nasm/output/outbin.c
H. Peter Anvin 70055964fc Additional uses of bool and enum
Proper use of bool and enum makes code easier to debug.  Do more of
it.  In particular, we really should stomp out any residual uses of
magic constants that aren't enums or, in some cases, even #defines.
2007-10-11 00:05:57 -07:00

1450 lines
51 KiB
C

/* outbin.c output routines for the Netwide Assembler to produce
* flat-form binary files
*
* The Netwide Assembler is copyright (C) 1996 Simon Tatham and
* Julian Hall. All rights reserved. The software is
* redistributable under the licence given in the file "Licence"
* distributed in the NASM archive.
*/
/* This is the extended version of NASM's original binary output
* format. It is backward compatible with the original BIN format,
* and contains support for multiple sections and advanced section
* ordering.
*
* Feature summary:
*
* - Users can create an arbitrary number of sections; they are not
* limited to just ".text", ".data", and ".bss".
*
* - Sections can be either progbits or nobits type.
*
* - You can specify that they be aligned at a certian boundary
* following the previous section ("align="), or positioned at an
* arbitrary byte-granular location ("start=").
*
* - You can specify a "virtual" start address for a section, which
* will be used for the calculation for all address references
* with respect to that section ("vstart=").
*
* - The ORG directive, as well as the section/segment directive
* arguments ("align=", "start=", "vstart="), can take a critical
* expression as their value. For example: "align=(1 << 12)".
*
* - You can generate map files using the 'map' directive.
*
*/
/* Uncomment the following define if you want sections to adapt
* their progbits/nobits state depending on what type of
* instructions are issued, rather than defaulting to progbits.
* Note that this behavior violates the specification.
#define ABIN_SMART_ADAPT
*/
#include "compiler.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <inttypes.h>
#include "nasm.h"
#include "nasmlib.h"
#include "stdscan.h"
#include "labels.h"
#include "eval.h"
#include "outform.h"
#ifdef OF_BIN
struct ofmt *bin_get_ofmt(); /* Prototype goes here since no header file. */
static FILE *fp, *rf = NULL;
static efunc error;
/* Section flags keep track of which attributes the user has defined. */
#define START_DEFINED 0x001
#define ALIGN_DEFINED 0x002
#define FOLLOWS_DEFINED 0x004
#define VSTART_DEFINED 0x008
#define VALIGN_DEFINED 0x010
#define VFOLLOWS_DEFINED 0x020
#define TYPE_DEFINED 0x040
#define TYPE_PROGBITS 0x080
#define TYPE_NOBITS 0x100
/* This struct is used to keep track of symbols for map-file generation. */
static struct bin_label {
char *name;
struct bin_label *next;
} *no_seg_labels, **nsl_tail;
static struct Section {
char *name;
struct SAA *contents;
int64_t length; /* section length in bytes */
/* Section attributes */
int flags; /* see flag definitions above */
uint64_t align; /* section alignment */
uint64_t valign; /* notional section alignment */
uint64_t start; /* section start address */
uint64_t vstart; /* section virtual start address */
char *follows; /* the section that this one will follow */
char *vfollows; /* the section that this one will notionally follow */
int32_t start_index; /* NASM section id for non-relocated version */
int32_t vstart_index; /* the NASM section id */
struct bin_label *labels; /* linked-list of label handles for map output. */
struct bin_label **labels_end; /* Holds address of end of labels list. */
struct Section *ifollows; /* Points to previous section (implicit follows). */
struct Section *next; /* This links sections with a defined start address. */
/* The extended bin format allows for sections to have a "virtual"
* start address. This is accomplished by creating two sections:
* one beginning at the Load Memory Address and the other beginning
* at the Virtual Memory Address. The LMA section is only used to
* define the section.<section_name>.start label, but there isn't
* any other good way for us to handle that label.
*/
} *sections, *last_section;
static struct Reloc {
struct Reloc *next;
int32_t posn;
int32_t bytes;
int32_t secref;
int32_t secrel;
struct Section *target;
} *relocs, **reloctail;
extern char *stdscan_bufptr;
static uint8_t format_mode; /* 0 = original bin, 1 = extended bin */
static int32_t current_section; /* only really needed if format_mode = 0 */
static uint64_t origin;
static int origin_defined;
/* Stuff we need for map-file generation. */
#define MAP_ORIGIN 1
#define MAP_SUMMARY 2
#define MAP_SECTIONS 4
#define MAP_SYMBOLS 8
static int map_control = 0;
static char *infile, *outfile;
static const char *bin_stdmac[] = {
"%define __SECT__ [section .text]",
"%imacro org 1+.nolist",
"[org %1]",
"%endmacro",
"%macro __NASM_CDecl__ 1",
"%endmacro",
NULL
};
static void add_reloc(struct Section *s, int32_t bytes, int32_t secref,
int32_t secrel)
{
struct Reloc *r;
r = *reloctail = nasm_malloc(sizeof(struct Reloc));
reloctail = &r->next;
r->next = NULL;
r->posn = s->length;
r->bytes = bytes;
r->secref = secref;
r->secrel = secrel;
r->target = s;
}
static struct Section *find_section_by_name(const char *name)
{
struct Section *s;
for (s = sections; s; s = s->next)
if (!strcmp(s->name, name))
break;
return s;
}
static struct Section *find_section_by_index(int32_t index)
{
struct Section *s;
for (s = sections; s; s = s->next)
if ((index == s->vstart_index) || (index == s->start_index))
break;
return s;
}
static struct Section *create_section(char *name)
{ /* Create a new section. */
last_section->next = nasm_malloc(sizeof(struct Section));
last_section->next->ifollows = last_section;
last_section = last_section->next;
last_section->labels = NULL;
last_section->labels_end = &(last_section->labels);
/* Initialize section attributes. */
last_section->name = nasm_strdup(name);
last_section->contents = saa_init(1L);
last_section->follows = last_section->vfollows = 0;
last_section->length = 0;
last_section->flags = 0;
last_section->next = NULL;
/* Register our sections with NASM. */
last_section->vstart_index = seg_alloc();
last_section->start_index = seg_alloc();
return last_section;
}
static void bin_cleanup(int debuginfo)
{
struct Section *g, **gp;
struct Section *gs = NULL, **gsp;
struct Section *s, **sp;
struct Section *nobits = NULL, **nt;
struct Section *last_progbits;
struct bin_label *l;
struct Reloc *r;
uint64_t pend;
int h;
(void)debuginfo; /* placate optimizers */
#ifdef DEBUG
fprintf(stdout,
"bin_cleanup: Sections were initially referenced in this order:\n");
for (h = 0, s = sections; s; h++, s = s->next)
fprintf(stdout, "%i. %s\n", h, s->name);
#endif
/* Assembly has completed, so now we need to generate the output file.
