mirror of
https://github.com/netwide-assembler/nasm.git
synced 2024-11-27 08:10:07 +08:00
214f549c5c
Substitute in nasm64developer's "acfloat4" routine. This floating-point conversion routine is not perfect (it gets a fair number of LSB errors), but the old NASM code was just plain broken. nasm64developer's code at least gets within ±1 LSB.
773 lines
22 KiB
C
773 lines
22 KiB
C
/* float.c floating-point constant support for the Netwide Assembler
|
|
*
|
|
* The Netwide Assembler is copyright (C) 1996 Simon Tatham and
|
|
* Julian Hall. All rights reserved. The software is
|
|
* redistributable under the licence given in the file "Licence"
|
|
* distributed in the NASM archive.
|
|
*
|
|
* initial version 13/ix/96 by Simon Tatham
|
|
*/
|
|
|
|
#include "compiler.h"
|
|
|
|
#include <ctype.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <inttypes.h>
|
|
|
|
#include "nasm.h"
|
|
#include "float.h"
|
|
|
|
/*
|
|
* -----------------
|
|
* local variables
|
|
* -----------------
|
|
*/
|
|
static efunc error;
|
|
static bool daz = false; /* denormals as zero */
|
|
static enum float_round rc = FLOAT_RC_NEAR; /* rounding control */
|
|
|
|
/*
|
|
* -----------
|
|
* constants
|
|
* -----------
|
|
*/
|
|
|
|
/* 112 bits + 64 bits for accuracy + 16 bits for rounding */
|
|
#define MANT_WORDS 12
|
|
|
|
/* 52 digits fit in 176 bits because 10^53 > 2^176 > 10^52 */
|
|
#define MANT_DIGITS 52
|
|
|
|
/* the format and the argument list depend on MANT_WORDS */
|
|
#define MANT_FMT "%04x%04x_%04x%04x_%04x%04x_%04x%04x_%04x%04x_%04x%04x"
|
|
#define MANT_ARG SOME_ARG(mant, 0)
|
|
|
|
#define SOME_ARG(a,i) (a)[(i)+0], (a)[(i)+1], (a)[(i)+2], (a)[(i)+3], \
|
|
(a)[(i)+4], (a)[(i)+5], (a)[(i)+6], (a)[(i)+7], (a)[(i)+8], \
|
|
(a)[(i)+9], (a)[(i)+10], (a)[(i)+11]
|
|
|
|
/*
|
|
* ---------------------------------------------------------------------------
|
|
* emit a printf()-like debug message... but only if DEBUG_FLOAT was defined
|
|
* ---------------------------------------------------------------------------
|
|
*/
|
|
|
|
#ifdef DEBUG_FLOAT
|
|
#define dprintf(x) printf x
|
|
#else /* */
|
|
#define dprintf(x) do { } while (0)
|
|
#endif /* */
|
|
|
|
/*
|
|
* ---------------------------------------------------------------------------
|
|
* multiply
|
|
* ---------------------------------------------------------------------------
|
|
*/
|
|
static int float_multiply(uint16_t * to, uint16_t * from)
|
|
{
|
|
uint32_t temp[MANT_WORDS * 2];
|
|
int32_t i, j;
|
|
|
|
/*
|
|
* guaranteed that top bit of 'from' is set -- so we only have
|
|
* to worry about _one_ bit shift to the left
|
|
*/
|
|
dprintf(("%s=" MANT_FMT "\n", "mul1", SOME_ARG(to, 0)));
|
|
dprintf(("%s=" MANT_FMT "\n", "mul2", SOME_ARG(from, 0)));
|
|
|
|
memset(temp, 0, sizeof temp);
|
|
|
|
for (i = 0; i < MANT_WORDS; i++) {
|
|
for (j = 0; j < MANT_WORDS; j++) {
|
|
uint32_t n;
|
|
n = (uint32_t) to[i] * (uint32_t) from[j];
