nasm/nasm.h
H. Peter Anvin 4def1a8db4 Show the expanded macro stack when displaying diagnostics
It can be hard to find errors inside potentially nested macros.
Show the mmacro expansion stack when printing diagnostics.
Note that a list file doesn't help for errors that are detected
before the code-generation pass.

Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2016-05-09 13:59:44 -07:00

1133 lines
37 KiB
C

/* ----------------------------------------------------------------------- *
*
* Copyright 1996-2016 The NASM Authors - All Rights Reserved
* See the file AUTHORS included with the NASM distribution for
* the specific copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following
* conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ----------------------------------------------------------------------- */
/*
* nasm.h main header file for the Netwide Assembler: inter-module interface
*/
#ifndef NASM_NASM_H
#define NASM_NASM_H
#include "compiler.h"
#include <stdio.h>
#include <inttypes.h>
#include "nasmlib.h"
#include "preproc.h"
#include "insnsi.h" /* For enum opcode */
#include "directiv.h" /* For enum directive */
#include "opflags.h"
#include "regs.h"
#define NO_SEG -1L /* null segment value */
#define SEG_ABS 0x40000000L /* mask for far-absolute segments */
#ifndef FILENAME_MAX
#define FILENAME_MAX 256
#endif
#ifndef PREFIX_MAX
#define PREFIX_MAX 10
#endif
#ifndef POSTFIX_MAX
#define POSTFIX_MAX 10
#endif
#define IDLEN_MAX 4096
#define DECOLEN_MAX 32
/*
* Name pollution problems: <time.h> on Digital UNIX pulls in some
* strange hardware header file which sees fit to define R_SP. We
* undefine it here so as not to break the enum below.
*/
#ifdef R_SP
#undef R_SP
#endif
/*
* We must declare the existence of this structure type up here,
* since we have to reference it before we define it...
*/
struct ofmt;
/*
* Values for the `type' parameter to an output function.
*
* Exceptions are OUT_RELxADR, which denote an x-byte relocation
* which will be a relative jump. For this we need to know the
* distance in bytes from the start of the relocated record until
* the end of the containing instruction. _This_ is what is stored
* in the size part of the parameter, in this case.
*
* Also OUT_RESERVE denotes reservation of N bytes of BSS space,
* and the contents of the "data" parameter is irrelevant.
*
* The "data" parameter for the output function points to a "int32_t",
* containing the address in question, unless the type is
* OUT_RAWDATA, in which case it points to an "uint8_t"
* array.
*/
enum out_type {
OUT_RAWDATA, /* Plain bytes */
OUT_ADDRESS, /* An address (symbol value) */
OUT_RESERVE, /* Reserved bytes (RESB et al) */
OUT_REL1ADR, /* 1-byte relative address */
OUT_REL2ADR, /* 2-byte relative address */
OUT_REL4ADR, /* 4-byte relative address */
OUT_REL8ADR /* 8-byte relative address */
};
/*
* A label-lookup function.
*/
typedef bool (*lfunc)(char *label, int32_t *segment, int64_t *offset);
/*
* And a label-definition function. The boolean parameter
* `is_norm' states whether the label is a `normal' label (which
* should affect the local-label system), or something odder like
* an EQU or a segment-base symbol, which shouldn't.
*/
typedef void (*ldfunc)(char *label, int32_t segment, int64_t offset,
char *special, bool is_norm, bool isextrn);
void define_label(char *label, int32_t segment, int64_t offset,
char *special, bool is_norm, bool isextrn);
/*
* Token types returned by the scanner, in addition to ordinary
* ASCII character values, and zero for end-of-string.
