrib_name_size;
struct tokenval tokval;
char *exp;
/* Skip whitespace. */
while (**line && nasm_isspace(**line))
(*line)++;
if (!**line)
return 0;
/* Figure out what attribute we're reading. */
if (!nasm_strnicmp(*line, "align=", 6)) {
*attribute = ATTRIB_ALIGN;
attrib_name_size = 6;
} else {
if (!nasm_strnicmp(*line, "start=", 6)) {
*attribute = ATTRIB_START;
attrib_name_size = 6;
} else if (!nasm_strnicmp(*line, "follows=", 8)) {
*attribute = ATTRIB_FOLLOWS;
*line += 8;
return 1;
} else if (!nasm_strnicmp(*line, "vstart=", 7)) {
*attribute = ATTRIB_VSTART;
attrib_name_size = 7;
} else if (!nasm_strnicmp(*line, "valign=", 7)) {
*attribute = ATTRIB_VALIGN;
attrib_name_size = 7;
} else if (!nasm_strnicmp(*line, "vfollows=", 9)) {
*attribute = ATTRIB_VFOLLOWS;
*line += 9;
return 1;
} else if (!nasm_strnicmp(*line, "nobits", 6) &&
(nasm_isspace((*line)[6]) || ((*line)[6] == '\0'))) {
*attribute = ATTRIB_NOBITS;
*line += 6;
return 1;
} else if (!nasm_strnicmp(*line, "progbits", 8) &&
(nasm_isspace((*line)[8]) || ((*line)[8] == '\0'))) {
*attribute = ATTRIB_PROGBITS;
*line += 8;
return 1;
} else
return 0;
}
/* Find the end of the expression. */
if ((*line)[attrib_name_size] != '(') {
/* Single term (no parenthesis). */
exp = *line += attrib_name_size;
while (**line && !nasm_isspace(**line))
(*line)++;
if (**line) {
**line = '\0';
(*line)++;
}
} else {
char c;
int pcount = 1;
/* Full expression (delimited by parenthesis) */
exp = *line += attrib_name_size + 1;
while (1) {
(*line) += strcspn(*line, "()'\"");
if (**line == '(') {
++(*line);
++pcount;
}
if (**line == ')') {
++(*line);
--pcount;
if (!pcount)
break;
}
if ((**line == '"') || (**line == '\'')) {
c = **line;
while (**line) {
++(*line);
if (**line == c)
break;
}
if (!**line) {
nasm_error(ERR_NONFATAL,
"invalid syntax in `section' directive");
return -1;
}
++(*line);
}
if (!**line) {
nasm_error(ERR_NONFATAL, "expecting `)'");
return -1;
}
}
*(*line - 1) = '\0'; /* Terminate the expression. */
}
/* Check for no value given. */
if (!*exp) {
nasm_error(ERR_WARNING, "No value given to attribute in"
" `section' directive");
return -1;
}
/* Read and evaluate the expression. */
stdscan_reset();
stdscan_set(exp);
tokval.t_type = TOKEN_INVALID;
e = evaluate(stdscan, NULL, &tokval, NULL, 1, NULL);
if (e) {
if (!is_really_simple(e)) {
nasm_error(ERR_NONFATAL, "section attribute value must be"
" a critical expression");
return -1;
}
} else {
nasm_error(ERR_NONFATAL, "Invalid attribute value"
" specified in `section' directive.");
return -1;
}
*value = (uint64_t)reloc_value(e);
return 1;
}
static void bin_sectalign(int32_t seg, unsigned int value)
{
struct Section *s = find_section_by_index(seg);
if (!s || !is_power2(value))
return;
if (value > s->align)
s->align = value;
if (!(s->flags & ALIGN_DEFINED))
s->flags |= ALIGN_DEFINED;
}
static void bin_assign_attributes(struct Section *sec, char *astring)
{
int attribute, check;
uint64_t value;
char *p;
while (1) { /* Get the next attribute. */
check = bin_read_attribute(&astring, &attribute, &value);
/* Skip bad attribute. */
if (check == -1)
continue;
/* Unknown section attribute, so skip it and warn the user. */
if (!check) {
if (!*astring)
break; /* End of line. */
else {
p = astring;
while (*astring && !nasm_isspace(*astring))
astring++;
if (*astring) {
*astring = '\0';
astring++;
}
nasm_error(ERR_WARNING, "ignoring unknown section attribute:"
" \"%s\"", p);
}
continue;
}
switch (attribute) { /* Handle nobits attribute. */
case ATTRIB_NOBITS:
if ((sec->flags & TYPE_DEFINED)
&& (sec->flags & TYPE_PROGBITS))
nasm_error(ERR_NONFATAL,
"attempt to change section type"
" from progbits to nobits");
else
sec->flags |= TYPE_DEFINED | TYPE_NOBITS;
continue;
/* Handle progbits attribute. */
case ATTRIB_PROGBITS:
if ((sec->flags & TYPE_DEFINED) && (sec->flags & TYPE_NOBITS))
nasm_error(ERR_NONFATAL, "attempt to change section type"
" from nobits to progbits");
else
sec->flags |= TYPE_DEFINED | TYPE_PROGBITS;
continue;
/* Handle align attribute. */
case ATTRIB_ALIGN:
if (!value || ((value - 1) & value)) {
nasm_error(ERR_NONFATAL,
"argument to `align' is not a power of two");
} else {
/*
* Alignment is already satisfied if
* the previous align value is greater
*/
if ((sec->flags & ALIGN_DEFINED) && (value < sec->align))
value = sec->align;
/* Don't allow a conflicting align value. */
if ((sec->flags & START_DEFINED) && (sec->start & (value - 1))) {
nasm_error(ERR_NONFATAL,
"`align' value conflicts with section start address");
} else {
sec->align = value;
sec->flags |= ALIGN_DEFINED;
}
}
continue;
/* Handle valign attribute. */
case ATTRIB_VALIGN:
if (!value || ((value - 1) & value))
nasm_error(ERR_NONFATAL, "argument to `valign' is not a"
" power of two");
else { /* Alignment is already satisfied if the previous
* align value is greater. */
if ((sec->flags & VALIGN_DEFINED) && (value < sec->valign))
value = sec->valign;
/* Don't allow a conflicting valign value. */
if ((sec->flags & VSTART_DEFINED)
&& (sec->vstart & (value - 1)))
nasm_error(ERR_NONFATAL,
"`valign' value conflicts "
"with `vstart' address");
else {
sec->valign = value;
sec->flags |= VALIGN_DEFINED;
}
}
continue;
/* Handle start attribute. */
case ATTRIB_START:
if (sec->flags & FOLLOWS_DEFINED)
nasm_error(ERR_NONFATAL, "cannot combine `start' and `follows'"
" section attributes");
else if ((sec->flags & START_DEFINED) && (value != sec->start))
nasm_error(ERR_NONFATAL, "section start address redefined");
else {
sec->start = value;
sec->flags |= START_DEFINED;
if (sec->flags & ALIGN_DEFINED) {
if (sec->start & (sec->align - 1))
nasm_error(ERR_NONFATAL, "`start' address conflicts"
" with section alignment");
sec->flags ^= ALIGN_DEFINED;
}
}
continue;
/* Handle vstart attribute. */
case ATTRIB_VSTART:
if (sec->flags & VFOLLOWS_DEFINED)
nasm_error(ERR_NONFATAL,
"cannot combine `vstart' and `vfollows'"
" section attributes");
else if ((sec->flags & VSTART_DEFINED)
&& (value != sec->vstart))
nasm_error(ERR_NONFATAL,
"section virtual start address"
" (vstart) redefined");
else {
sec->vstart = value;
sec->flags |= VSTART_DEFINED;
if (sec->flags & VALIGN_DEFINED) {
if (sec->vstart & (sec->valign - 1))
nasm_error(ERR_NONFATAL, "`vstart' address conflicts"
" with `valign' value");
sec->flags ^= VALIGN_DEFINED;
}
}
continue;
/* Handle follows attribute. */
case ATTRIB_FOLLOWS:
p = astring;
astring += strcspn(astring, " \t");
if (astring == p)
nasm_error(ERR_NONFATAL, "expecting section name for `follows'"
" attribute");
else {
*(astring++) = '\0';
if (sec->flags & START_DEFINED)
nasm_error(ERR_NONFATAL,
"cannot combine `start' and `follows'"
" section attributes");
sec->follows = nasm_strdup(p);
sec->flags |= FOLLOWS_DEFINED;
}
continue;
/* Handle vfollows attribute. */
case ATTRIB_VFOLLOWS:
if (sec->flags & VSTART_DEFINED)
nasm_error(ERR_NONFATAL,
"cannot combine `vstart' and `vfollows'"
" section attributes");
else {
p = astring;
astring += strcspn(astring, " \t");
if (astring == p)
nasm_error(ERR_NONFATAL,
"expecting section name for `vfollows'"
" attribute");
else {
*(astring++) = '\0';
sec->vfollows = nasm_strdup(p);
sec->flags |= VFOLLOWS_DEFINED;
}
}
continue;
}
}
}
static void bin_define_section_labels(void)
{
static int labels_defined = 0;
struct Section *sec;
char *label_name;
size_t base_len;
if (labels_defined)
return;
list_for_each(sec, sections) {
base_len = strlen(sec->name) + 8;
label_name = nasm_malloc(base_len + 8);
strcpy(label_name, "section.");
strcpy(label_name + 8, sec->name);
/* section.<name>.start */
strcpy(label_name + base_len, ".start");
define_label(label_name, sec->start_index, 0L, NULL, 0, 0);
/* section.<name>.vstart */
strcpy(label_name + base_len, ".vstart");
define_label(label_name, sec->vstart_index, 0L, NULL, 0, 0);
nasm_free(label_name);
}
labels_defined = 1;
}
static int32_t bin_secname(char *name, int pass, int *bits)
{
char *p;
struct Section *sec;
/* bin_secname is called with *name = NULL at the start of each
* pass. Use this opportunity to establish the default section
* (default is BITS-16 ".text" segment).