* Step 1: Separate progbits and nobits sections into separate lists.
* Step 2: Sort the progbits sections into their output order.
* Step 3: Compute start addresses for all progbits sections.
* Step 4: Compute vstart addresses for all sections.
* Step 5: Apply relocations.
* Step 6: Write the sections' data to the output file.
* Step 7: Generate the map file.
* Step 8: Release all allocated memory.
*/
/* To do: Smart section-type adaptation could leave some empty sections
* without a defined type (progbits/nobits). Won't fix now since this
* feature will be disabled. */
/* Step 1: Split progbits and nobits sections into separate lists. */
nt = &nobits;
/* Move nobits sections into a separate list. Also pre-process nobits
* sections' attributes. */
for (sp = &sections->next, s = sections->next; s; s = *sp) { /* Skip progbits sections. */
if (s->flags & TYPE_PROGBITS) {
sp = &s->next;
continue;
}
/* Do some special pre-processing on nobits sections' attributes. */
if (s->flags & (START_DEFINED | ALIGN_DEFINED | FOLLOWS_DEFINED)) { /* Check for a mixture of real and virtual section attributes. */
if (s->
flags & (VSTART_DEFINED | VALIGN_DEFINED |
VFOLLOWS_DEFINED))
error(ERR_FATAL,
"cannot mix real and virtual attributes"
" in nobits section (%s)", s->name);
/* Real and virtual attributes mean the same thing for nobits sections. */
if (s->flags & START_DEFINED) {
s->vstart = s->start;
s->flags |= VSTART_DEFINED;
}
if (s->flags & ALIGN_DEFINED) {
s->valign = s->align;
s->flags |= VALIGN_DEFINED;
}
if (s->flags & FOLLOWS_DEFINED) {
s->vfollows = s->follows;
s->flags |= VFOLLOWS_DEFINED;
s->flags &= ~FOLLOWS_DEFINED;
}
}
/* Every section must have a start address. */
if (s->flags & VSTART_DEFINED) {
s->start = s->vstart;
s->flags |= START_DEFINED;
}
/* Move the section into the nobits list. */
*sp = s->next;
s->next = NULL;
*nt = s;
nt = &s->next;
}
/* Step 2: Sort the progbits sections into their output order. */
/* In Step 2 we move around sections in groups. A group
* begins with a section (group leader) that has a user-
* defined start address or follows section. The remainder
* of the group is made up of the sections that implicitly
* follow the group leader (i.e., they were defined after
* the group leader and were not given an explicit start
* address or follows section by the user). */
/* For anyone attempting to read this code:
* g (group) points to a group of sections, the first one of which has
* a user-defined start address or follows section.
* gp (g previous) holds the location of the pointer to g.
* gs (g scan) is a temp variable that we use to scan to the end of the group.
* gsp (gs previous) holds the location of the pointer to gs.
* nt (nobits tail) points to the nobits section-list tail.
*/
/* Link all 'follows' groups to their proper position. To do
* this we need to know three things: the start of the group
* to relocate (g), the section it is following (s), and the
* end of the group we're relocating (gs). */
for (gp = &sections, g = sections; g; g = gs) { /* Find the next follows group that is out of place (g). */
if (!(g->flags & FOLLOWS_DEFINED)) {
while (g->next) {
if ((g->next->flags & FOLLOWS_DEFINED) &&
strcmp(g->name, g->next->follows))
break;
g = g->next;
}
if (!g->next)
break;
gp = &g->next;
g = g->next;
}
/* Find the section that this group follows (s). */
for (sp = &sections, s = sections;
s && strcmp(s->name, g->follows);
sp = &s->next, s = s->next) ;
if (!s)
error(ERR_FATAL, "section %s follows an invalid or"
" unknown section (%s)", g->name, g->follows);
if (s->next && (s->next->flags & FOLLOWS_DEFINED) &&
!strcmp(s->name, s->next->follows))
error(ERR_FATAL, "sections %s and %s can't both follow"
" section %s", g->name, s->next->name, s->name);
/* Find the end of the current follows group (gs). */
for (gsp = &g->next, gs = g->next;
gs && (gs != s) && !(gs->flags & START_DEFINED);
gsp = &gs->next, gs = gs->next) {
if (gs->next && (gs->next->flags & FOLLOWS_DEFINED) &&
strcmp(gs->name, gs->next->follows)) {
gsp = &gs->next;
gs = gs->next;
break;
}
}
/* Re-link the group after its follows section. */
*gsp = s->next;
s->next = g;
*gp = gs;
}
/* Link all 'start' groups to their proper position. Once
* again we need to know g, s, and gs (see above). The main
* difference is we already know g since we sort by moving
* groups from the 'unsorted' list into a 'sorted' list (g
* will always be the first section in the unsorted list). */