|
|
temp[i + j] += n >> 16;
|
|
temp[i + j + 1] += n & 0xFFFF;
|
|
}
|
|
}
|
|
|
|
for (i = MANT_WORDS * 2; --i;) {
|
|
temp[i - 1] += temp[i] >> 16;
|
|
temp[i] &= 0xFFFF;
|
|
}
|
|
|
|
dprintf(("%s=" MANT_FMT "_" MANT_FMT "\n", "temp", SOME_ARG(temp, 0),
|
|
SOME_ARG(temp, MANT_WORDS)));
|
|
|
|
if (temp[0] & 0x8000) {
|
|
for (i = 0; i < MANT_WORDS; i++) {
|
|
to[i] = temp[i] & 0xFFFF;
|
|
}
|
|
dprintf(("%s=" MANT_FMT " (%i)\n", "prod", SOME_ARG(to, 0), 0));
|
|
return 0;
|
|
} else {
|
|
for (i = 0; i < MANT_WORDS; i++) {
|
|
to[i] = (temp[i] << 1) + !!(temp[i + 1] & 0x8000);
|
|
}
|
|
dprintf(("%s=" MANT_FMT " (%i)\n", "prod", SOME_ARG(to, 0), -1));
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ---------------------------------------------------------------------------
|
|
* convert
|
|
* ---------------------------------------------------------------------------
|
|
*/
|
|
static bool ieee_flconvert(const char *string, uint16_t * mant,
|
|
int32_t * exponent)
|
|
{
|
|
char digits[MANT_DIGITS];
|
|
char *p, *q, *r;
|
|
uint16_t mult[MANT_WORDS], bit;
|
|
uint16_t *m;
|
|
int32_t tenpwr, twopwr;
|
|
int32_t extratwos;
|
|
bool started, seendot, warned;
|
|
p = digits;
|
|
tenpwr = 0;
|
|
started = seendot = warned = false;
|
|
while (*string && *string != 'E' && *string != 'e') {
|
|
if (*string == '.') {
|
|
if (!seendot) {
|
|
seendot = true;
|
|
} else {
|
|
error(ERR_NONFATAL,
|
|
"too many periods in floating-point constant");
|
|
return false;
|
|
}
|
|
} else if (*string >= '0' && *string <= '9') {
|
|
if (*string == '0' && !started) {
|
|
if (seendot) {
|
|
tenpwr--;
|
|
}
|
|
} else {
|
|
started = true;
|
|
if (p < digits + sizeof(digits)) {
|
|
*p++ = *string - '0';
|
|
} else {
|
|
if (!warned) {
|
|
error(ERR_WARNING,
|
|
"floating-point constant significand contains "
|
|
"more than %i digits", MANT_DIGITS);
|
|
warned = true;
|
|
}
|
|
}
|
|
if (!seendot) {
|
|
tenpwr++;
|
|
}
|
|
}
|
|
} else if (*string == '_') {
|
|
|
|
/* do nothing */
|
|
} else {
|
|
error(ERR_NONFATAL,
|
|
"invalid character in floating-point constant %s: '%c'",
|
|
"significand", *string);
|
|
return false;
|
|
}
|
|
string++;
|
|
}
|
|
if (*string) {
|
|
int32_t i = 0;
|
|
bool neg = false;
|
|
string++; /* eat the E */
|
|
if (*string == '+') {
|
|
string++;
|
|
} else if (*string == '-') {
|
|
neg = true;
|
|
string++;
|
|
}
|
|
while (*string) {
|
|
if (*string >= '0' && *string <= '9') {
|
|
i = (i * 10) + (*string - '0');
|
|
|
|
/*
|
|
* To ensure that underflows and overflows are
|
|
* handled properly we must avoid wraparounds of
|
|
* the signed integer value that is used to hold
|
|
* the exponent. Therefore we cap the exponent at
|
|
* +/-5000, which is slightly more/less than
|
|
* what's required for normal and denormal numbers
|
|
* in single, double, and extended precision, but
|
|
* sufficient to avoid signed integer wraparound.