*/
enum token_type { /* token types, other than chars */
TOKEN_INVALID = -1, /* a placeholder value */
TOKEN_EOS = 0, /* end of string */
TOKEN_EQ = '=',
TOKEN_GT = '>',
TOKEN_LT = '<', /* aliases */
TOKEN_ID = 256, /* identifier */
TOKEN_NUM, /* numeric constant */
TOKEN_ERRNUM, /* malformed numeric constant */
TOKEN_STR, /* string constant */
TOKEN_ERRSTR, /* unterminated string constant */
TOKEN_FLOAT, /* floating-point constant */
TOKEN_REG, /* register name */
TOKEN_INSN, /* instruction name */
TOKEN_HERE, /* $ */
TOKEN_BASE, /* $$ */
TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
TOKEN_SHL, /* << */
TOKEN_SHR, /* >> */
TOKEN_SDIV, /* // */
TOKEN_SMOD, /* %% */
TOKEN_GE, /* >= */
TOKEN_LE, /* <= */
TOKEN_NE, /* <> (!= is same as <>) */
TOKEN_DBL_AND, /* && */
TOKEN_DBL_OR, /* || */
TOKEN_DBL_XOR, /* ^^ */
TOKEN_SEG, /* SEG */
TOKEN_WRT, /* WRT */
TOKEN_FLOATIZE, /* __floatX__ */
TOKEN_STRFUNC, /* __utf16*__, __utf32*__ */
TOKEN_IFUNC, /* __ilog2*__ */
TOKEN_DECORATOR, /* decorators such as {...} */
TOKEN_OPMASK /* translated token for opmask registers */
};
enum floatize {
FLOAT_8,
FLOAT_16,
FLOAT_32,
FLOAT_64,
FLOAT_80M,
FLOAT_80E,
FLOAT_128L,
FLOAT_128H
};
/* Must match the list in string_transform(), in strfunc.c */
enum strfunc {
STRFUNC_UTF16,
STRFUNC_UTF16LE,
STRFUNC_UTF16BE,
STRFUNC_UTF32,
STRFUNC_UTF32LE,
STRFUNC_UTF32BE
};
enum ifunc {
IFUNC_ILOG2E,
IFUNC_ILOG2W,
IFUNC_ILOG2F,
IFUNC_ILOG2C
};
size_t string_transform(char *, size_t, char **, enum strfunc);
/*
* The expression evaluator must be passed a scanner function; a
* standard scanner is provided as part of nasmlib.c. The
* preprocessor will use a different one. Scanners, and the
* token-value structures they return, look like this.
*
* The return value from the scanner is always a copy of the
* `t_type' field in the structure.
*/
struct tokenval {
char *t_charptr;
int64_t t_integer;
int64_t t_inttwo;
enum token_type t_type;
int8_t t_flag;
};
typedef int (*scanner)(void *private_data, struct tokenval *tv);
struct location {
int64_t offset;
int32_t segment;
int known;
};
/*
* Expression-evaluator datatype. Expressions, within the
* evaluator, are stored as an array of these beasts, terminated by
* a record with type==0. Mostly, it's a vector type: each type
* denotes some kind of a component, and the value denotes the
* multiple of that component present in the expression. The
* exception is the WRT type, whose `value' field denotes the
* segment to which the expression is relative. These segments will
* be segment-base types, i.e. either odd segment values or SEG_ABS
* types. So it is still valid to assume that anything with a
* `value' field of zero is insignificant.
*/
typedef struct {
int32_t type; /* a register, or EXPR_xxx */
int64_t value; /* must be >= 32 bits */
} expr;
/*
* Library routines to manipulate expression data types.
*/
int is_reloc(expr *vect);
int is_simple(expr *vect);
int is_really_simple(expr *vect);
int is_unknown(expr *vect);
int is_just_unknown(expr *vect);
int64_t reloc_value(expr *vect);
int32_t reloc_seg(expr *vect);
int32_t reloc_wrt(expr *vect);
/*
* The evaluator can also return hints about which of two registers
* used in an expression should be the base register. See also the
* `operand' structure.
*/
struct eval_hints {
int64_t base;
int type;
};
/*
* The actual expression evaluator function looks like this. When
* called, it expects the first token of its expression to already
* be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
* it will start by calling the scanner.
*
* If a forward reference happens during evaluation, the evaluator
* must set `*fwref' to true if `fwref' is non-NULL.
*
* `critical' is non-zero if the expression may not contain forward
* references. The evaluator will report its own error if this
* occurs; if `critical' is 1, the error will be "symbol not
* defined before use", whereas if `critical' is 2, the error will
* be "symbol undefined".
*
* If `critical' has bit 8 set (in addition to its main value: 0x101
* and 0x102 correspond to 1 and 2) then an extended expression
* syntax is recognised, in which relational operators such as =, <
* and >= are accepted, as well as low-precedence logical operators
* &&, ^^ and ||.
*
* If `hints' is non-NULL, it gets filled in with some hints as to
* the base register in complex effective addresses.
*/
#define CRITICAL 0x100
typedef expr *(*evalfunc)(scanner sc, void *scprivate,
struct tokenval *tv, int *fwref, int critical,
struct eval_hints *hints);
/*
* Special values for expr->type.
* These come after EXPR_REG_END as defined in regs.h.