for (g = sections, sections = NULL; g; g = gs) { /* Find the section that we will insert this group before (s). */
for (sp = &sections, s = sections; s; sp = &s->next, s = s->next)
if ((s->flags & START_DEFINED) && (g->start < s->start))
break;
/* Find the end of the group (gs). */
for (gs = g->next, gsp = &g->next;
gs && !(gs->flags & START_DEFINED);
gsp = &gs->next, gs = gs->next) ;
/* Re-link the group before the target section. */
*sp = g;
*gsp = s;
}
/* Step 3: Compute start addresses for all progbits sections. */
/* Make sure we have an origin and a start address for the first section. */
if (origin_defined)
switch (sections->flags & (START_DEFINED | ALIGN_DEFINED)) {
case START_DEFINED | ALIGN_DEFINED:
case START_DEFINED:
/* Make sure this section doesn't begin before the origin. */
if (sections->start < origin)
error(ERR_FATAL, "section %s begins"
" before program origin", sections->name);
break;
case ALIGN_DEFINED:
sections->start = ((origin + sections->align - 1) &
~(sections->align - 1));
break;
case 0:
sections->start = origin;
} else {
if (!(sections->flags & START_DEFINED))
sections->start = 0;
origin = sections->start;
}
sections->flags |= START_DEFINED;
/* Make sure each section has an explicit start address. If it
* doesn't, then compute one based its alignment and the end of
* the previous section. */
for (pend = sections->start, g = s = sections; g; g = g->next) { /* Find the next section that could cause an overlap situation
* (has a defined start address, and is not zero length). */
if (g == s)
for (s = g->next;
s && ((s->length == 0) || !(s->flags & START_DEFINED));
s = s->next) ;
/* Compute the start address of this section, if necessary. */
if (!(g->flags & START_DEFINED)) { /* Default to an alignment of 4 if unspecified. */
if (!(g->flags & ALIGN_DEFINED)) {
g->align = 4;
g->flags |= ALIGN_DEFINED;
}
/* Set the section start address. */
g->start = (pend + g->align - 1) & ~(g->align - 1);
g->flags |= START_DEFINED;
}
/* Ugly special case for progbits sections' virtual attributes:
* If there is a defined valign, but no vstart and no vfollows, then
* we valign after the previous progbits section. This case doesn't
* really make much sense for progbits sections with a defined start
* address, but it is possible and we must do *something*.
* Not-so-ugly special case:
* If a progbits section has no virtual attributes, we set the
* vstart equal to the start address. */
if (!(g->flags & (VSTART_DEFINED | VFOLLOWS_DEFINED))) {
if (g->flags & VALIGN_DEFINED)
g->vstart = (pend + g->valign - 1) & ~(g->valign - 1);
else
g->vstart = g->start;
g->flags |= VSTART_DEFINED;
}
/* Ignore zero-length sections. */
if (g->start < pend)
continue;
/* Compute the span of this section. */
pend = g->start + g->length;
/* Check for section overlap. */
if (s) {
if (g->start > s->start)
error(ERR_FATAL, "sections %s ~ %s and %s overlap!",
gs->name, g->name, s->name);
if (pend > s->start)
error(ERR_FATAL, "sections %s and %s overlap!",
g->name, s->name);
}
/* Remember this section as the latest >0 length section. */
gs = g;
}
/* Step 4: Compute vstart addresses for all sections. */
/* Attach the nobits sections to the end of the progbits sections. */
for (s = sections; s->next; s = s->next) ;
s->next = nobits;
last_progbits = s;
/* Scan for sections that don't have a vstart address. If we find one we'll
* attempt to compute its vstart. If we can't compute the vstart, we leave
* it alone and come back to it in a subsequent scan. We continue scanning
* and re-scanning until we've gone one full cycle without computing any
* vstarts. */
do { /* Do one full scan of the sections list. */
for (h = 0, g = sections; g; g = g->next) {
if (g->flags & VSTART_DEFINED)
continue;
/* Find the section that this one virtually follows. */
if (g->flags & VFOLLOWS_DEFINED) {
for (s = sections; s && strcmp(g->vfollows, s->name);
s = s->next) ;
if (!s)
error(ERR_FATAL,
"section %s vfollows unknown section (%s)",
g->name, g->vfollows);
} else if (g->ifollows != NULL)
for (s = sections; s && (s != g->ifollows); s = s->next) ;
/* The .bss section is the only one with ifollows = NULL. In this case we
* implicitly follow the last progbits section. */
else
s = last_progbits;
/* If the section we're following has a vstart, we can proceed. */
if (s->flags & VSTART_DEFINED) { /* Default to virtual alignment of four. */
if (!(g->flags & VALIGN_DEFINED)) {
g->valign = 4;
g->flags |= VALIGN_DEFINED;
}
/* Compute the vstart address. */
g->vstart =
(s->vstart + s->length + g->valign - 1) & ~(g->valign -