|
|
*/
|
|
if (i > 5000) {
|
|
break;
|
|
}
|
|
} else if (*string == '_') {
|
|
|
|
/* do nothing */
|
|
} else {
|
|
error(ERR_NONFATAL,
|
|
"invalid character in floating-point constant %s: '%c'",
|
|
"exponent", *string);
|
|
return false;
|
|
}
|
|
string++;
|
|
}
|
|
if (neg) {
|
|
i = 0 - i;
|
|
}
|
|
tenpwr += i;
|
|
}
|
|
|
|
/*
|
|
* At this point, the memory interval [digits,p) contains a
|
|
* series of decimal digits zzzzzzz, such that our number X
|
|
* satisfies X = 0.zzzzzzz * 10^tenpwr.
|
|
*/
|
|
q = digits;
|
|
dprintf(("X = 0."));
|
|
while (q < p) {
|
|
dprintf(("%c", *q + '0'));
|
|
q++;
|
|
}
|
|
dprintf((" * 10^%i\n", tenpwr));
|
|
|
|
/*
|
|
* Now convert [digits,p) to our internal representation.
|
|
*/
|
|
bit = 0x8000;
|
|
for (m = mant; m < mant + MANT_WORDS; m++) {
|
|
*m = 0;
|
|
}
|
|
m = mant;
|
|
q = digits;
|
|
started = false;
|
|
twopwr = 0;
|
|
while (m < mant + MANT_WORDS) {
|
|
uint16_t carry = 0;
|
|
while (p > q && !p[-1]) {
|
|
p--;
|
|
}
|
|
if (p <= q) {
|
|
break;
|
|
}
|
|
for (r = p; r-- > q;) {
|
|
int32_t i;
|
|
i = 2 * *r + carry;
|
|
if (i >= 10) {
|
|
carry = 1;
|
|
i -= 10;
|
|
} else {
|
|
carry = 0;
|
|
}
|
|
*r = i;
|
|
}
|
|
if (carry) {
|
|
*m |= bit;
|
|
started = true;
|
|
}
|
|
if (started) {
|
|
if (bit == 1) {
|
|
bit = 0x8000;
|
|
m++;
|
|
} else {
|
|
bit >>= 1;
|
|
}
|
|
} else {
|
|
twopwr--;
|
|
}
|
|
}
|
|
twopwr += tenpwr;
|
|
|
|
/*
|
|
* At this point, the 'mant' array contains the first frac-
|
|
* tional places of a base-2^16 real number which when mul-
|
|
* tiplied by 2^twopwr and 5^tenpwr gives X.
|
|
*/
|
|
dprintf(("X = " MANT_FMT " * 2^%i * 5^%i\n", MANT_ARG, twopwr,
|
|
tenpwr));
|
|
|
|
/*
|
|
* Now multiply 'mant' by 5^tenpwr.
|
|
*/
|
|
if (tenpwr < 0) { /* mult = 5^-1 = 0.2 */
|
|
for (m = mult; m < mult + MANT_WORDS - 1; m++) {
|
|
*m = 0xCCCC;
|
|
}
|
|
mult[MANT_WORDS - 1] = 0xCCCD;
|
|
extratwos = -2;
|
|
tenpwr = -tenpwr;
|
|
|
|
/*
|
|
* If tenpwr was 1000...000b, then it becomes 1000...000b. See
|
|
* the "ANSI C" comment below for more details on that case.
|
|
*
|
|
* Because we already truncated tenpwr to +5000...-5000 inside
|
|
* the exponent parsing code, this shouldn't happen though.
|
|
*/
|
|
} else if (tenpwr > 0) { /* mult = 5^+1 = 5.0 */
|
|
mult[0] = 0xA000;
|
|
for (m = mult + 1; m < mult + MANT_WORDS; m++) {
|
|
*m = 0;
|
|
}
|
|
extratwos = 3;
|
|
} else {
|
|
extratwos = 0;
|
|
}
|
|
while (tenpwr) {
|
|
dprintf(("loop=" MANT_FMT " * 2^%i * 5^%i (%i)\n", MANT_ARG,
|
|
twopwr, tenpwr, extratwos));
|
|
if (tenpwr & 1) {
|
|
dprintf(("mant*mult\n"));
|
|
twopwr += extratwos + float_multiply(mant, mult);
|
|
}
|
|
dprintf(("mult*mult\n"));
|
|
extratwos = extratwos * 2 + float_multiply(mult, mult);
|
|
tenpwr >>= 1;
|
|
|
|
/*
|
|
* In ANSI C, the result of right-shifting a signed integer is
|
|
* considered implementation-specific. To ensure that the loop
|
|
* terminates even if tenpwr was 1000...000b to begin with, we
|
|
* manually clear the MSB, in case a 1 was shifted in.