*/
if (!name) { /* Reset ORG and section attributes at the start of each pass. */
origin_defined = 0;
list_for_each(sec, sections)
sec->flags &= ~(START_DEFINED | VSTART_DEFINED |
ALIGN_DEFINED | VALIGN_DEFINED);
/* Define section start and vstart labels. */
if (pass != 1)
bin_define_section_labels();
/* Establish the default (.text) section. */
*bits = 16;
sec = find_section_by_name(".text");
sec->flags |= TYPE_DEFINED | TYPE_PROGBITS;
return sec->vstart_index;
}
/* Attempt to find the requested section. If it does not
* exist, create it. */
p = name;
while (*p && !nasm_isspace(*p))
p++;
if (*p)
*p++ = '\0';
sec = find_section_by_name(name);
if (!sec) {
sec = create_section(name);
if (!strcmp(name, ".data"))
sec->flags |= TYPE_DEFINED | TYPE_PROGBITS;
else if (!strcmp(name, ".bss")) {
sec->flags |= TYPE_DEFINED | TYPE_NOBITS;
sec->prev = NULL;
}
}
/* Handle attribute assignments. */
if (pass != 1)
bin_assign_attributes(sec, p);
#ifndef ABIN_SMART_ADAPT
/* The following line disables smart adaptation of
* PROGBITS/NOBITS section types (it forces sections to
* default to PROGBITS). */
if ((pass != 1) && !(sec->flags & TYPE_DEFINED))
sec->flags |= TYPE_DEFINED | TYPE_PROGBITS;
#endif
return sec->vstart_index;
}
static enum directive_result
bin_directive(enum directive directive, char *args, int pass)
{
switch (directive) {
case D_ORG:
{
struct tokenval tokval;
uint64_t value;
expr *e;
stdscan_reset();
stdscan_set(args);
tokval.t_type = TOKEN_INVALID;
e = evaluate(stdscan, NULL, &tokval, NULL, 1, NULL);
if (e) {
if (!is_really_simple(e))
nasm_error(ERR_NONFATAL, "org value must be a critical"
" expression");
else {
value = reloc_value(e);
/* Check for ORG redefinition. */
if (origin_defined && (value != origin))
nasm_error(ERR_NONFATAL, "program origin redefined");
else {
origin = value;
origin_defined = 1;
}
}
} else
nasm_error(ERR_NONFATAL, "No or invalid offset specified"
" in ORG directive.");
return DIRR_OK;
}
case D_MAP:
{
/* The 'map' directive allows the user to generate section
* and symbol information to stdout, stderr, or to a file. */
char *p;
if (pass != 1)
return DIRR_OK;
args += strspn(args, " \t");
while (*args) {
p = args;
args += strcspn(args, " \t");
if (*args != '\0')
*(args++) = '\0';
if (!nasm_stricmp(p, "all"))
map_control |=
MAP_ORIGIN | MAP_SUMMARY | MAP_SECTIONS | MAP_SYMBOLS;
else if (!nasm_stricmp(p, "brief"))
map_control |= MAP_ORIGIN | MAP_SUMMARY;
else if (!nasm_stricmp(p, "sections"))
map_control |= MAP_ORIGIN | MAP_SUMMARY | MAP_SECTIONS;
else if (!nasm_stricmp(p, "segments"))
map_control |= MAP_ORIGIN | MAP_SUMMARY | MAP_SECTIONS;
else if (!nasm_stricmp(p, "symbols"))
map_control |= MAP_SYMBOLS;
else if (!rf) {
if (!nasm_stricmp(p, "stdout"))
rf = stdout;
else if (!nasm_stricmp(p, "stderr"))
rf = stderr;
else { /* Must be a filename. */
rf = nasm_open_write(p, NF_TEXT);
if (!rf) {
nasm_error(ERR_WARNING, "unable to open map file `%s'",
p);
map_control = 0;
return DIRR_OK;
}
}
} else
nasm_error(ERR_WARNING, "map file already specified");
}
if (map_control == 0)
map_control |= MAP_ORIGIN | MAP_SUMMARY;
if (!rf)
rf = stdout;
return DIRR_OK;
}
default:
return DIRR_UNKNOWN;
}
}
static void bin_filename(char *inname, char *outname)
{
standard_extension(inname, outname, "");
infile = inname;
outfile = outname;
}
static void ith_filename(char *inname, char *outname)
{
standard_extension(inname, outname, ".ith");
infile = inname;
outfile = outname;
}
static void srec_filename(char *inname, char *outname)
{
standard_extension(inname, outname, ".srec");
infile = inname;
outfile = outname;
}
static int32_t bin_segbase(int32_t segment)
{
return segment;
}
const struct ofmt of_bin, of_ith, of_srec;
static void binfmt_init(void);
static void do_output_bin(void);
static void do_output_ith(void);
static void do_output_srec(void);
static void bin_init(void)
{
do_output = do_output_bin;
binfmt_init();
}
static void ith_init(void)
{
do_output = do_output_ith;
binfmt_init();
}
static void srec_init(void)
{
do_output = do_output_srec;
binfmt_init();
}
static void binfmt_init(void)
{
relocs = NULL;
reloctail = &relocs;
origin_defined = 0;
no_seg_labels = NULL;
nsl_tail = &no_seg_labels;
/* Create default section (.text). */
sections = last_section = nasm_zalloc(sizeof(struct Section));
last_section->name = nasm_strdup(".text");
last_section->contents = saa_init(1L);
last_section->flags = TYPE_DEFINED | TYPE_PROGBITS;
last_section->labels_end = &(last_section->labels);
last_section->start_index = seg_alloc();
last_section->vstart_index = seg_alloc();
}
/* Generate binary file output */
static void do_output_bin(void)
{
struct Section *s;
uint64_t addr = origin;
/* Write the progbits sections to the output file. */
list_for_each(s, sections) {
/* Skip non-progbits sections */
if (!(s->flags & TYPE_PROGBITS))
continue;
/* Skip zero-length sections */
if (s->length == 0)
continue;
/* Pad the space between sections. */
nasm_assert(addr <= s->start);
fwritezero(s->start - addr, ofile);
/* Write the section to the output file. */
saa_fpwrite(s->contents, ofile);
/* Keep track of the current file position */
addr = s->start + s->length;
}
}
/* Generate Intel hex file output */
static void write_ith_record(unsigned int len, uint16_t addr,
uint8_t type, void *data)
{
char buf[1+2+4+2+255*2+2+2];
char *p = buf;
uint8_t csum, *dptr = data;
unsigned int i;
nasm_assert(len <= 255);
csum = len + addr + (addr >> 8) + type;
for (i = 0; i < len; i++)
csum += dptr[i];
csum = -csum;
p += sprintf(p, ":%02X%04X%02X", len, addr, type);
for (i = 0; i < len; i++)
p += sprintf(p, "%02X", dptr[i]);
p += sprintf(p, "%02X\n", csum);
nasm_write(buf, p-buf, ofile);
}
static void do_output_ith(void)
{
uint8_t buf[32];
struct Section *s;
uint64_t addr, hiaddr, hilba;
uint64_t length;
unsigned int chunk;
/* Write the progbits sections to the output file. */
hilba = 0;
list_for_each(s, sections) {
/* Skip non-progbits sections */
if (!(s->flags & TYPE_PROGBITS))
continue;
/* Skip zero-length sections */
if (s->length == 0)
continue;
addr = s->start;
length = s->length;
saa_rewind(s->contents);
while (length) {
hiaddr = addr >> 16;
if (hiaddr != hilba) {
buf[0] = hiaddr >> 8;
buf[1] = hiaddr;
write_ith_record(2, 0, 4, buf);
hilba = hiaddr;
}
chunk = 32 - (addr & 31);
if (length < chunk)