* Expr types : 0 ~ EXPR_REG_END, EXPR_UNKNOWN, EXPR_...., EXPR_RDSAE,
* EXPR_SEGBASE ~ EXPR_SEGBASE + SEG_ABS, ...
*/
#define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
#define EXPR_SIMPLE (EXPR_REG_END+2)
#define EXPR_WRT (EXPR_REG_END+3)
#define EXPR_RDSAE (EXPR_REG_END+4)
#define EXPR_SEGBASE (EXPR_REG_END+5)
/*
* Linked list of strings
*/
typedef struct string_list {
struct string_list *next;
char str[1];
} StrList;
/*
* preprocessors ought to look like this:
*/
struct preproc_ops {
/*
* Called at the start of a pass; given a file name, the number
* of the pass, an error reporting function, an evaluator
* function, and a listing generator to talk to.
*/
void (*reset)(char *file, int pass, StrList **deplist);
/*
* Called to fetch a line of preprocessed source. The line
* returned has been malloc'ed, and so should be freed after
* use.
*/
char *(*getline)(void);
/* Called at the end of a pass */
void (*cleanup)(int pass);
/* Additional macros specific to output format */
void (*extra_stdmac)(macros_t *macros);
/* Early definitions and undefinitions for macros */
void (*pre_define)(char *definition);
void (*pre_undefine)(char *definition);
/* Include file from command line */
void (*pre_include)(char *fname);
/* Include path from command line */
void (*include_path)(char *path);
/* Unwind the macro stack when printing an error message */
void (*error_list_macros)(int severity);
};
extern const struct preproc_ops nasmpp;
extern const struct preproc_ops preproc_nop;
/*
* Some lexical properties of the NASM source language, included
* here because they are shared between the parser and preprocessor.
*/
/*
* isidstart matches any character that may start an identifier, and isidchar
* matches any character that may appear at places other than the start of an
* identifier. E.g. a period may only appear at the start of an identifier
* (for local labels), whereas a number may appear anywhere *but* at the
* start.
* isbrcchar matches any character that may placed inside curly braces as a
* decorator. E.g. {rn-sae}, {1to8}, {k1}{z}
*/
#define isidstart(c) (nasm_isalpha(c) || \
(c) == '_' || \
(c) == '.' || \
(c) == '?' || \
(c) == '@')
#define isidchar(c) (isidstart(c) || \
nasm_isdigit(c) || \
(c) == '$' || \
(c) == '#' || \
(c) == '~')
#define isbrcchar(c) (isidchar(c) || \
(c) == '-')
/* Ditto for numeric constants. */
#define isnumstart(c) (nasm_isdigit(c) || (c) == '$')
#define isnumchar(c) (nasm_isalnum(c) || (c) == '_')
/*
* Data-type flags that get passed to listing-file routines.
*/
enum {
LIST_READ,
LIST_MACRO,
LIST_MACRO_NOLIST,
LIST_INCLUDE,
LIST_INCBIN,
LIST_TIMES
};
/*
* -----------------------------------------------------------
* Format of the `insn' structure returned from `parser.c' and
* passed into `assemble.c'
* -----------------------------------------------------------
*/
/* Verify value to be a valid register */
static inline bool is_register(int reg)
{
return reg >= EXPR_REG_START && reg < REG_ENUM_LIMIT;
}
enum ccode { /* condition code names */
C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
C_none = -1
};
/*
* token flags
*/
#define TFLAG_BRC (1 << 0) /* valid only with braces. {1to8}, {rd-sae}, ...*/
#define TFLAG_BRC_OPT (1 << 1) /* may or may not have braces. opmasks {k1} */
#define TFLAG_BRC_ANY (TFLAG_BRC | TFLAG_BRC_OPT)
#define TFLAG_BRDCAST (1 << 2) /* broadcasting decorator */
#define TFLAG_WARN (1 << 3) /* warning only, treat as ID */
static inline uint8_t get_cond_opcode(enum ccode c)
{
static const uint8_t ccode_opcodes[] = {
0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xf, 0xd, 0xc, 0xe, 0x6, 0x2,
0x3, 0x7, 0x3, 0x5, 0xe, 0xc, 0xd, 0xf, 0x1, 0xb, 0x9, 0x5,
0x0, 0xa, 0xa, 0xb, 0x8, 0x4
};
return ccode_opcodes[(int)c];
}
/*
* REX flags
*/
#define REX_MASK 0x4f /* Actual REX prefix bits */
#define REX_B 0x01 /* ModRM r/m extension */
#define REX_X 0x02 /* SIB index extension */
#define REX_R 0x04 /* ModRM reg extension */
#define REX_W 0x08 /* 64-bit operand size */