|
|
*
|
|
* Because we already truncated tenpwr to +5000...-5000 inside
|
|
* the exponent parsing code, this shouldn't matter; neverthe-
|
|
* less it is the right thing to do here.
|
|
*/
|
|
tenpwr &= (uint32_t) - 1 >> 1;
|
|
}
|
|
|
|
/*
|
|
* At this point, the 'mant' array contains the first frac-
|
|
* tional places of a base-2^16 real number in [0.5,1) that
|
|
* when multiplied by 2^twopwr gives X. Or it contains zero
|
|
* of course. We are done.
|
|
*/
|
|
*exponent = twopwr;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* ---------------------------------------------------------------------------
|
|
* round a mantissa off after i words
|
|
* ---------------------------------------------------------------------------
|
|
*/
|
|
|
|
#define ROUND_COLLECT_BITS \
|
|
for (j = i; j < MANT_WORDS; j++) { \
|
|
m = m | mant[j]; \
|
|
}
|
|
|
|
#define ROUND_ABS_DOWN \
|
|
for (j = i; j < MANT_WORDS; j++) { \
|
|
mant[j] = 0x0000; \
|
|
}
|
|
|
|
#define ROUND_ABS_UP \
|
|
do { \
|
|
++mant[--i]; \
|
|
mant[i] &= 0xFFFF; \
|
|
} while (i > 0 && !mant[i]); \
|
|
return (!i && !mant[i]);
|
|
|
|
static int32_t ieee_round(int sign, uint16_t * mant, int32_t i)
|
|
{
|
|
uint16_t m = 0;
|
|
int32_t j;
|
|
if ((sign == 0x0000) || (sign == 0x8000)) {
|
|
if (rc == FLOAT_RC_NEAR) {
|
|
if (mant[i] & 0x8000) {
|
|
mant[i] &= 0x7FFF;
|
|
ROUND_COLLECT_BITS;
|
|
mant[i] |= 0x8000;
|
|
if (m) {
|
|
ROUND_ABS_UP;
|
|
} else {
|
|
if (mant[i - 1] & 1) {
|
|
ROUND_ABS_UP;
|
|
} else {
|
|
ROUND_ABS_DOWN;
|
|
}
|
|
}
|
|
} else {
|
|
ROUND_ABS_DOWN;
|
|
}
|
|
} else if (((sign == 0x0000) && (rc == FLOAT_RC_DOWN))
|
|
|| ((sign == 0x8000) && (rc == FLOAT_RC_UP))) {
|
|
ROUND_COLLECT_BITS;
|
|
if (m) {
|
|
ROUND_ABS_DOWN;
|
|
}
|
|
} else if (((sign == 0x0000) && (rc == FLOAT_RC_UP))
|
|
|| ((sign == 0x8000) && (rc == FLOAT_RC_DOWN))) {
|
|
ROUND_COLLECT_BITS;
|
|
if (m) {
|
|
ROUND_ABS_UP;
|
|
}
|
|
} else if (rc == FLOAT_RC_ZERO) {
|
|
ROUND_ABS_DOWN;
|
|
} else {
|
|
error(ERR_PANIC, "float_round() can't handle rc=%i", rc);
|
|
}
|
|
} else {
|
|
error(ERR_PANIC, "float_round() can't handle sign=%i", sign);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int hexval(char c)
|
|
{
|
|
if (c >= '0' && c <= '9')
|
|
return c - '0';
|
|
else if (c >= 'a' && c <= 'f')
|
|
return c - 'a' + 10;
|
|
else
|
|
return c - 'A' + 10;
|
|
}
|
|
|
|
static void ieee_flconvert_hex(const char *string, uint16_t * mant,
