nasm/rdoff/ldrdf.c
H. Peter Anvin 682221438e Clean up remaining build warnings
Clean up remaining build warnings.  None of this should affect code
operations.  The only warnings which were actually relevant might have
been the ones in ldrdf.c, but it's not clear if anyone ever uses that.
2007-11-18 22:18:09 -08:00

1334 lines
42 KiB
C

/*
* ldrdf.c - RDOFF Object File linker/loader main program.
*
* Copyright (c) 1996,99 Julian Hall. All rights reserved.
* Improvements and fixes (c) 1999-2004 RET & COM Research.
*
* This file is distributed under the terms and conditions of the
* GNU Lesser Public License (LGPL), version 2.1.
* See http://www.gnu.org/copyleft/lgpl.html for details.
*/
/*
* TODO:
* - enhance search of required export symbols in libraries (now depends
* on modules order in library)
* - keep a cache of symbol names in each library module so
* we don't have to constantly recheck the file
* - general performance improvements
*
* BUGS & LIMITATIONS: this program doesn't support multiple code, data
* or bss segments, therefore for 16 bit programs whose code, data or BSS
* segment exceeds 64K in size, it will not work. This program probably
* won't work if compiled by a 16 bit compiler. Try DJGPP if you're running
* under DOS. '#define STINGY_MEMORY' may help a little.
*/
#include "compiler.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define RDOFF_UTILS
#include "rdoff.h"
#include "symtab.h"
#include "collectn.h"
#include "rdlib.h"
#include "segtab.h"
#define LDRDF_VERSION "1.07"
/* #define STINGY_MEMORY */
/* =======================================================================
* Types & macros that are private to this program
*/
struct segment_infonode {
int dest_seg; /* output segment to be placed into, -1 to
skip linking this segment */
int32_t reloc; /* segment's relocation factor */
};
struct modulenode {
rdffile f; /* the RDOFF file structure */
struct segment_infonode seginfo[RDF_MAXSEGS]; /* what are we doing
with each segment? */
void *header;
char *name;
struct modulenode *next;
int32_t bss_reloc;
};
#include "ldsegs.h"
#define newstr(str) strcpy(malloc(strlen(str) + 1),str)
#define newstrcat(s1,s2) strcat(strcpy(malloc(strlen(s1)+strlen(s2)+1),s1),s2)
/* ==========================================================================
* Function prototypes of private utility functions
*/
void processmodule(const char *filename, struct modulenode *mod);
int allocnewseg(uint16_t type, uint16_t reserved);
int findsegment(uint16_t type, uint16_t reserved);
void symtab_add(const char *symbol, int segment, int32_t offset);
int symtab_get(const char *symbol, int *segment, int32_t *offset);
/* =========================================================================
* Global data structures.
*/
/* a linked list of modules that will be included in the output */
struct modulenode *modules = NULL;
struct modulenode *lastmodule = NULL;
/* a linked list of libraries to be searched for unresolved imported symbols */
struct librarynode *libraries = NULL;
struct librarynode *lastlib = NULL;
/* the symbol table */
void *symtab = NULL;
/* objects search path */
char *objpath = NULL;
/* libraries search path */
char *libpath = NULL;
/* file to embed as a generic record */
char *generic_rec_file = NULL;
/* error file */
static FILE *error_file;
/* the header of the output file, built up stage by stage */
rdf_headerbuf *newheader = NULL;
/* The current state of segment allocation, including information about
* which output segment numbers have been allocated, and their types and
* amount of data which has already been allocated inside them.
*/
struct SegmentHeaderRec outputseg[RDF_MAXSEGS];
int nsegs = 0;
int32_t bss_length;
/* global options which affect how the program behaves */
struct ldrdfoptions {
int verbose;
int align;
int dynalink;
int strip;
int respfile;
int stderr_redir;
int objpath;
int libpath;
} options;
int errorcount = 0; /* determines main program exit status */
/* =========================================================================
* Utility functions
*/
/*
* initsegments()
*
* sets up segments 0, 1, and 2, the initial code data and bss segments
*/
void initsegments()
{
nsegs = 3;
outputseg[0].type = 1;
outputseg[0].number = 0;
outputseg[0].reserved = 0;
outputseg[0].length = 0;
outputseg[1].type = 2;
outputseg[1].number = 1;
outputseg[1].reserved = 0;
outputseg[1].length = 0;
outputseg[2].type = 0xFFFF; /* reserved segment type */
outputseg[2].number = 2;
outputseg[2].reserved = 0;
outputseg[2].length = 0;
bss_length = 0;
}
/*
* loadmodule
*
* Determine the characteristics of a module, and decide what to do with
* each segment it contains (including determining destination segments and
* relocation factors for segments that are kept).