#define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
#define REX_P 0x40 /* REX prefix present/required */
#define REX_H 0x80 /* High register present, REX forbidden */
#define REX_V 0x0100 /* Instruction uses VEX/XOP instead of REX */
#define REX_NH 0x0200 /* Instruction which doesn't use high regs */
#define REX_EV 0x0400 /* Instruction uses EVEX instead of REX */
/*
* EVEX bit field
*/
#define EVEX_P0MM 0x03 /* EVEX P[1:0] : Legacy escape */
#define EVEX_P0RP 0x10 /* EVEX P[4] : High-16 reg */
#define EVEX_P0X 0x40 /* EVEX P[6] : High-16 rm */
#define EVEX_P1PP 0x03 /* EVEX P[9:8] : Legacy prefix */
#define EVEX_P1VVVV 0x78 /* EVEX P[14:11] : NDS register */
#define EVEX_P1W 0x80 /* EVEX P[15] : Osize extension */
#define EVEX_P2AAA 0x07 /* EVEX P[18:16] : Embedded opmask */
#define EVEX_P2VP 0x08 /* EVEX P[19] : High-16 NDS reg */
#define EVEX_P2B 0x10 /* EVEX P[20] : Broadcast / RC / SAE */
#define EVEX_P2LL 0x60 /* EVEX P[22:21] : Vector length */
#define EVEX_P2RC EVEX_P2LL /* EVEX P[22:21] : Rounding control */
#define EVEX_P2Z 0x80 /* EVEX P[23] : Zeroing/Merging */
/*
* REX_V "classes" (prefixes which behave like VEX)
*/
enum vex_class {
RV_VEX = 0, /* C4/C5 */
RV_XOP = 1, /* 8F */
RV_EVEX = 2 /* 62 */
};
/*
* Note that because segment registers may be used as instruction
* prefixes, we must ensure the enumerations for prefixes and
* register names do not overlap.
*/
enum prefixes { /* instruction prefixes */
P_none = 0,
PREFIX_ENUM_START = REG_ENUM_LIMIT,
P_A16 = PREFIX_ENUM_START,
P_A32,
P_A64,
P_ASP,
P_LOCK,
P_O16,
P_O32,
P_O64,
P_OSP,
P_REP,
P_REPE,
P_REPNE,
P_REPNZ,
P_REPZ,
P_TIMES,
P_WAIT,
P_XACQUIRE,
P_XRELEASE,
P_BND,
P_NOBND,
P_EVEX,
P_VEX3,
P_VEX2,
PREFIX_ENUM_LIMIT
};
enum extop_type { /* extended operand types */
EOT_NOTHING,
EOT_DB_STRING, /* Byte string */
EOT_DB_STRING_FREE, /* Byte string which should be nasm_free'd*/
EOT_DB_NUMBER /* Integer */
};
enum ea_flags { /* special EA flags */
EAF_BYTEOFFS = 1, /* force offset part to byte size */
EAF_WORDOFFS = 2, /* force offset part to [d]word size */
EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
EAF_REL = 8, /* IP-relative addressing */
EAF_ABS = 16, /* non-IP-relative addressing */
EAF_FSGS = 32, /* fs/gs segment override present */
EAF_MIB = 64 /* mib operand */
};
enum eval_hint { /* values for `hinttype' */
EAH_NOHINT = 0, /* no hint at all - our discretion */
EAH_MAKEBASE = 1, /* try to make given reg the base */
EAH_NOTBASE = 2, /* try _not_ to make reg the base */
EAH_SUMMED = 3 /* base and index are summed into index */
};
typedef struct operand { /* operand to an instruction */
opflags_t type; /* type of operand */
int disp_size; /* 0 means default; 16; 32; 64 */
enum reg_enum basereg;
enum reg_enum indexreg; /* address registers */
int scale; /* index scale */
int hintbase;
enum eval_hint hinttype; /* hint as to real base register */
int32_t segment; /* immediate segment, if needed */
int64_t offset; /* any immediate number */
int32_t wrt; /* segment base it's relative to */
int eaflags; /* special EA flags */
int opflags; /* see OPFLAG_* defines below */
decoflags_t decoflags; /* decorator flags such as {...} */
} operand;
#define OPFLAG_FORWARD 1 /* operand is a forward reference */
#define OPFLAG_EXTERN 2 /* operand is an external reference */
#define OPFLAG_UNKNOWN 4 /* operand is an unknown reference
* (always a forward reference also)
*/
typedef struct extop { /* extended operand */
struct extop *next; /* linked list */
char *stringval; /* if it's a string, then here it is */
size_t stringlen; /* ... and here's how long it is */
int64_t offset; /* ... it's given here ... */
int32_t segment; /* if it's a number/address, then... */
int32_t wrt; /* ... and here */
enum extop_type type; /* defined above */
} extop;
enum ea_type {
EA_INVALID, /* Not a valid EA at all */
EA_SCALAR, /* Scalar EA */
EA_XMMVSIB, /* XMM vector EA */
EA_YMMVSIB, /* YMM vector EA */
EA_ZMMVSIB /* ZMM vector EA */
};
/*
* Prefix positions: each type of prefix goes in a specific slot.