|
|
int32_t * exponent)
|
|
{
|
|
static const int log2tbl[16] =
|
|
{ -1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3 };
|
|
uint16_t mult[MANT_WORDS + 1], *mp;
|
|
int ms;
|
|
int32_t twopwr;
|
|
int seendot, seendigit;
|
|
unsigned char c;
|
|
|
|
twopwr = 0;
|
|
seendot = seendigit = 0;
|
|
ms = 0;
|
|
mp = NULL;
|
|
|
|
memset(mult, 0, sizeof mult);
|
|
|
|
while ((c = *string++) != '\0') {
|
|
if (c == '.') {
|
|
if (!seendot)
|
|
seendot = true;
|
|
else {
|
|
error(ERR_NONFATAL,
|
|
"too many periods in floating-point constant");
|
|
return;
|
|
}
|
|
} else if (isxdigit(c)) {
|
|
int v = hexval(c);
|
|
|
|
if (!seendigit && v) {
|
|
int l = log2tbl[v];
|
|
|
|
seendigit = 1;
|
|
mp = mult;
|
|
ms = 15 - l;
|
|
|
|
twopwr = seendot ? twopwr - 4 + l : l - 3;
|
|
}
|
|
|
|
if (seendigit) {
|
|
if (ms <= 0) {
|
|
*mp |= v >> -ms;
|
|
mp++;
|
|
if (mp > &mult[MANT_WORDS])
|
|
mp = &mult[MANT_WORDS]; /* Guard slot */
|
|
ms += 16;
|
|
}
|
|
*mp |= v << ms;
|
|
ms -= 4;
|
|
|
|
if (!seendot)
|
|
twopwr += 4;
|
|
} else {
|
|
if (seendot)
|
|
twopwr -= 4;
|
|
}
|
|
} else if (c == 'p' || c == 'P') {
|
|
twopwr += atoi(string);
|
|
break;
|
|
} else {
|
|
error(ERR_NONFATAL,
|
|
"floating-point constant: `%c' is invalid character", c);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!seendigit) {
|
|
memset(mant, 0, 2 * MANT_WORDS); /* Zero */
|
|
*exponent = 0;
|
|
} else {
|
|
memcpy(mant, mult, 2 * MANT_WORDS);
|
|
*exponent = twopwr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Shift a mantissa to the right by i (i < 16) bits.
|
|
*/
|
|
static void ieee_shr(uint16_t * mant, int i)
|
|
{
|
|
uint16_t n = 0, m;
|
|
int j;
|
|
|
|
for (j = 0; j < MANT_WORDS; j++) {
|
|
m = (mant[j] << (16 - i)) & 0xFFFF;
|
|
mant[j] = (mant[j] >> i) | n;
|
|
n = m;
|
|
}
|
|
}
|
|
|
|
#if defined(__i386__) || defined(__x86_64__)
|
|
#define put(a,b) (*(uint16_t *)(a) = (b))
|
|
#else
|
|
#define put(a,b) (((a)[0] = (b)), ((a)[1] = (b) >> 8))
|
|
#endif
|
|
|
|
/* Set a bit, using *bigendian* bit numbering (0 = MSB) */
|
|
static void set_bit(uint16_t * mant, int bit)
|
|
{
|
|
mant[bit >> 4] |= 1 << (~bit & 15);
|
|
}
|
|
|
|
/* Produce standard IEEE formats, with implicit "1" bit; this makes
|
|
the following assumptions:
|
|
|
|
- the sign bit is the MSB, followed by the exponent.
|
|
- the sign bit plus exponent fit in 16 bits.