*/
void loadmodule(const char *filename)
{
if (options.verbose)
printf("loading `%s'\n", filename);
/* allocate a new module entry on the end of the modules list */
if (!modules) {
modules = malloc(sizeof(*modules));
lastmodule = modules;
} else {
lastmodule->next = malloc(sizeof(*modules));
lastmodule = lastmodule->next;
}
if (!lastmodule) {
fprintf(stderr, "ldrdf: out of memory\n");
exit(1);
}
/* open the file using 'rdfopen', which returns nonzero on error */
if (rdfopen(&lastmodule->f, filename) != 0) {
rdfperror("ldrdf", filename);
exit(1);
}
/*
* store information about the module, and determine what segments
* it contains, and what we should do with them (determine relocation
* factor if we decide to keep them)
*/
lastmodule->header = NULL;
lastmodule->name = strdup(filename);
lastmodule->next = NULL;
processmodule(filename, lastmodule);
}
/*
* processmodule()
*
* step through each segment, determine what exactly we're doing with
* it, and if we intend to keep it, determine (a) which segment to
* put it in and (b) whereabouts in that segment it will end up.
* (b) is fairly easy, because we're now keeping track of how big each
* segment in our output file is...
*/
void processmodule(const char *filename, struct modulenode *mod)
{
struct segconfig sconf;
int seg, outseg;
void *header;
rdfheaderrec *hr;
int32_t bssamount = 0;
int bss_was_referenced = 0;
memset(&sconf, 0, sizeof sconf);
for (seg = 0; seg < mod->f.nsegs; seg++) {
/*
* get the segment configuration for this type from the segment
* table. getsegconfig() is a macro, defined in ldsegs.h.
*/
getsegconfig(sconf, mod->f.seg[seg].type);
if (options.verbose > 1) {
printf("%s %04x [%04x:%10s] ", filename,
mod->f.seg[seg].number, mod->f.seg[seg].type,
sconf.typedesc);
}
/*
* sconf->dowhat tells us what to do with a segment of this type.
*/
switch (sconf.dowhat) {
case SEG_IGNORE:
/*
* Set destination segment to -1, to indicate that this segment
* should be ignored for the purpose of output, ie it is left
* out of the linked executable.
*/
mod->seginfo[seg].dest_seg = -1;
if (options.verbose > 1)
printf("IGNORED\n");
break;
case SEG_NEWSEG:
/*
* The configuration tells us to create a new segment for
* each occurrence of this segment type.
*/
outseg = allocnewseg(sconf.mergetype,
mod->f.seg[seg].reserved);
mod->seginfo[seg].dest_seg = outseg;
mod->seginfo[seg].reloc = 0;
outputseg[outseg].length = mod->f.seg[seg].length;
if (options.verbose > 1)
printf("=> %04x:%08"PRIx32" (+%04"PRIx32")\n", outseg,
mod->seginfo[seg].reloc, mod->f.seg[seg].length);
break;
case SEG_MERGE:
/*
* The configuration tells us to merge the segment with
* a previously existing segment of type 'sconf.mergetype',
* if one exists. Otherwise a new segment is created.
* This is handled transparently by 'findsegment()'.
*/
outseg = findsegment(sconf.mergetype,
mod->f.seg[seg].reserved);
mod->seginfo[seg].dest_seg = outseg;
/*
* We need to add alignment to these segments.