1);
g->flags |= VSTART_DEFINED;
h++;
/* Start and vstart mean the same thing for nobits sections. */
if (g->flags & TYPE_NOBITS)
g->start = g->vstart;
}
}
} while (h);
/* Now check for any circular vfollows references, which will manifest
* themselves as sections without a defined vstart. */
for (h = 0, s = sections; s; s = s->next) {
if (!(s->flags & VSTART_DEFINED)) { /* Non-fatal errors after assembly has completed are generally a
* no-no, but we'll throw a fatal one eventually so it's ok. */
error(ERR_NONFATAL, "cannot compute vstart for section %s",
s->name);
h++;
}
}
if (h)
error(ERR_FATAL, "circular vfollows path detected");
#ifdef DEBUG
fprintf(stdout,
"bin_cleanup: Confirm final section order for output file:\n");
for (h = 0, s = sections; s && (s->flags & TYPE_PROGBITS);
h++, s = s->next)
fprintf(stdout, "%i. %s\n", h, s->name);
#endif
/* Step 5: Apply relocations. */
/* Prepare the sections for relocating. */
for (s = sections; s; s = s->next)
saa_rewind(s->contents);
/* Apply relocations. */
for (r = relocs; r; r = r->next) {
uint8_t *p, *q, mydata[8];
int64_t l;
saa_fread(r->target->contents, r->posn, mydata, r->bytes);
p = q = mydata;
l = *p++;
if (r->bytes > 1) {
l += ((int64_t)*p++) << 8;
if (r->bytes >= 4) {
l += ((int64_t)*p++) << 16;
l += ((int64_t)*p++) << 24;
}
if (r->bytes == 8) {
l += ((int64_t)*p++) << 32;
l += ((int64_t)*p++) << 40;
l += ((int64_t)*p++) << 48;
l += ((int64_t)*p++) << 56;
}
}
s = find_section_by_index(r->secref);
if (s) {
if (r->secref == s->start_index)
l += s->start;
else
l += s->vstart;
}
s = find_section_by_index(r->secrel);
if (s) {
if (r->secrel == s->start_index)
l -= s->start;
else
l -= s->vstart;
}
if (r->bytes >= 4)
WRITEDLONG(q, l);
else if (r->bytes == 2)
WRITESHORT(q, l);
else
*q++ = (uint8_t)(l & 0xFF);
saa_fwrite(r->target->contents, r->posn, mydata, r->bytes);
}
/* Step 6: Write the section data to the output file. */
/* Write the progbits sections to the output file. */
for (pend = origin, s = sections; s && (s->flags & TYPE_PROGBITS); s = s->next) { /* Skip zero-length sections. */
if (s->length == 0)
continue;
/* Pad the space between sections. */
for (h = s->start - pend; h; h--)
fputc('\0', fp);
/* Write the section to the output file. */
if (s->length > 0)
saa_fpwrite(s->contents, fp);
pend = s->start + s->length;
}
/* Done writing the file, so close it. */
fclose(fp);
/* Step 7: Generate the map file. */
if (map_control) {
const char *not_defined = { "not defined" };
/* Display input and output file names. */
fprintf(rf, "\n- NASM Map file ");
for (h = 63; h; h--)
fputc('-', rf);
fprintf(rf, "\n\nSource file: %s\nOutput file: %s\n\n",
infile, outfile);
if (map_control & MAP_ORIGIN) { /* Display program origin. */
fprintf(rf, "-- Program origin ");
for (h = 61; h; h--)
fputc('-', rf);
fprintf(rf, "\n\n%08"PRIX64"\n\n", origin);
}
/* Display sections summary. */
if (map_control & MAP_SUMMARY) {
fprintf(rf, "-- Sections (summary) ");
for (h = 57; h; h--)
fputc('-', rf);
fprintf(rf, "\n\nVstart Start Stop "
"Length Class Name\n");
for (s = sections; s; s = s->next) {
fprintf(rf, "%16"PRIX64" %16"PRIX64" %16"PRIX64" %08"PRIX64" ",
s->vstart, s->start, s->start + s->length,
s->length);
if (s->flags & TYPE_PROGBITS)
fprintf(rf, "progbits ");
else
fprintf(rf, "nobits ");
fprintf(rf, "%s\n", s->name);
}
fprintf(rf, "\n");
}
/* Display detailed section information. */
if (map_control & MAP_SECTIONS) {
fprintf(rf, "-- Sections (detailed) ");
for (h = 56; h; h--)
fputc('-', rf);
fprintf(rf, "\n\n");
for (s = sections; s; s = s->next) {
fprintf(rf, "---- Section %s ", s->name);
for (h = 65 - strlen(s->name); h; h--)
fputc('-', rf);
fprintf(rf, "\n\nclass: ");
if (s->flags & TYPE_PROGBITS)
fprintf(rf, "progbits");
else
fprintf(rf, "nobits");
fprintf(rf, "\nlength: %16"PRIX64"\nstart: %16"PRIX64""
"\nalign: ", s->length, s->start);
if (s->flags & ALIGN_DEFINED)
fprintf(rf, "%16"PRIX64"", s->align);
else
fprintf(rf, not_defined);
fprintf(rf, "\nfollows: ");
if (s->flags & FOLLOWS_DEFINED)
fprintf(rf, "%s", s->follows);
else
fprintf(rf, not_defined);
fprintf(rf, "\nvstart: %16"PRIX64"\nvalign: ", s->vstart);
if (s->flags & VALIGN_DEFINED)
fprintf(rf, "%16"PRIX64"", s->valign);
else
fprintf(rf, not_defined);
fprintf(rf, "\nvfollows: ");
if (s->flags & VFOLLOWS_DEFINED)
fprintf(rf, "%s", s->vfollows);
else
fprintf(rf, not_defined);
fprintf(rf, "\n\n");
}
}
/* Display symbols information. */
if (map_control & MAP_SYMBOLS) {
int32_t segment, offset;