* This affects the final ordering of the assembled output, which
* shouldn't matter to the processor, but if you have stylistic
* preferences, you can change this. REX prefixes are handled
* differently for the time being.
*
* LOCK and REP used to be one slot; this is no longer the case since
* the introduction of HLE.
*/
enum prefix_pos {
PPS_WAIT, /* WAIT (technically not a prefix!) */
PPS_REP, /* REP/HLE prefix */
PPS_LOCK, /* LOCK prefix */
PPS_SEG, /* Segment override prefix */
PPS_OSIZE, /* Operand size prefix */
PPS_ASIZE, /* Address size prefix */
PPS_VEX, /* VEX type */
MAXPREFIX /* Total number of prefix slots */
};
/*
* Tuple types that are used when determining Disp8*N eligibility
* The order must match with a hash %tuple_codes in insns.pl
*/
enum ttypes {
FV = 001,
HV = 002,
FVM = 003,
T1S8 = 004,
T1S16 = 005,
T1S = 006,
T1F32 = 007,
T1F64 = 010,
T2 = 011,
T4 = 012,
T8 = 013,
HVM = 014,
QVM = 015,
OVM = 016,
M128 = 017,
DUP = 020
};
/* EVEX.L'L : Vector length on vector insns */
enum vectlens {
VL128 = 0,
VL256 = 1,
VL512 = 2,
VLMAX = 3
};
/* If you need to change this, also change it in insns.pl */
#define MAX_OPERANDS 5
typedef struct insn { /* an instruction itself */
char *label; /* the label defined, or NULL */
int prefixes[MAXPREFIX]; /* instruction prefixes, if any */
enum opcode opcode; /* the opcode - not just the string */
enum ccode condition; /* the condition code, if Jcc/SETcc */
int operands; /* how many operands? 0-3 (more if db et al) */
int addr_size; /* address size */
operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
extop *eops; /* extended operands */
int eops_float; /* true if DD and floating */
int32_t times; /* repeat count (TIMES prefix) */
bool forw_ref; /* is there a forward reference? */
bool rex_done; /* REX prefix emitted? */
int rex; /* Special REX Prefix */
int vexreg; /* Register encoded in VEX prefix */
int vex_cm; /* Class and M field for VEX prefix */
int vex_wlp; /* W, P and L information for VEX prefix */
uint8_t evex_p[3]; /* EVEX.P0: [RXB,R',00,mm], P1: [W,vvvv,1,pp] */
/* EVEX.P2: [z,L'L,b,V',aaa] */
enum ttypes evex_tuple; /* Tuple type for compressed Disp8*N */
int evex_rm; /* static rounding mode for AVX512 (EVEX) */
int8_t evex_brerop; /* BR/ER/SAE operand position */
} insn;
enum geninfo { GI_SWITCH };
/* Instruction flags type: IF_* flags are defined in insns.h */
typedef uint64_t iflags_t;
/*
* The data structure defining an output format driver, and the
* interfaces to the functions therein.
*/
struct ofmt {
/*
* This is a short (one-liner) description of the type of
* output generated by the driver.
*/
const char *fullname;
/*
* This is a single keyword used to select the driver.
*/
const char *shortname;
/*
* Output format flags.
*/
#define OFMT_TEXT 1 /* Text file format */
unsigned int flags;
int maxbits; /* Maximum segment bits supported */
/*
* this is a pointer to the first element of the debug information
*/
struct dfmt **debug_formats;
/*
* the default debugging format if -F is not specified
*/
const struct dfmt *default_dfmt;
/*
* This, if non-NULL, is a NULL-terminated list of `char *'s
* pointing to extra standard macros supplied by the object
* format (e.g. a sensible initial default value of __SECT__,
* and user-level equivalents for any format-specific
* directives).