*/
if (outputseg[outseg].length % options.align != 0)
outputseg[outseg].length +=
options.align -
(outputseg[outseg].length % options.align);
mod->seginfo[seg].reloc = outputseg[outseg].length;
outputseg[outseg].length += mod->f.seg[seg].length;
if (options.verbose > 1)
printf("=> %04x:%08"PRIx32" (+%04"PRIx32")\n", outseg,
mod->seginfo[seg].reloc, mod->f.seg[seg].length);
}
}
/*
* extract symbols from the header, and dump them into the
* symbol table
*/
header = malloc(mod->f.header_len);
if (!header) {
fprintf(stderr, "ldrdf: not enough memory\n");
exit(1);
}
if (rdfloadseg(&mod->f, RDOFF_HEADER, header)) {
rdfperror("ldrdf", filename);
exit(1);
}
while ((hr = rdfgetheaderrec(&mod->f))) {
switch (hr->type) {
case RDFREC_IMPORT: /* imported symbol */
case RDFREC_FARIMPORT:
/* Define with seg = -1 */
symtab_add(hr->i.label, -1, 0);
break;
case RDFREC_GLOBAL:{ /* exported symbol */
int destseg;
int32_t destreloc;
if (hr->e.segment == 2) {
bss_was_referenced = 1;
destreloc = bss_length;
if (destreloc % options.align != 0)
destreloc +=
options.align - (destreloc % options.align);
destseg = 2;
} else {
if ((destseg =
mod->seginfo[(int)hr->e.segment].dest_seg) == -1)
continue;
destreloc = mod->seginfo[(int)hr->e.segment].reloc;
}
symtab_add(hr->e.label, destseg, destreloc + hr->e.offset);
break;
}
case RDFREC_BSS: /* BSS reservation */
/*
* first, amalgamate all BSS reservations in this module
* into one, because we allow this in the output format.
*/
bssamount += hr->b.amount;
break;
case RDFREC_COMMON:{ /* Common variable */
symtabEnt *ste = symtabFind(symtab, hr->c.label);
/* Is the symbol already in the table? */
if (ste)
break;
/* Align the variable */
if (bss_length % hr->c.align != 0)
bss_length += hr->c.align - (bss_length % hr->c.align);
if (options.verbose > 1) {
printf("%s %04x common '%s' => 0002:%08"PRIx32" (+%04"PRIx32")\n",
filename, hr->c.segment, hr->c.label,
bss_length, hr->c.size);
}
symtab_add(hr->c.label, 2, bss_length);
mod->bss_reloc = bss_length;
bss_length += hr->c.size;
break;
}
}
}
if (bssamount != 0 || bss_was_referenced) {
/*
* handle the BSS segment - first pad the existing bss length
* to the correct alignment, then store the length in bss_reloc
* for this module. Then add this module's BSS length onto
* bss_length.
*/
if (bss_length % options.align != 0)
bss_length += options.align - (bss_length % options.align);
mod->bss_reloc = bss_length;
if (options.verbose > 1) {
printf("%s 0002 [ BSS] => 0002:%08"PRIx32" (+%04"PRIx32")\n",
filename, bss_length, bssamount);
}
bss_length += bssamount;
}
#ifdef STINGY_MEMORY
/*
* we free the header buffer here, to save memory later.
* this isn't efficient, but probably halves the memory usage
* of this program...
*/
mod->f.header_loc = NULL;
free(header);
#endif
}
/*
* Return 1 if a given module is in the list, 0 otherwise.
*/
int lookformodule(const char *name)
{
struct modulenode *curr = modules;
while (curr) {
if (!strcmp(name, curr->name))
return 1;
curr = curr->next;
}
return 0;
}
/*
* allocnewseg()
* findsegment()
*
* These functions manipulate the array of output segments, and are used
* by processmodule(). allocnewseg() allocates a segment in the array,
* initialising it to be empty. findsegment() first scans the array for
* a segment of the type requested, and if one isn't found allocates a
* new one.
*/
int allocnewseg(uint16_t type, uint16_t reserved)
{
outputseg[nsegs].type = type;
outputseg[nsegs].number = nsegs;
outputseg[nsegs].reserved = reserved;
outputseg[nsegs].length = 0;
outputseg[nsegs].offset = 0;
outputseg[nsegs].data = NULL;
return nsegs++;
}
int findsegment(uint16_t type, uint16_t reserved)
{
int i;
for (i = 0; i < nsegs; i++)
if (outputseg[i].type == type)
return i;
return allocnewseg(type, reserved);
}
/*
* symtab_add()
*
* inserts a symbol into the global symbol table, which associates symbol
* names either with addresses, or a marker that the symbol hasn't been
* resolved yet, or possibly that the symbol has been defined as
* contained in a dynamic [load time/run time] linked library.
*
* segment = -1 => not yet defined
* segment = -2 => defined as dll symbol
*
* If the symbol is already defined, and the new segment >= 0, then
* if the original segment was < 0 the symbol is redefined, otherwise
* a duplicate symbol warning is issued. If new segment == -1, this
* routine won't change a previously existing symbol. It will change
* to segment = -2 only if the segment was previously < 0.