fprintf(rf, "-- Symbols ");
for (h = 68; h; h--)
fputc('-', rf);
fprintf(rf, "\n\n");
if (no_seg_labels) {
fprintf(rf, "---- No Section ");
for (h = 63; h; h--)
fputc('-', rf);
fprintf(rf, "\n\nValue Name\n");
for (l = no_seg_labels; l; l = l->next) {
lookup_label(l->name, &segment, &offset);
fprintf(rf, "%08"PRIX32" %s\n", offset, l->name);
}
fprintf(rf, "\n\n");
}
for (s = sections; s; s = s->next) {
if (s->labels) {
fprintf(rf, "---- Section %s ", s->name);
for (h = 65 - strlen(s->name); h; h--)
fputc('-', rf);
fprintf(rf, "\n\nReal Virtual Name\n");
for (l = s->labels; l; l = l->next) {
lookup_label(l->name, &segment, &offset);
fprintf(rf, "%16"PRIX64" %16"PRIX64" %s\n",
s->start + offset, s->vstart + offset,
l->name);
}
fprintf(rf, "\n");
}
}
}
}
/* Close the report file. */
if (map_control && (rf != stdout) && (rf != stderr))
fclose(rf);
/* Step 8: Release all allocated memory. */
/* Free sections, label pointer structs, etc.. */
while (sections) {
s = sections;
sections = s->next;
saa_free(s->contents);
nasm_free(s->name);
if (s->flags & FOLLOWS_DEFINED)
nasm_free(s->follows);
if (s->flags & VFOLLOWS_DEFINED)
nasm_free(s->vfollows);
while (s->labels) {
l = s->labels;
s->labels = l->next;
nasm_free(l);
}
nasm_free(s);
}
/* Free no-section labels. */
while (no_seg_labels) {
l = no_seg_labels;
no_seg_labels = l->next;
nasm_free(l);
}
/* Free relocation structures. */
while (relocs) {
r = relocs->next;
nasm_free(relocs);
relocs = r;
}
}
static void bin_out(int32_t segto, const void *data, uint32_t type,
int32_t segment, int32_t wrt)
{
uint8_t *p, mydata[8];
struct Section *s;
int32_t realbytes;
if (wrt != NO_SEG) {
wrt = NO_SEG; /* continue to do _something_ */
error(ERR_NONFATAL, "WRT not supported by binary output format");
}
/* Handle absolute-assembly (structure definitions). */
if (segto == NO_SEG) {
if ((type & OUT_TYPMASK) != OUT_RESERVE)
error(ERR_NONFATAL, "attempt to assemble code in"
" [ABSOLUTE] space");
return;
}
/* Find the segment we are targeting. */
s = find_section_by_index(segto);
if (!s)
error(ERR_PANIC, "code directed to nonexistent segment?");
/* "Smart" section-type adaptation code. */
if (!(s->flags & TYPE_DEFINED)) {
if ((type & OUT_TYPMASK) == OUT_RESERVE)
s->flags |= TYPE_DEFINED | TYPE_NOBITS;
else
s->flags |= TYPE_DEFINED | TYPE_PROGBITS;
}
if ((s->flags & TYPE_NOBITS) && ((type & OUT_TYPMASK) != OUT_RESERVE))
error(ERR_WARNING, "attempt to initialize memory in a"
" nobits section: ignored");
if ((type & OUT_TYPMASK) == OUT_ADDRESS) {
if (segment != NO_SEG && !find_section_by_index(segment)) {
if (segment % 2)
error(ERR_NONFATAL, "binary output format does not support"
" segment base references");
else
error(ERR_NONFATAL, "binary output format does not support"
" external references");
segment = NO_SEG;
}
if (s->flags & TYPE_PROGBITS) {
if (segment != NO_SEG)
add_reloc(s, type & OUT_SIZMASK, segment, -1L);
p = mydata;
if ((type & OUT_SIZMASK) == 4)
WRITELONG(p, *(int32_t *)data);
else if ((type & OUT_SIZMASK) == 8)
WRITEDLONG(p, *(int64_t *)data);
else
WRITESHORT(p, *(int32_t *)data);
saa_wbytes(s->contents, mydata, type & OUT_SIZMASK);
}
s->length += type & OUT_SIZMASK;
} else if ((type & OUT_TYPMASK) == OUT_RAWDATA) {
type &= OUT_SIZMASK;
if (s->flags & TYPE_PROGBITS)
saa_wbytes(s->contents, data, type);
s->length += type;
} else if ((type & OUT_TYPMASK) == OUT_RESERVE) {
type &= OUT_SIZMASK;
if (s->flags & TYPE_PROGBITS) {
error(ERR_WARNING, "uninitialized space declared in"
" %s section: zeroing", s->name);
saa_wbytes(s->contents, NULL, type);
}
s->length += type;
} else if ((type & OUT_TYPMASK) == OUT_REL2ADR ||
(type & OUT_TYPMASK) == OUT_REL4ADR) {
realbytes = (type & OUT_TYPMASK);
if (realbytes == OUT_REL2ADR)
realbytes = 2;
else
realbytes = 4;
if (segment != NO_SEG && !find_section_by_index(segment)) {
if (segment % 2)
error(ERR_NONFATAL, "binary output format does not support"
" segment base references");
else
error(ERR_NONFATAL, "binary output format does not support"
" external references");
segment = NO_SEG;
}
if (s->flags & TYPE_PROGBITS) {
add_reloc(s, realbytes, segment, segto);
p = mydata;
if (realbytes == 4)
WRITELONG(p, *(int32_t *)data - realbytes - s->length);
else
WRITESHORT(p, *(int32_t *)data - realbytes - s->length);
saa_wbytes(s->contents, mydata, realbytes);
}
s->length += realbytes;
}
}
static void bin_deflabel(char *name, int32_t segment, int32_t offset,
int is_global, char *special)
{
(void)segment; /* Don't warn that this parameter is unused */