*/
macros_t *stdmac;
/*
* This procedure is called at the start of an output session to set
* up internal parameters.
*/
void (*init)(void);
/*
* This procedure is called to pass generic information to the
* object file. The first parameter gives the information type
* (currently only command line switches)
* and the second parameter gives the value. This function returns
* 1 if recognized, 0 if unrecognized
*/
int (*setinfo)(enum geninfo type, char **string);
/*
* This procedure is called by assemble() to write actual
* generated code or data to the object file. Typically it
* doesn't have to actually _write_ it, just store it for
* later.
*
* The `type' argument specifies the type of output data, and
* usually the size as well: its contents are described below.
*/
void (*output)(int32_t segto, const void *data,
enum out_type type, uint64_t size,
int32_t segment, int32_t wrt);
/*
* This procedure is called once for every symbol defined in
* the module being assembled. It gives the name and value of
* the symbol, in NASM's terms, and indicates whether it has
* been declared to be global. Note that the parameter "name",
* when passed, will point to a piece of static storage
* allocated inside the label manager - it's safe to keep using
* that pointer, because the label manager doesn't clean up
* until after the output driver has.
*
* Values of `is_global' are: 0 means the symbol is local; 1
* means the symbol is global; 2 means the symbol is common (in
* which case `offset' holds the _size_ of the variable).
* Anything else is available for the output driver to use
* internally.
*
* This routine explicitly _is_ allowed to call the label
* manager to define further symbols, if it wants to, even
* though it's been called _from_ the label manager. That much
* re-entrancy is guaranteed in the label manager. However, the
* label manager will in turn call this routine, so it should
* be prepared to be re-entrant itself.
*
* The `special' parameter contains special information passed
* through from the command that defined the label: it may have
* been an EXTERN, a COMMON or a GLOBAL. The distinction should
* be obvious to the output format from the other parameters.
*/
void (*symdef)(char *name, int32_t segment, int64_t offset,
int is_global, char *special);
/*
* This procedure is called when the source code requests a
* segment change. It should return the corresponding segment
* _number_ for the name, or NO_SEG if the name is not a valid
* segment name.
*
* It may also be called with NULL, in which case it is to
* return the _default_ section number for starting assembly in.
*
* It is allowed to modify the string it is given a pointer to.
*
* It is also allowed to specify a default instruction size for
* the segment, by setting `*bits' to 16 or 32. Or, if it
* doesn't wish to define a default, it can leave `bits' alone.
*/
int32_t (*section)(char *name, int pass, int *bits);
/*
* This procedure is called to modify section alignment,
* note there is a trick, the alignment can only increase
*/
void (*sectalign)(int32_t seg, unsigned int value);
/*
* This procedure is called to modify the segment base values
* returned from the SEG operator. It is given a segment base
* value (i.e. a segment value with the low bit set), and is
* required to produce in return a segment value which may be
* different. It can map segment bases to absolute numbers by
* means of returning SEG_ABS types.
*
* It should return NO_SEG if the segment base cannot be
* determined; the evaluator (which calls this routine) is
* responsible for throwing an error condition if that occurs
* in pass two or in a critical expression.
*/
int32_t (*segbase)(int32_t segment);
/*
* This procedure is called to allow the output driver to
* process its own specific directives. When called, it has the
* directive word in `directive' and the parameter string in
* `value'. It is called in both assembly passes, and `pass'
* will be either 1 or 2.
*
* This procedure should return zero if it does not _recognise_
* the directive, so that the main program can report an error.
* If it recognises the directive but then has its own errors,
* it should report them itself and then return non-zero. It
* should also return non-zero if it correctly processes the
* directive.
*/
int (*directive)(enum directives directive, char *value, int pass);
/*
* This procedure is called before anything else - even before
* the "init" routine - and is passed the name of the input
* file from which this output file is being generated. It
* should return its preferred name for the output file in
* `outname', if outname[0] is not '\0', and do nothing to
* `outname' otherwise. Since it is called before the driver is
* properly initialized, it has to be passed its error handler
* separately.
*
* This procedure may also take its own copy of the input file
* name for use in writing the output file: it is _guaranteed_
* that it will be called before the "init" routine.
*
* The parameter `outname' points to an area of storage
* guaranteed to be at least FILENAME_MAX in size.