*/
void symtab_add(const char *symbol, int segment, int32_t offset)
{
symtabEnt *ste;
ste = symtabFind(symtab, symbol);
if (ste) {
if (ste->segment >= 0) {
/*
* symbol previously defined
*/
if (segment < 0)
return;
fprintf(error_file, "warning: `%s' redefined\n", symbol);
return;
}
/*
* somebody wanted the symbol, and put an undefined symbol
* marker into the table
*/
if (segment == -1)
return;
/*
* we have more information now - update the symbol's entry
*/
ste->segment = segment;
ste->offset = offset;
ste->flags = 0;
return;
}
/*
* this is the first declaration of this symbol
*/
ste = malloc(sizeof(symtabEnt));
if (!ste) {
fprintf(stderr, "ldrdf: out of memory\n");
exit(1);
}
ste->name = strdup(symbol);
ste->segment = segment;
ste->offset = offset;
ste->flags = 0;
symtabInsert(symtab, ste);
}
/*
* symtab_get()
*
* Retrieves the values associated with a symbol. Undefined symbols
* are assumed to have -1:0 associated. Returns 1 if the symbol was
* successfully located.
*/
int symtab_get(const char *symbol, int *segment, int32_t *offset)
{
symtabEnt *ste = symtabFind(symtab, symbol);
if (!ste) {
*segment = -1;
*offset = 0;
return 0;
} else {
*segment = ste->segment;
*offset = ste->offset;
return 1;
}
}
/*
* add_library()
*
* checks that a library can be opened and is in the correct format,
* then adds it to the linked list of libraries.
*/
void add_library(const char *name)
{
if (rdl_verify(name)) {
rdl_perror("ldrdf", name);
errorcount++;
return;
}
if (!libraries) {
lastlib = libraries = malloc(sizeof(*libraries));
if (!libraries) {
fprintf(stderr, "ldrdf: out of memory\n");
exit(1);
}
} else {
lastlib->next = malloc(sizeof(*libraries));
if (!lastlib->next) {
fprintf(stderr, "ldrdf: out of memory\n");
exit(1);
}
lastlib = lastlib->next;
}
lastlib->next = NULL;
if (rdl_open(lastlib, name)) {
rdl_perror("ldrdf", name);
errorcount++;
return;
}
}
/*
* search_libraries()
*
* scans through the list of libraries, attempting to match symbols
* defined in library modules against symbols that are referenced but
* not defined (segment = -1 in the symbol table)
*
* returns 1 if any extra library modules are included, indicating that
* another pass through the library list should be made (possibly).
*/
int search_libraries()
{
struct librarynode *cur;
rdffile f;
int i;
void *header;
int segment;
int32_t offset;
int doneanything = 0, pass = 1, keepfile;
rdfheaderrec *hr;
cur = libraries;
while (cur) {
if (options.verbose > 2)
printf("scanning library `%s', pass %d...\n", cur->name, pass);
for (i = 0; rdl_openmodule(cur, i, &f) == 0; i++) {
if (pass == 2 && lookformodule(f.name))
continue;
if (options.verbose > 3)
printf(" looking in module `%s'\n", f.name);
header = malloc(f.header_len);
if (!header) {
fprintf(stderr, "ldrdf: not enough memory\n");
exit(1);
}
if (rdfloadseg(&f, RDOFF_HEADER, header)) {
rdfperror("ldrdf", f.name);
errorcount++;
return 0;
}
keepfile = 0;
while ((hr = rdfgetheaderrec(&f))) {
/* We're only interested in exports, so skip others */
if (hr->type != RDFREC_GLOBAL)
continue;
/*
* If the symbol is marked as SYM_GLOBAL, somebody will be
* definitely interested in it..
*/
if ((hr->e.flags & SYM_GLOBAL) == 0) {
/*
* otherwise the symbol is just public. Find it in
* the symbol table. If the symbol isn't defined, we
* aren't interested, so go on to the next.
* If it is defined as anything but -1, we're also not
* interested. But if it is defined as -1, insert this
* module into the list of modules to use, and go
* immediately on to the next module...
*/
if (!symtab_get(hr->e.label, &segment, &offset)
|| segment != -1)
continue;
}
doneanything = 1;
keepfile = 1;
/*
* as there are undefined symbols, we can assume that
* there are modules on the module list by the time
* we get here.