(void)offset; /* Don't warn that this parameter is unused */
if (special)
error(ERR_NONFATAL, "binary format does not support any"
" special symbol types");
else if (name[0] == '.' && name[1] == '.' && name[2] != '@')
error(ERR_NONFATAL, "unrecognised special symbol `%s'", name);
else if (is_global == 2)
error(ERR_NONFATAL, "binary output format does not support common"
" variables");
else {
struct Section *s;
struct bin_label ***ltp;
/* Remember label definition so we can look it up later when
* creating the map file. */
s = find_section_by_index(segment);
if (s)
ltp = &(s->labels_end);
else
ltp = &nsl_tail;
(**ltp) = nasm_malloc(sizeof(struct bin_label));
(**ltp)->name = name;
(**ltp)->next = NULL;
*ltp = &((**ltp)->next);
}
}
/* These constants and the following function are used
* by bin_secname() to parse attribute assignments. */
enum { ATTRIB_START, ATTRIB_ALIGN, ATTRIB_FOLLOWS,
ATTRIB_VSTART, ATTRIB_VALIGN, ATTRIB_VFOLLOWS,
ATTRIB_NOBITS, ATTRIB_PROGBITS
};
static int bin_read_attribute(char **line, int *attribute,
uint64_t *value)
{
expr *e;
int attrib_name_size;
struct tokenval tokval;
char *exp;
/* Skip whitespace. */
while (**line && isspace(**line))
(*line)++;
if (!**line)
return 0;
/* Figure out what attribute we're reading. */
if (!nasm_strnicmp(*line, "align=", 6)) {
*attribute = ATTRIB_ALIGN;
attrib_name_size = 6;
} else if (format_mode) {
if (!nasm_strnicmp(*line, "start=", 6)) {
*attribute = ATTRIB_START;
attrib_name_size = 6;
} else if (!nasm_strnicmp(*line, "follows=", 8)) {
*attribute = ATTRIB_FOLLOWS;
*line += 8;
return 1;
} else if (!nasm_strnicmp(*line, "vstart=", 7)) {
*attribute = ATTRIB_VSTART;
attrib_name_size = 7;
} else if (!nasm_strnicmp(*line, "valign=", 7)) {
*attribute = ATTRIB_VALIGN;
attrib_name_size = 7;
} else if (!nasm_strnicmp(*line, "vfollows=", 9)) {
*attribute = ATTRIB_VFOLLOWS;
*line += 9;
return 1;
} else if (!nasm_strnicmp(*line, "nobits", 6) &&
(isspace((*line)[6]) || ((*line)[6] == '\0'))) {
*attribute = ATTRIB_NOBITS;
*line += 6;
return 1;
} else if (!nasm_strnicmp(*line, "progbits", 8) &&
(isspace((*line)[8]) || ((*line)[8] == '\0'))) {
*attribute = ATTRIB_PROGBITS;
*line += 8;
return 1;
} else
return 0;
} else
return 0;
/* Find the end of the expression. */
if ((*line)[attrib_name_size] != '(') {
/* Single term (no parenthesis). */
exp = *line += attrib_name_size;
while (**line && !isspace(**line))
(*line)++;
if (**line) {
**line = '\0';
(*line)++;
}
} else {
char c;
int pcount = 1;
/* Full expression (delimited by parenthesis) */
exp = *line += attrib_name_size + 1;
while (1) {
(*line) += strcspn(*line, "()'\"");
if (**line == '(') {
++(*line);
++pcount;
}
if (**line == ')') {
++(*line);
--pcount;
if (!pcount)
break;
}
if ((**line == '"') || (**line == '\'')) {
c = **line;
while (**line) {
++(*line);
if (**line == c)
break;
}
if (!**line) {
error(ERR_NONFATAL,
"invalid syntax in `section' directive");
return -1;
}
++(*line);
}
if (!**line) {
error(ERR_NONFATAL, "expecting `)'");
return -1;
}
}
*(*line - 1) = '\0'; /* Terminate the expression. */
}
/* Check for no value given. */
if (!*exp) {
error(ERR_WARNING, "No value given to attribute in"
" `section' directive");
return -1;
}
/* Read and evaluate the expression. */
stdscan_reset();
stdscan_bufptr = exp;
tokval.t_type = TOKEN_INVALID;
e = evaluate(stdscan, NULL, &tokval, NULL, 1, error, NULL);
if (e) {
if (!is_really_simple(e)) {
error(ERR_NONFATAL, "section attribute value must be"
" a critical expression");
return -1;
}
} else {
error(ERR_NONFATAL, "Invalid attribute value"
" specified in `section' directive.");
return -1;
}
*value = (uint64_t)reloc_value(e);
return 1;
}
static void bin_assign_attributes(struct Section *sec, char *astring)
{
int attribute, check;
uint64_t value;
char *p;
while (1) { /* Get the next attribute. */
check = bin_read_attribute(&astring, &attribute, &value);
/* Skip bad attribute. */
if (check == -1)
continue;
/* Unknown section attribute, so skip it and warn the user. */
if (!check) {
if (!*astring)
break; /* End of line. */
else {
p = astring;
while (*astring && !isspace(*astring))
astring++;
if (*astring) {
*astring = '\0';
astring++;
}
error(ERR_WARNING, "ignoring unknown section attribute:"
" \"%s\"", p);
}
continue;
}
switch (attribute) { /* Handle nobits attribute. */
case ATTRIB_NOBITS:
if ((sec->flags & TYPE_DEFINED)
&& (sec->flags & TYPE_PROGBITS))
error(ERR_NONFATAL,
"attempt to change section type"
" from progbits to nobits");
else