*/
void (*filename)(char *inname, char *outname);
/*
* This procedure is called after assembly finishes, to allow
* the output driver to clean itself up and free its memory.
* Typically, it will also be the point at which the object
* file actually gets _written_.
*
* One thing the cleanup routine should always do is to close
* the output file pointer.
*/
void (*cleanup)(void);
};
/*
* Output format driver alias
*/
struct ofmt_alias {
const char *shortname;
const char *fullname;
struct ofmt *ofmt;
};
extern struct ofmt *ofmt;
extern FILE *ofile;
/*
* ------------------------------------------------------------
* The data structure defining a debug format driver, and the
* interfaces to the functions therein.
* ------------------------------------------------------------
*/
struct dfmt {
/*
* This is a short (one-liner) description of the type of
* output generated by the driver.
*/
const char *fullname;
/*
* This is a single keyword used to select the driver.
*/
const char *shortname;
/*
* init - called initially to set up local pointer to object format.
*/
void (*init)(void);
/*
* linenum - called any time there is output with a change of
* line number or file.
*/
void (*linenum)(const char *filename, int32_t linenumber, int32_t segto);
/*
* debug_deflabel - called whenever a label is defined. Parameters
* are the same as to 'symdef()' in the output format. This function
* is called after the output format version.
*/
void (*debug_deflabel)(char *name, int32_t segment, int64_t offset,
int is_global, char *special);
/*
* debug_directive - called whenever a DEBUG directive other than 'LINE'
* is encountered. 'directive' contains the first parameter to the
* DEBUG directive, and params contains the rest. For example,
* 'DEBUG VAR _somevar:int' would translate to a call to this
* function with 'directive' equal to "VAR" and 'params' equal to
* "_somevar:int".
*/
void (*debug_directive)(const char *directive, const char *params);
/*
* typevalue - called whenever the assembler wishes to register a type
* for the last defined label. This routine MUST detect if a type was
* already registered and not re-register it.
*/
void (*debug_typevalue)(int32_t type);
/*
* debug_output - called whenever output is required
* 'type' is the type of info required, and this is format-specific
*/
void (*debug_output)(int type, void *param);
/*
* cleanup - called after processing of file is complete
*/
void (*cleanup)(void);
};
extern const struct dfmt *dfmt;
/*
* The type definition macros
* for debugging
*
* low 3 bits: reserved
* next 5 bits: type
* next 24 bits: number of elements for arrays (0 for labels)
*/
#define TY_UNKNOWN 0x00
#define TY_LABEL 0x08
#define TY_BYTE 0x10
#define TY_WORD 0x18
#define TY_DWORD 0x20
#define TY_FLOAT 0x28
#define TY_QWORD 0x30
#define TY_TBYTE 0x38
#define TY_OWORD 0x40
#define TY_YWORD 0x48
#define TY_COMMON 0xE0
#define TY_SEG 0xE8
#define TY_EXTERN 0xF0
#define TY_EQU 0xF8
#define TYM_TYPE(x) ((x) & 0xF8)
#define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
#define TYS_ELEMENTS(x) ((x) << 8)
enum special_tokens {
SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
S_ABS = SPECIAL_ENUM_START,
S_BYTE,
S_DWORD,
S_FAR,
S_LONG,
S_NEAR,
S_NOSPLIT,
S_OWORD,
S_QWORD,
S_REL,
S_SHORT,
S_STRICT,
S_TO,
S_TWORD,
S_WORD,
S_YWORD,
S_ZWORD,
SPECIAL_ENUM_LIMIT
};
enum decorator_tokens {
DECORATOR_ENUM_START = SPECIAL_ENUM_LIMIT,
BRC_1TO2 = DECORATOR_ENUM_START,
BRC_1TO4,
BRC_1TO8,
BRC_1TO16,
BRC_RN,
BRC_RD,
BRC_RU,
BRC_RZ,
BRC_SAE,
BRC_Z,
DECORATOR_ENUM_LIMIT
};
/*
* AVX512 Decorator (decoflags_t) bits distribution (counted from 0)
* 3 2 1
* 10987654321098765432109876543210
* |
* | word boundary
* ............................1111 opmask
* ...........................1.... zeroing / merging
* ..........................1..... broadcast
* .........................1...... static rounding
* ........................1....... SAE
* ......................11........ broadcast element size
* ....................11.......... number of broadcast elements
*/
#define OP_GENVAL(val, bits, shift) (((val) & ((UINT64_C(1) << (bits)) - 1)) << (shift))
/*
* Opmask register number
* identical to EVEX.aaa
*
* Bits: 0 - 3
*/
#define OPMASK_SHIFT (0)
#define OPMASK_BITS (4)
#define OPMASK_MASK OP_GENMASK(OPMASK_BITS, OPMASK_SHIFT)
#define GEN_OPMASK(bit) OP_GENBIT(bit, OPMASK_SHIFT)
#define VAL_OPMASK(val) OP_GENVAL(val, OPMASK_BITS, OPMASK_SHIFT)
/*
* zeroing / merging control available
* matching to EVEX.z
*
* Bits: 4
*/
#define Z_SHIFT (4)
#define Z_BITS (1)
#define Z_MASK OP_GENMASK(Z_BITS, Z_SHIFT)
#define GEN_Z(bit) OP_GENBIT(bit, Z_SHIFT)
/*
* broadcast - Whether this operand can be broadcasted
*
* Bits: 5
*/
#define BRDCAST_SHIFT (5)
#define BRDCAST_BITS (1)
#define BRDCAST_MASK OP_GENMASK(BRDCAST_BITS, BRDCAST_SHIFT)
#define GEN_BRDCAST(bit) OP_GENBIT(bit, BRDCAST_SHIFT)
/*
* Whether this instruction can have a static rounding mode.