*/
lastmodule->next = malloc(sizeof(*lastmodule->next));
if (!lastmodule->next) {
fprintf(stderr, "ldrdf: not enough memory\n");
exit(1);
}
lastmodule = lastmodule->next;
memcpy(&lastmodule->f, &f, sizeof(f));
lastmodule->name = strdup(f.name);
lastmodule->next = NULL;
processmodule(f.name, lastmodule);
break;
}
if (!keepfile) {
free(f.name);
f.name = NULL;
f.fp = NULL;
}
}
if (rdl_error != 0 && rdl_error != RDL_ENOTFOUND)
rdl_perror("ldrdf", cur->name);
cur = cur->next;
if (cur == NULL && pass == 1) {
cur = libraries;
pass++;
}
}
return doneanything;
}
/*
* write_output()
*
* this takes the linked list of modules, and walks through it, merging
* all the modules into a single output module, and then writes this to a
* file.
*/
void write_output(const char *filename)
{
FILE *f;
rdf_headerbuf *rdfheader;
struct modulenode *cur;
int i, availableseg, seg, localseg, isrelative;
void *header;
rdfheaderrec *hr, newrec;
symtabEnt *se;
segtab segs;
int32_t offset;
uint8_t *data;
if ((f = fopen(filename, "wb")) == NULL) {
fprintf(stderr, "ldrdf: couldn't open %s for output\n", filename);
exit(1);
}
if ((rdfheader = rdfnewheader()) == NULL) {
fprintf(stderr, "ldrdf: out of memory\n");
exit(1);
}
/*
* If '-g' option was given, first record in output file will be a
* `generic' record, filled with a given file content.
* This can be useful, for example, when constructing multiboot
* compliant kernels.
*/
if (generic_rec_file) {
FILE *ff;
if (options.verbose)
printf("\nadding generic record from binary file %s\n",
generic_rec_file);
hr = (rdfheaderrec *) malloc(sizeof(struct GenericRec));
if ((ff = fopen(generic_rec_file, "r")) == NULL) {
fprintf(stderr, "ldrdf: couldn't open %s for input\n",
generic_rec_file);
exit(1);
}
i = fread(hr->g.data, 1, sizeof(hr->g.data), ff);
fseek(ff, 0, SEEK_END);
if (ftell(ff) > (long)sizeof(hr->g.data)) {
fprintf(error_file,
"warning: maximum generic record size is %u, "
"rest of file ignored\n",
(unsigned int)sizeof(hr->g.data));
}
fclose(ff);
hr->g.type = 0;
hr->g.reclen = i;
rdfaddheader(rdfheader, hr);
free(hr);
}
if (options.verbose)
printf("\nbuilding output module (%d segments)\n", nsegs);
/*
* Allocate the memory for the segments. We may be better off
* building the output module one segment at a time when running
* under 16 bit DOS, but that would be a slower way of doing this.
* And you could always use DJGPP...
*/
for (i = 0; i < nsegs; i++) {
outputseg[i].data = NULL;
if (!outputseg[i].length)
continue;
outputseg[i].data = malloc(outputseg[i].length);
if (!outputseg[i].data) {
fprintf(stderr, "ldrdf: out of memory\n");
exit(1);
}
}
/*
* initialise availableseg, used to allocate segment numbers for
* imported and exported labels...
*/
availableseg = nsegs;
/*
* Step through the modules, performing required actions on each one
*/
for (cur = modules; cur; cur = cur->next) {
/*
* Read the actual segment contents into the correct places in
* the newly allocated segments
*/
for (i = 0; i < cur->f.nsegs; i++) {
int dest = cur->seginfo[i].dest_seg;
if (dest == -1)
continue;
if (rdfloadseg(&cur->f, i,
outputseg[dest].data + cur->seginfo[i].reloc)) {
rdfperror("ldrdf", cur->name);
exit(1);
}
}
/*
* Perform fixups, and add new header records where required
*/
header = malloc(cur->f.header_len);
if (!header) {
fprintf(stderr, "ldrdf: out of memory\n");
exit(1);
}
if (cur->f.header_loc)
rdfheaderrewind(&cur->f);
else if (rdfloadseg(&cur->f, RDOFF_HEADER, header)) {
rdfperror("ldrdf", cur->name);
exit(1);
}
/*
* we need to create a local segment number -> location
* table for the segments in this module.
*/
init_seglocations(&segs);
for (i = 0; i < cur->f.nsegs; i++) {
add_seglocation(&segs, cur->f.seg[i].number,
cur->seginfo[i].dest_seg,
cur->seginfo[i].reloc);
}
/*
* and the BSS segment (doh!)
*/
add_seglocation(&segs, 2, 2, cur->bss_reloc);
while ((hr = rdfgetheaderrec(&cur->f))) {
switch (hr->type) {
case RDFREC_RELOC: /* relocation record - need to do a fixup */
/*
* First correct the offset stored in the segment from
* the start of the segment (which may well have changed).