|
|
- the exponent bias is 2^(n-1)-1 for an n-bit exponent */
|
|
|
|
struct ieee_format {
|
|
int words;
|
|
int mantissa; /* Bits in the mantissa */
|
|
int exponent; /* Bits in the exponent */
|
|
};
|
|
|
|
static const struct ieee_format ieee_16 = { 1, 10, 5 };
|
|
static const struct ieee_format ieee_32 = { 2, 23, 8 };
|
|
static const struct ieee_format ieee_64 = { 4, 52, 11 };
|
|
static const struct ieee_format ieee_128 = { 8, 112, 15 };
|
|
|
|
/* Produce all the standard IEEE formats: 16, 32, 64, and 128 bits */
|
|
static int to_float(const char *str, int sign, uint8_t * result,
|
|
const struct ieee_format *fmt)
|
|
{
|
|
uint16_t mant[MANT_WORDS], *mp;
|
|
int32_t exponent;
|
|
int32_t expmax = 1 << (fmt->exponent - 1);
|
|
uint16_t implicit_one = 0x8000 >> fmt->exponent;
|
|
int i;
|
|
|
|
sign = (sign < 0 ? 0x8000L : 0L);
|
|
|
|
if (str[0] == '_') {
|
|
/* NaN or Infinity */
|
|
int32_t expmask = (1 << fmt->exponent) - 1;
|
|
|
|
memset(mant, 0, sizeof mant);
|
|
mant[0] = expmask << (15 - fmt->exponent); /* Exponent: all bits one */
|
|
|
|
switch (str[2]) {
|
|
case 'n': /* __nan__ */
|
|
case 'N':
|
|
case 'q': /* __qnan__ */
|
|
case 'Q':
|
|
set_bit(mant, fmt->exponent + 1); /* Highest bit in mantissa */
|
|
break;
|
|
case 's': /* __snan__ */
|
|
case 'S':
|
|
set_bit(mant, fmt->exponent + fmt->mantissa); /* Last bit */
|
|
break;
|
|
case 'i': /* __infinity__ */
|
|
case 'I':
|
|
break;
|
|
}
|
|
} else {
|
|
if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
|
|
ieee_flconvert_hex(str + 2, mant, &exponent);
|
|
else
|
|
ieee_flconvert(str, mant, &exponent);
|
|
|
|
if (mant[0] & 0x8000) {
|
|
/*
|
|
* Non-zero.
|
|
*/
|
|
exponent--;
|
|
if (exponent >= 2 - expmax && exponent <= expmax) {
|
|
/*
|
|
* Normalised.
|
|
*/
|
|
exponent += expmax - 1;
|
|
ieee_shr(mant, fmt->exponent);
|
|
ieee_round(sign, mant, fmt->words);
|
|
/* did we scale up by one? */
|
|
if (mant[0] & (implicit_one << 1)) {
|
|
ieee_shr(mant, 1);
|
|
exponent++;
|
|
}
|
|
|
|
mant[0] &= (implicit_one - 1); /* remove leading one */
|
|
mant[0] |= exponent << (15 - fmt->exponent);
|
|
} else if (!daz && exponent < 2 - expmax &&
|
|
exponent >= 2 - expmax - fmt->mantissa) {
|
|
/*
|
|
* Denormal.
|
|
*/
|
|
int shift = -(exponent + expmax - 2 - fmt->exponent);
|
|
int sh = shift % 16, wds = shift / 16;
|
|
ieee_shr(mant, sh);
|
|
if (ieee_round(sign, mant, fmt->words - wds)
|
|
|| (sh > 0 && (mant[0] & (0x8000 >> (sh - 1))))) {
|
|
ieee_shr(mant, 1);
|
|
if (sh == 0)
|
|
mant[0] |= 0x8000;
|
|
exponent++;
|
|
}
|
|
|
|
if (wds) {
|
|
for (i = fmt->words - 1; i >= wds; i--)
|
|
mant[i] = mant[i - wds];
|
|
for (; i >= 0; i--)
|
|
mant[i] = 0;
|
|
}
|
|
} else {
|
|
if (exponent > 0) {
|
|
error(ERR_NONFATAL,
|
|
"overflow in floating-point constant");
|
|
/* We should generate Inf here */
|
|
return 0;
|
|
} else {
|
|
memset(mant, 0, 2 * fmt->words);
|
|
}
|
|
}
|
|
} else {
|
|
/* Zero */
|
|
memset(mant, 0, 2 * fmt->words);
|
|
}
|
|
}
|
|
|
|
mant[0] |= sign;
|
|
|
|
for (mp = &mant[fmt->words], i = 0; i < fmt->words; i++) {