sec->flags |= TYPE_DEFINED | TYPE_NOBITS;
continue;
/* Handle progbits attribute. */
case ATTRIB_PROGBITS:
if ((sec->flags & TYPE_DEFINED) && (sec->flags & TYPE_NOBITS))
error(ERR_NONFATAL, "attempt to change section type"
" from nobits to progbits");
else
sec->flags |= TYPE_DEFINED | TYPE_PROGBITS;
continue;
/* Handle align attribute. */
case ATTRIB_ALIGN:
if (!format_mode && (!strcmp(sec->name, ".text")))
error(ERR_NONFATAL, "cannot specify an alignment"
" to the .text section");
else {
if (!value || ((value - 1) & value))
error(ERR_NONFATAL, "argument to `align' is not a"
" power of two");
else { /* Alignment is already satisfied if the previous
* align value is greater. */
if ((sec->flags & ALIGN_DEFINED)
&& (value < sec->align))
value = sec->align;
/* Don't allow a conflicting align value. */
if ((sec->flags & START_DEFINED)
&& (sec->start & (value - 1)))
error(ERR_NONFATAL,
"`align' value conflicts "
"with section start address");
else {
sec->align = value;
sec->flags |= ALIGN_DEFINED;
}
}
}
continue;
/* Handle valign attribute. */
case ATTRIB_VALIGN:
if (!value || ((value - 1) & value))
error(ERR_NONFATAL, "argument to `valign' is not a"
" power of two");
else { /* Alignment is already satisfied if the previous
* align value is greater. */
if ((sec->flags & VALIGN_DEFINED) && (value < sec->valign))
value = sec->valign;
/* Don't allow a conflicting valign value. */
if ((sec->flags & VSTART_DEFINED)
&& (sec->vstart & (value - 1)))
error(ERR_NONFATAL,
"`valign' value conflicts "
"with `vstart' address");
else {
sec->valign = value;
sec->flags |= VALIGN_DEFINED;
}
}
continue;
/* Handle start attribute. */
case ATTRIB_START:
if (sec->flags & FOLLOWS_DEFINED)
error(ERR_NONFATAL, "cannot combine `start' and `follows'"
" section attributes");
else if ((sec->flags & START_DEFINED) && (value != sec->start))
error(ERR_NONFATAL, "section start address redefined");
else {
sec->start = value;
sec->flags |= START_DEFINED;
if (sec->flags & ALIGN_DEFINED) {
if (sec->start & (sec->align - 1))
error(ERR_NONFATAL, "`start' address conflicts"
" with section alignment");
sec->flags ^= ALIGN_DEFINED;
}
}
continue;
/* Handle vstart attribute. */
case ATTRIB_VSTART:
if (sec->flags & VFOLLOWS_DEFINED)
error(ERR_NONFATAL,
"cannot combine `vstart' and `vfollows'"
" section attributes");
else if ((sec->flags & VSTART_DEFINED)
&& (value != sec->vstart))
error(ERR_NONFATAL,
"section virtual start address"
" (vstart) redefined");
else {
sec->vstart = value;
sec->flags |= VSTART_DEFINED;
if (sec->flags & VALIGN_DEFINED) {
if (sec->vstart & (sec->valign - 1))
error(ERR_NONFATAL, "`vstart' address conflicts"
" with `valign' value");
sec->flags ^= VALIGN_DEFINED;
}
}
continue;
/* Handle follows attribute. */
case ATTRIB_FOLLOWS:
p = astring;
astring += strcspn(astring, " \t");
if (astring == p)
error(ERR_NONFATAL, "expecting section name for `follows'"
" attribute");
else {
*(astring++) = '\0';
if (sec->flags & START_DEFINED)
error(ERR_NONFATAL,
"cannot combine `start' and `follows'"
" section attributes");
sec->follows = nasm_strdup(p);
sec->flags |= FOLLOWS_DEFINED;
}
continue;
/* Handle vfollows attribute. */
case ATTRIB_VFOLLOWS:
if (sec->flags & VSTART_DEFINED)
error(ERR_NONFATAL,
"cannot combine `vstart' and `vfollows'"
" section attributes");
else {
p = astring;
astring += strcspn(astring, " \t");
if (astring == p)
error(ERR_NONFATAL,
"expecting section name for `vfollows'"
" attribute");
else {
*(astring++) = '\0';
sec->vfollows = nasm_strdup(p);
sec->flags |= VFOLLOWS_DEFINED;
}
}
continue;
}
}
}
static void bin_define_section_labels(void)
{
static int labels_defined = 0;
struct Section *sec;
char *label_name;
size_t base_len;
if (labels_defined)
return;
for (sec = sections; sec; sec = sec->next) {
base_len = strlen(sec->name) + 8;
label_name = nasm_malloc(base_len + 8);
strcpy(label_name, "section.");
strcpy(label_name + 8, sec->name);
/* section.<name>.start */
strcpy(label_name + base_len, ".start");
define_label(label_name, sec->start_index, 0L,
NULL, 0, 0, bin_get_ofmt(), error);
/* section.<name>.vstart */
strcpy(label_name + base_len, ".vstart");
define_label(label_name, sec->vstart_index, 0L,
NULL, 0, 0, bin_get_ofmt(), error);
nasm_free(label_name);
}
labels_defined = 1;
}
static int32_t bin_secname(char *name, int pass, int *bits)
{
char *p;
struct Section *sec;
/* bin_secname is called with *name = NULL at the start of each
* pass. Use this opportunity to establish the default section
* (default is BITS-16 ".text" segment).