*
* To do this we add to the number stored the relocation
* factor associated with the segment that contains the
* target segment.
*
* The relocation could be a relative relocation, in which
* case we have to first subtract the amount we've relocated
* the containing segment by.
*/
if (!get_seglocation(&segs, hr->r.refseg, &seg, &offset)) {
fprintf(stderr,
"%s: reloc to undefined segment %04x\n",
cur->name, (int)hr->r.refseg);
errorcount++;
break;
}
isrelative =
(hr->r.segment & RDOFF_RELATIVEMASK) ==
RDOFF_RELATIVEMASK;
hr->r.segment &= (RDOFF_RELATIVEMASK - 1);
if (hr->r.segment == 2 ||
(localseg =
rdffindsegment(&cur->f, hr->r.segment)) == -1) {
fprintf(stderr, "%s: reloc from %s segment (%d)\n",
cur->name,
hr->r.segment == 2 ? "BSS" : "unknown",
hr->r.segment);
errorcount++;
break;
}
if (hr->r.length != 1 && hr->r.length != 2 &&
hr->r.length != 4) {
fprintf(stderr, "%s: nonstandard length reloc "
"(%d bytes)\n", cur->name, hr->r.length);
errorcount++;
break;
}
/*
* okay, now the relocation is in the segment pointed to by
* cur->seginfo[localseg], and we know everything else is
* okay to go ahead and do the relocation
*/
data = outputseg[cur->seginfo[localseg].dest_seg].data;
data += cur->seginfo[localseg].reloc + hr->r.offset;
/*
* data now points to the reference that needs
* relocation. Calculate the relocation factor.
* Factor is:
* offset of referred object in segment [in offset]
* (- relocation of localseg, if ref is relative)
* For simplicity, the result is stored in 'offset'.
* Then add 'offset' onto the value at data.
*/
if (isrelative)
offset -= cur->seginfo[localseg].reloc;
switch (hr->r.length) {
case 1:
offset += *data;
if (offset < -127 || offset > 128)
fprintf(error_file,
"warning: relocation out of range "
"at %s(%02x:%08"PRIx32")\n", cur->name,
(int)hr->r.segment, hr->r.offset);
*data = (char)offset;
break;
case 2:
offset += *(int16_t *)data;
if (offset < -32767 || offset > 32768)
fprintf(error_file,
"warning: relocation out of range "
"at %s(%02x:%08"PRIx32")\n", cur->name,
(int)hr->r.segment, hr->r.offset);
*(int16_t *)data = (int16_t)offset;
break;
case 4:
*(int32_t *)data += offset;
/* we can't easily detect overflow on this one */
break;
}
/*
* If the relocation was relative between two symbols in
* the same segment, then we're done.
*
* Otherwise, we need to output a new relocation record
* with the references updated segment and offset...
*/
if (!isrelative || cur->seginfo[localseg].dest_seg != seg) {
hr->r.segment = cur->seginfo[localseg].dest_seg;
hr->r.offset += cur->seginfo[localseg].reloc;
hr->r.refseg = seg;
if (isrelative)
hr->r.segment += RDOFF_RELATIVEMASK;
rdfaddheader(rdfheader, hr);
}
break;
case RDFREC_IMPORT: /* import symbol */
case RDFREC_FARIMPORT:
/*
* scan the global symbol table for the symbol
* and associate its location with the segment number
* for this module
*/
se = symtabFind(symtab, hr->i.label);
if (!se || se->segment == -1) {
if (!options.dynalink && !(hr->i.flags & SYM_IMPORT)) {
fprintf(error_file,
"error: unresolved reference to `%s'"
" in module `%s'\n", hr->i.label,
cur->name);
errorcount++;
}
/*
* we need to allocate a segment number for this
* symbol, and store it in the symbol table for
* future reference
*/
if (!se) {
se = malloc(sizeof(*se));
if (!se) {
fprintf(stderr, "ldrdf: out of memory\n");
exit(1);
}
se->name = strdup(hr->i.label);
se->flags = 0;
se->segment = availableseg++;
se->offset = 0;
symtabInsert(symtab, se);
} else {
se->segment = availableseg++;
se->offset = 0;
}
/*
* output a header record that imports it to the
* recently allocated segment number...