chunk = length;
saa_rnbytes(s->contents, buf, chunk);
write_ith_record(chunk, (uint16_t)addr, 0, buf);
addr += chunk;
length -= chunk;
}
}
/* Write closing record */
write_ith_record(0, 0, 1, NULL);
}
/* Generate Motorola S-records */
static void write_srecord(unsigned int len, unsigned int alen,
uint32_t addr, uint8_t type, void *data)
{
char buf[2+2+8+255*2+2+2];
char *p = buf;
uint8_t csum, *dptr = data;
unsigned int i;
nasm_assert(len <= 255);
switch (alen) {
case 2:
addr &= 0xffff;
break;
case 3:
addr &= 0xffffff;
break;
case 4:
break;
default:
nasm_assert(0);
break;
}
csum = (len+alen+1) + addr + (addr >> 8) + (addr >> 16) + (addr >> 24);
for (i = 0; i < len; i++)
csum += dptr[i];
csum = 0xff-csum;
p += sprintf(p, "S%c%02X%0*X", type, len+alen+1, alen*2, addr);
for (i = 0; i < len; i++)
p += sprintf(p, "%02X", dptr[i]);
p += sprintf(p, "%02X\n", csum);
nasm_write(buf, p-buf, ofile);
}
static void do_output_srec(void)
{
uint8_t buf[32];
struct Section *s;
uint64_t addr, maxaddr;
uint64_t length;
int alen;
unsigned int chunk;
char dtype, etype;
maxaddr = 0;
list_for_each(s, sections) {
/* Skip non-progbits sections */
if (!(s->flags & TYPE_PROGBITS))
continue;
/* Skip zero-length sections */
if (s->length == 0)
continue;
addr = s->start + s->length - 1;
if (addr > maxaddr)
maxaddr = addr;
}
if (maxaddr <= 0xffff) {
alen = 2;
dtype = '1'; /* S1 = 16-bit data */
etype = '9'; /* S9 = 16-bit end */
} else if (maxaddr <= 0xffffff) {
alen = 3;
dtype = '2'; /* S2 = 24-bit data */
etype = '8'; /* S8 = 24-bit end */
} else {
alen = 4;
dtype = '3'; /* S3 = 32-bit data */
etype = '7'; /* S7 = 32-bit end */
}
/* Write head record */
write_srecord(0, 2, 0, '0', NULL);
/* Write the progbits sections to the output file. */
list_for_each(s, sections) {
/* Skip non-progbits sections */
if (!(s->flags & TYPE_PROGBITS))
continue;
/* Skip zero-length sections */
if (s->length == 0)
continue;
addr = s->start;
length = s->length;
saa_rewind(s->contents);
while (length) {
chunk = 32 - (addr & 31);
if (length < chunk)
chunk = length;
saa_rnbytes(s->contents, buf, chunk);
write_srecord(chunk, alen, (uint32_t)addr, dtype, buf);
addr += chunk;
length -= chunk;
}
}
/* Write closing record */
write_srecord(0, alen, 0, etype, NULL);
}
const struct ofmt of_bin = {
"flat-form binary files (e.g. DOS .COM, .SYS)",
"bin",
0,
64,
null_debug_arr,
&null_debug_form,
bin_stdmac,
bin_init,
nasm_do_legacy_output,
bin_out,
bin_deflabel,
bin_secname,
bin_sectalign,
bin_segbase,
bin_directive,
bin_filename,
bin_cleanup,
NULL /* pragma list */
};
const struct ofmt of_ith = {
"Intel hex",
"ith",
OFMT_TEXT,
64,
null_debug_arr,
&null_debug_form,
bin_stdmac,
ith_init,
nasm_do_legacy_output,
bin_out,
bin_deflabel,
bin_secname,
bin_sectalign,
bin_segbase,
bin_directive,
ith_filename,
bin_cleanup,
NULL /* pragma list */
};
const struct ofmt of_srec = {
"Motorola S-records",
"srec",
OFMT_TEXT,
64,
null_debug_arr,
&null_debug_form,
bin_stdmac,
srec_init,
nasm_do_legacy_output,
bin_out,
bin_deflabel,
bin_secname,
bin_sectalign,
bin_segbase,
bin_directive,
srec_filename,
bin_cleanup,
NULL /* pragma list */
};
#endif /* #ifdef OF_BIN */