* It goes with the last simd operand because the static rounding mode
* decorator is located between the last simd operand and imm8 (if any).
*
* Bits: 6
*/
#define STATICRND_SHIFT (6)
#define STATICRND_BITS (1)
#define STATICRND_MASK OP_GENMASK(STATICRND_BITS, STATICRND_SHIFT)
#define GEN_STATICRND(bit) OP_GENBIT(bit, STATICRND_SHIFT)
/*
* SAE(Suppress all exception) available
*
* Bits: 7
*/
#define SAE_SHIFT (7)
#define SAE_BITS (1)
#define SAE_MASK OP_GENMASK(SAE_BITS, SAE_SHIFT)
#define GEN_SAE(bit) OP_GENBIT(bit, SAE_SHIFT)
/*
* Broadcasting element size.
*
* Bits: 8 - 9
*/
#define BRSIZE_SHIFT (8)
#define BRSIZE_BITS (2)
#define BRSIZE_MASK OP_GENMASK(BRSIZE_BITS, BRSIZE_SHIFT)
#define GEN_BRSIZE(bit) OP_GENBIT(bit, BRSIZE_SHIFT)
#define BR_BITS32 GEN_BRSIZE(0)
#define BR_BITS64 GEN_BRSIZE(1)
/*
* Number of broadcasting elements
*
* Bits: 10 - 11
*/
#define BRNUM_SHIFT (10)
#define BRNUM_BITS (2)
#define BRNUM_MASK OP_GENMASK(BRNUM_BITS, BRNUM_SHIFT)
#define VAL_BRNUM(val) OP_GENVAL(val, BRNUM_BITS, BRNUM_SHIFT)
#define BR_1TO2 VAL_BRNUM(0)
#define BR_1TO4 VAL_BRNUM(1)
#define BR_1TO8 VAL_BRNUM(2)
#define BR_1TO16 VAL_BRNUM(3)
#define MASK OPMASK_MASK /* Opmask (k1 ~ 7) can be used */
#define Z Z_MASK
#define B32 (BRDCAST_MASK|BR_BITS32) /* {1to16} : broadcast 32b * 16 to zmm(512b) */
#define B64 (BRDCAST_MASK|BR_BITS64) /* {1to8} : broadcast 64b * 8 to zmm(512b) */
#define ER STATICRND_MASK /* ER(Embedded Rounding) == Static rounding mode */
#define SAE SAE_MASK /* SAE(Suppress All Exception) */
/*
* Global modes
*/
/*
* This declaration passes the "pass" number to all other modules
* "pass0" assumes the values: 0, 0, ..., 0, 1, 2
* where 0 = optimizing pass
* 1 = pass 1
* 2 = pass 2
*/
extern int pass0;
extern int passn; /* Actual pass number */
extern bool tasm_compatible_mode;
extern int optimizing;
extern int globalbits; /* 16, 32 or 64-bit mode */
extern int globalrel; /* default to relative addressing? */
extern int globalbnd; /* default to using bnd prefix? */
/*
* NASM version strings, defined in ver.c
*/
extern const char nasm_version[];
extern const char nasm_date[];
extern const char nasm_compile_options[];
extern const char nasm_comment[];
extern const char nasm_signature[];
#endif