*/
newrec = *hr;
newrec.i.segment = se->segment;
rdfaddheader(rdfheader, &newrec);
}
add_seglocation(&segs, hr->i.segment, se->segment,
se->offset);
break;
case RDFREC_GLOBAL: /* export symbol */
/*
* need to insert an export for this symbol into the new
* header, unless we're stripping symbols. Even if we're
* stripping, put the symbol if it's marked as SYM_GLOBAL.
*/
if (options.strip && !(hr->e.flags & SYM_GLOBAL))
break;
if (hr->e.segment == 2) {
seg = 2;
offset = cur->bss_reloc;
} else {
localseg = rdffindsegment(&cur->f, hr->e.segment);
if (localseg == -1) {
fprintf(stderr, "%s: exported symbol `%s' from "
"unrecognised segment\n", cur->name,
hr->e.label);
errorcount++;
break;
}
offset = cur->seginfo[localseg].reloc;
seg = cur->seginfo[localseg].dest_seg;
}
hr->e.segment = seg;
hr->e.offset += offset;
rdfaddheader(rdfheader, hr);
break;
case RDFREC_MODNAME: /* module name */
/*
* Insert module name record if export symbols
* are not stripped.
* If module name begins with '$' - insert it anyway.
*/
if (options.strip && hr->m.modname[0] != '$')
break;
rdfaddheader(rdfheader, hr);
break;
case RDFREC_DLL: /* DLL name */
/*
* Insert DLL name if it begins with '$'
*/
if (hr->d.libname[0] != '$')
break;
rdfaddheader(rdfheader, hr);
break;
case RDFREC_SEGRELOC: /* segment fixup */
/*
* modify the segment numbers if necessary, and
* pass straight through to the output module header
*
* *** FIXME ***
*/
if (hr->r.segment == 2) {
fprintf(stderr, "%s: segment fixup in BSS section\n",
cur->name);
errorcount++;
break;
}
localseg = rdffindsegment(&cur->f, hr->r.segment);
if (localseg == -1) {
fprintf(stderr, "%s: segment fixup in unrecognised"
" segment (%d)\n", cur->name, hr->r.segment);
errorcount++;
break;
}
hr->r.segment = cur->seginfo[localseg].dest_seg;
hr->r.offset += cur->seginfo[localseg].reloc;
if (!get_seglocation(&segs, hr->r.refseg, &seg, &offset)) {
fprintf(stderr, "%s: segment fixup to undefined "
"segment %04x\n", cur->name,
(int)hr->r.refseg);
errorcount++;
break;
}
hr->r.refseg = seg;
rdfaddheader(rdfheader, hr);
break;
case RDFREC_COMMON: /* Common variable */
/* Is this symbol already in the table? */
se = symtabFind(symtab, hr->c.label);
if (!se) {
printf("%s is not in symtab yet\n", hr->c.label);
break;
}
/* Add segment location */
add_seglocation(&segs, hr->c.segment, se->segment,
se->offset);
break;
}
}
free(header);
done_seglocations(&segs);
}
/*
* combined BSS reservation for the entire results
*/
newrec.type = RDFREC_BSS;
newrec.b.reclen = 4;
newrec.b.amount = bss_length;
rdfaddheader(rdfheader, &newrec);
/*
* Write the header
*/
for (i = 0; i < nsegs; i++) {
if (i == 2)
continue;
rdfaddsegment(rdfheader, outputseg[i].length);
}
rdfwriteheader(f, rdfheader);
rdfdoneheader(rdfheader);
/*
* Step through the segments, one at a time, writing out into
* the output file
*/
for (i = 0; i < nsegs; i++) {
uint16_t s;
int32_t l;
if (i == 2)
continue;
s = translateint16_t(outputseg[i].type);
fwrite(&s, 2, 1, f);
s = translateint16_t(outputseg[i].number);
fwrite(&s, 2, 1, f);
s = translateint16_t(outputseg[i].reserved);
fwrite(&s, 2, 1, f);
l = translateint32_t(outputseg[i].length);
fwrite(&l, 4, 1, f);
fwrite(outputseg[i].data, outputseg[i].length, 1, f);
}
fwrite("\0\0\0\0\0\0\0\0\0\0", 10, 1, f);
}
/* =========================================================================
* Main program
*/
void usage()
{
printf("usage:\n"
" ldrdf [options] object modules ... [-llibrary ...]\n"
" ldrdf -r\n"
"options:\n"
" -v[=n] increase verbosity by 1, or set it to n\n"
" -a nn set segment alignment value (default 16)\n"