*/
if (!name) { /* Reset ORG and section attributes at the start of each pass. */
origin_defined = 0;
for (sec = sections; sec; sec = sec->next)
sec->flags &= ~(START_DEFINED | VSTART_DEFINED |
ALIGN_DEFINED | VALIGN_DEFINED);
/* Define section start and vstart labels. */
if (format_mode && (pass != 1))
bin_define_section_labels();
/* Establish the default (.text) section. */
*bits = 16;
sec = find_section_by_name(".text");
sec->flags |= TYPE_DEFINED | TYPE_PROGBITS;
current_section = sec->vstart_index;
return current_section;
}
/* Attempt to find the requested section. If it does not
* exist, create it. */
p = name;
while (*p && !isspace(*p))
p++;
if (*p)
*p++ = '\0';
sec = find_section_by_name(name);
if (!sec) {
sec = create_section(name);
if (!strcmp(name, ".data"))
sec->flags |= TYPE_DEFINED | TYPE_PROGBITS;
else if (!strcmp(name, ".bss")) {
sec->flags |= TYPE_DEFINED | TYPE_NOBITS;
sec->ifollows = NULL;
} else if (!format_mode) {
error(ERR_NONFATAL, "section name must be "
".text, .data, or .bss");
return current_section;
}
}
/* Handle attribute assignments. */
if (pass != 1)
bin_assign_attributes(sec, p);
#ifndef ABIN_SMART_ADAPT
/* The following line disables smart adaptation of
* PROGBITS/NOBITS section types (it forces sections to
* default to PROGBITS). */
if ((pass != 1) && !(sec->flags & TYPE_DEFINED))
sec->flags |= TYPE_DEFINED | TYPE_PROGBITS;
#endif
/* Set the current section and return. */
current_section = sec->vstart_index;
return current_section;
}
static int bin_directive(char *directive, char *args, int pass)
{
/* Handle ORG directive */
if (!nasm_stricmp(directive, "org")) {
struct tokenval tokval;
uint64_t value;
expr *e;
stdscan_reset();
stdscan_bufptr = args;
tokval.t_type = TOKEN_INVALID;
e = evaluate(stdscan, NULL, &tokval, NULL, 1, error, NULL);
if (e) {
if (!is_really_simple(e))
error(ERR_NONFATAL, "org value must be a critical"
" expression");
else {
value = reloc_value(e);
/* Check for ORG redefinition. */
if (origin_defined && (value != origin))
error(ERR_NONFATAL, "program origin redefined");
else {
origin = value;
origin_defined = 1;
}
}
} else
error(ERR_NONFATAL, "No or invalid offset specified"
" in ORG directive.");
return 1;
}
/* The 'map' directive allows the user to generate section
* and symbol information to stdout, stderr, or to a file. */
else if (format_mode && !nasm_stricmp(directive, "map")) {
char *p;
if (pass != 1)
return 1;
args += strspn(args, " \t");
while (*args) {
p = args;
args += strcspn(args, " \t");
if (*args != '\0')
*(args++) = '\0';
if (!nasm_stricmp(p, "all"))
map_control |=
MAP_ORIGIN | MAP_SUMMARY | MAP_SECTIONS | MAP_SYMBOLS;
else if (!nasm_stricmp(p, "brief"))
map_control |= MAP_ORIGIN | MAP_SUMMARY;
else if (!nasm_stricmp(p, "sections"))
map_control |= MAP_ORIGIN | MAP_SUMMARY | MAP_SECTIONS;
else if (!nasm_stricmp(p, "segments"))
map_control |= MAP_ORIGIN | MAP_SUMMARY | MAP_SECTIONS;
else if (!nasm_stricmp(p, "symbols"))
map_control |= MAP_SYMBOLS;
else if (!rf) {
if (!nasm_stricmp(p, "stdout"))
rf = stdout;
else if (!nasm_stricmp(p, "stderr"))
rf = stderr;
else { /* Must be a filename. */
rf = fopen(p, "wt");
if (!rf) {
error(ERR_WARNING, "unable to open map file `%s'",
p);
map_control = 0;
return 1;
}
}
} else
error(ERR_WARNING, "map file already specified");
}
if (map_control == 0)
map_control |= MAP_ORIGIN | MAP_SUMMARY;
if (!rf)
rf = stdout;
return 1;
}
return 0;
}
static void bin_filename(char *inname, char *outname, efunc error)
{
standard_extension(inname, outname, "", error);
infile = inname;
outfile = outname;
}
static int32_t bin_segbase(int32_t segment)
{
return segment;
}
static int bin_set_info(enum geninfo type, char **val)
{
(void)type;
(void)val;
return 0;
}
static void bin_init(FILE * afp, efunc errfunc, ldfunc ldef, evalfunc eval)
{
fp = afp;
error = errfunc;
(void)eval; /* Don't warn that this parameter is unused. */
(void)ldef; /* Placate optimizers. */
maxbits = 64; /* Support 64-bit Segments */
relocs = NULL;
reloctail = &relocs;
origin_defined = 0;
no_seg_labels = NULL;
nsl_tail = &no_seg_labels;
format_mode = 1; /* Extended bin format
* (set this to zero for old bin format). */
/* Create default section (.text). */
sections = last_section = nasm_malloc(sizeof(struct Section));
last_section->next = NULL;
last_section->name = nasm_strdup(".text");
last_section->contents = saa_init(1L);
last_section->follows = last_section->vfollows = 0;
last_section->ifollows = NULL;
last_section->length = 0;
last_section->flags = TYPE_DEFINED | TYPE_PROGBITS;
last_section->labels = NULL;
last_section->labels_end = &(last_section->labels);
last_section->start_index = seg_alloc();
last_section->vstart_index = current_section = seg_alloc();
}
struct ofmt of_bin = {
"flat-form binary files (e.g. DOS .COM, .SYS)",
"bin",
NULL,
null_debug_arr,
&null_debug_form,
bin_stdmac,
bin_init,
bin_set_info,
bin_out,
bin_deflabel,
bin_secname,
bin_segbase,
bin_directive,
bin_filename,
bin_cleanup
};
/* This is needed for bin_define_section_labels() */
struct ofmt *bin_get_ofmt(void)
{
return &of_bin;
}
#endif /* #ifdef OF_BIN */