|
|
uint16_t m = *--mp;
|
|
put(result, m);
|
|
result += 2;
|
|
}
|
|
|
|
return 1; /* success */
|
|
}
|
|
|
|
/* 80-bit format with 64-bit mantissa *including an explicit integer 1*
|
|
and 15-bit exponent. */
|
|
static int to_ldoub(const char *str, int sign, uint8_t * result)
|
|
{
|
|
uint16_t mant[MANT_WORDS];
|
|
int32_t exponent;
|
|
|
|
sign = (sign < 0 ? 0x8000L : 0L);
|
|
|
|
if (str[0] == '_') {
|
|
uint16_t is_snan = 0, is_qnan = 0x8000;
|
|
switch (str[2]) {
|
|
case 'n':
|
|
case 'N':
|
|
case 'q':
|
|
case 'Q':
|
|
is_qnan = 0xc000;
|
|
break;
|
|
case 's':
|
|
case 'S':
|
|
is_snan = 1;
|
|
break;
|
|
case 'i':
|
|
case 'I':
|
|
break;
|
|
}
|
|
put(result + 0, is_snan);
|
|
put(result + 2, 0);
|
|
put(result + 4, 0);
|
|
put(result + 6, is_qnan);
|
|
put(result + 8, 0x7fff | sign);
|
|
return 1;
|
|
}
|
|
|
|
if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
|
|
ieee_flconvert_hex(str + 2, mant, &exponent);
|
|
else
|
|
ieee_flconvert(str, mant, &exponent);
|
|
|
|
if (mant[0] & 0x8000) {
|
|
/*
|
|
* Non-zero.
|
|
*/
|
|
exponent--;
|
|
if (exponent >= -16383 && exponent <= 16384) {
|
|
/*
|
|
* Normalised.
|
|
*/
|
|
exponent += 16383;
|
|
if (ieee_round(sign, mant, 4)) /* did we scale up by one? */
|
|
ieee_shr(mant, 1), mant[0] |= 0x8000, exponent++;
|
|
put(result + 0, mant[3]);
|
|
put(result + 2, mant[2]);
|
|
put(result + 4, mant[1]);
|
|
put(result + 6, mant[0]);
|
|
put(result + 8, exponent | sign);
|
|
} else if (!daz && exponent < -16383 && exponent >= -16446) {
|
|
/*
|
|
* Denormal.
|
|
*/
|
|
int shift = -(exponent + 16383);
|
|
int sh = shift % 16, wds = shift / 16;
|
|
ieee_shr(mant, sh);
|
|
if (ieee_round(sign, mant, 4 - wds)
|
|
|| (sh > 0 && (mant[0] & (0x8000 >> (sh - 1))))) {
|
|
ieee_shr(mant, 1);
|
|
if (sh == 0)
|
|
mant[0] |= 0x8000;
|
|
exponent++;
|
|
}
|
|
put(result + 0, (wds <= 3 ? mant[3 - wds] : 0));
|
|
put(result + 2, (wds <= 2 ? mant[2 - wds] : 0));
|
|
put(result + 4, (wds <= 1 ? mant[1 - wds] : 0));
|
|
put(result + 6, (wds == 0 ? mant[0] : 0));
|
|
put(result + 8, sign);
|
|
} else {
|
|
if (exponent > 0) {
|
|
error(ERR_NONFATAL, "overflow in floating-point constant");
|
|
/* We should generate Inf here */
|
|
return 0;
|
|
} else {
|
|
goto zero;
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* Zero.
|
|
*/
|
|
zero:
|
|
put(result + 0, 0);
|
|
put(result + 2, 0);
|
|
put(result + 4, 0);
|
|
put(result + 6, 0);
|
|
put(result + 8, sign);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int float_const(const char *number, int32_t sign, uint8_t * result,
|
|
int bytes, efunc err)
|
|
{
|
|
error = err;
|
|
|
|
switch (bytes) {
|
|
case 2:
|
|
return to_float(number, sign, result, &ieee_16);
|
|
case 4:
|
|
return to_float(number, sign, result, &ieee_32);
|
|
case 8:
|
|
return to_float(number, sign, result, &ieee_64);
|
|
case 10:
|
|
return to_ldoub(number, sign, result);
|
|
case 16:
|
|
return to_float(number, sign, result, &ieee_128);
|
|
default:
|
|
error(ERR_PANIC, "strange value %d passed to float_const", bytes);
|
|
return 0;
|
|
}
|
|
}
|