" -s strip public symbols\n"
" -dy Unix-style dynamic linking\n"
" -o name write output in file 'name'\n"
" -j path specify objects search path\n"
" -L path specify libraries search path\n"
" -g file embed 'file' as a first header record with type 'generic'\n");
exit(0);
}
int main(int argc, char **argv)
{
char *outname = "aout.rdf";
int moduleloaded = 0;
char *respstrings[128] = { 0, };
options.verbose = 0;
options.align = 16;
options.dynalink = 0;
options.strip = 0;
error_file = stderr;
argc--, argv++;
if (argc == 0)
usage();
while (argc && *argv && **argv == '-' && argv[0][1] != 'l') {
switch (argv[0][1]) {
case 'r':
printf("ldrdf (linker for RDF files) version " LDRDF_VERSION
"\n");
printf("RDOFF2 revision %s\n", RDOFF2_REVISION);
exit(0);
case 'v':
if (argv[0][2] == '=') {
options.verbose = argv[0][3] - '0';
if (options.verbose < 0 || options.verbose > 9) {
fprintf(stderr,
"ldrdf: verbosity level must be a number"
" between 0 and 9\n");
exit(1);
}
} else
options.verbose++;
break;
case 'a':
options.align = atoi(argv[1]);
if (options.align <= 0) {
fprintf(stderr,
"ldrdf: -a expects a positive number argument\n");
exit(1);
}
argv++, argc--;
break;
case 's':
options.strip = 1;
break;
case 'd':
if (argv[0][2] == 'y')
options.dynalink = 1;
break;
case 'o':
outname = argv[1];
argv++, argc--;
break;
case 'j':
if (!objpath) {
options.objpath = 1;
objpath = argv[1];
argv++, argc--;
break;
} else {
fprintf(stderr,
"ldrdf: more than one objects search path specified\n");
exit(1);
}
case 'L':
if (!libpath) {
options.libpath = 1;
libpath = argv[1];
argv++, argc--;
break;
} else {
fprintf(stderr,
"ldrdf: more than one libraries search path specified\n");
exit(1);
}
case '@':{
int i = 0;
char buf[256];
FILE *f;
options.respfile = 1;
if (argv[1] != NULL)
f = fopen(argv[1], "r");
else {
fprintf(stderr,
"ldrdf: no response file name specified\n");
exit(1);
}
if (f == NULL) {
fprintf(stderr,
"ldrdf: unable to open response file\n");
exit(1);
}
argv++, argc--;
while (fgets(buf, sizeof(buf), f) != NULL) {
char *p;
if (buf[0] == '\n')
continue;
if ((p = strchr(buf, '\n')) != NULL)
*p = '\0';
if (i >= 128) {
fprintf(stderr, "ldrdf: too many input files\n");
exit(1);
}
*(respstrings + i) = newstr(buf);
argc++, i++;
}
break;
}
case '2':
options.stderr_redir = 1;
error_file = stdout;
break;
case 'g':
generic_rec_file = argv[1];
argv++, argc--;
break;
default:
usage();
}
argv++, argc--;
}
if (options.verbose > 4) {
printf("ldrdf invoked with options:\n");
printf(" section alignment: %d bytes\n", options.align);
printf(" output name: `%s'\n", outname);
if (options.strip)
printf(" strip symbols\n");
if (options.dynalink)
printf(" Unix-style dynamic linking\n");
if (options.objpath)
printf(" objects search path: %s\n", objpath);
if (options.libpath)
printf(" libraries search path: %s\n", libpath);
printf("\n");
}
symtab = symtabNew();
initsegments();
if (!symtab) {
fprintf(stderr, "ldrdf: out of memory\n");
exit(1);
}
while (argc) {
if (!*argv)
argv = respstrings;
if (!*argv)
break;
if (!strncmp(*argv, "-l", 2)) {
if (libpath && (argv[0][2] != '/'))
add_library(newstrcat(libpath, *argv + 2));
else
add_library(*argv + 2);
} else {
if (objpath && (argv[0][0] != '/'))
loadmodule(newstrcat(objpath, *argv));
else
loadmodule(*argv);
moduleloaded = 1;
}
argv++, argc--;
}
if (!moduleloaded) {
printf("ldrdf: nothing to do. ldrdf -h for usage\n");
return 0;
}
search_libraries();
if (options.verbose > 2) {
printf("symbol table:\n");
symtabDump(symtab, stdout);
}
write_output(outname);
if (errorcount > 0)
exit(1);
return 0;
}