nasm/x86/insns.pl
H. Peter Anvin 49640ed315 x86: move the bytecode defintion into a separate file in x86/
At least three files (asm/assemble.c, disasm/disasm.c, and
x86/insns.pl) depend on the bytecode defintions. It makes a lot more
sense for them to live in an explicit documentation file in the x86/
directory.

Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2024-07-23 12:47:25 -07:00

1172 lines
35 KiB
Perl
Executable File

#!/usr/bin/perl
## --------------------------------------------------------------------------
##
## Copyright 1996-2020 The NASM Authors - All Rights Reserved
## See the file AUTHORS included with the NASM distribution for
## the specific copyright holders.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following
## conditions are met:
##
## * Redistributions of source code must retain the above copyright
## notice, this list of conditions and the following disclaimer.
## * Redistributions in binary form must reproduce the above
## copyright notice, this list of conditions and the following
## disclaimer in the documentation and/or other materials provided
## with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
## CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
## INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
## MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
## DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
## CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
## SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
## NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
## LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
## HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
## CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
## OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
## EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##
## --------------------------------------------------------------------------
#
# insns.pl
#
# Parse insns.dat and produce generated source code files
#
# See x86/bytecode.txt for the defintion of the byte code
# output to x86/insnsb.c.
#
require 'x86/insns-iflags.ph';
# Opcode prefixes which need their own opcode tables
# LONGER PREFIXES FIRST!
@disasm_prefixes = qw(0F24 0F25 0F38 0F3A 0F7A 0FA6 0FA7 0F);
# This should match MAX_OPERANDS from nasm.h
$MAX_OPERANDS = 5;
# Add VEX/XOP prefixes
@vex_class = ( 'vex', 'xop', 'evex' );
$vex_classes = scalar(@vex_class);
@vexlist = ();
%vexmap = ();
for ($c = 0; $c < $vex_classes; $c++) {
$vexmap{$vex_class[$c]} = $c;
for ($m = 0; $m < 32; $m++) {
for ($p = 0; $p < 4; $p++) {
push(@vexlist, sprintf("%s%02X%01X", $vex_class[$c], $m, $p));
}
}
}
@disasm_prefixes = (@vexlist, @disasm_prefixes, '');
%disasm_prefixes = map { $_ => 1 } @disasm_prefixes;
@bytecode_count = (0) x 256;
# Push to an array reference, creating the array if needed
sub xpush($@) {
my $ref = shift @_;
$$ref = [] unless (defined($$ref));
return push(@$$ref, @_);
}
# Generate relaxed form patterns if applicable
sub relaxed_forms(@) {
my @field_list = @_;
foreach my $fields (@_) {
next unless ($fields->[1] =~ /\*/);
# This instruction has relaxed form(s)
if ($fields->[2] !~ /^\[/) {
warn "$fname:$line: has an * operand but uses raw bytecodes\n";
next;
}
my $opmask = 0;
my @ops = split(/,/, $fields->[1]);
for (my $oi = 0; $oi < scalar @ops; $oi++) {
if ($ops[$oi] =~ /\*$/) {
if ($oi == 0) {
warn "$fname:$line: has a first operand with a *\n";
next;
}
$opmask |= 1 << $oi;
}
}
for (my $oi = 1; $oi < (1 << scalar @ops); $oi++) {
if (($oi & ~$opmask) == 0) {
my @xops = ();
my $omask = ~$oi;
for ($oj = 0; $oj < scalar(@ops); $oj++) {
if ($omask & 1) {
push(@xops, $ops[$oj]);
}
$omask >>= 1;
}
my @ff = @$fields;
$ff[1] = join(',', @xops);
$ff[4] = $oi;
push(@field_list, [@ff]);
}
}
}
return @field_list;
}
# Condition codes used by the disassembler
my %condd = ( 'o' => 0, 'no' => 1, 'c' => 2, 'nc' => 3,
'z' => 4, 'nz' => 5, 'na' => 6, 'a' => 7,
's' => 8, 'ns' => 9, 'pe' => 10, 'po' => 11,
'l' => 12, 'nl' => 13, 'ng' => 14, 'g' => 15 );
# All condition code aliases
my %conds = ( %condd,
'ae' => 3, 'b' => 2, 'be' => 6, 'e' => 4,
'ge' => 13, 'le' => 14, 'nae' => 2, 'nb' => 3,
'nbe' => 7, 'ne' => 5, 'nge' => 12, 'nle' => 15,
'np' => 11, 'p' => 10 );
my @conds = sort keys(%conds);
# Generate conditional form patterns if applicable
sub conditional_forms(@) {
my @field_list = ();
foreach my $fields (@_) {
# This is a case sensitive match!
if ($fields->[0] !~ /cc/) {
# Not a conditional instruction pattern
push(@field_list, $fields);
next;
}
if ($fields->[2] !~ /^\[/) {
warn "$fname:$line: conditional instruction using raw bytecodes\n";
next;
}
foreach my $cc (@conds) {
my @ff = @$fields;
$ff[0] =~ s/cc/\U$cc/;
unless ($ff[2] =~ /^(\[.*?)\b([0-9a-f]{2})\+c\b(.*\])$/) {
warn "$fname:$line: invalid conditional encoding";
next;
}
$ff[2] = $1.sprintf('%02x', hex($2)^$conds{$cc}).$3;
unless (defined($condd{$cc}) || $ff[3] =~ /\bND\b/) {
$ff[3] .= ',ND';
}
push(@field_list, [@ff]);
}
}
return @field_list;
}
print STDERR "Reading insns.dat...\n";
@args = ();
undef $output;
foreach $arg ( @ARGV ) {
if ( $arg =~ /^\-/ ) {
if ( $arg =~ /^\-([abdin]|f[hc])$/ ) {
$output = $1;
} else {
die "$0: Unknown option: ${arg}\n";
}
} else {
push (@args, $arg);
}
}
die if (scalar(@args) != 2); # input output
($fname, $oname) = @args;
open(F, '<', $fname) || die "unable to open $fname";
%dinstables = ();
@bytecode_list = ();
%aname = ();
$line = 0;
$insns = 0;
$n_opcodes = 0;
my @allpatterns = ();
while (<F>) {
$line++;
chomp;
next if ( /^\s*(\;.*|)$/ ); # comments or blank lines
unless (/^\s*(\S+)\s+(\S+)\s+(\S+|\[.*\])\s+(\S+)\s*$/) {
warn "line $line does not contain four fields\n";
next;
}
my @field_list = ([$1, $2, $3, $4, 0]);
@field_list = relaxed_forms(@field_list);
@field_list = conditional_forms(@field_list);
foreach my $fields (@field_list) {
($formatted, $nd) = format_insn(@$fields);
if ($formatted) {
$insns++;
xpush(\$aname{$fields->[0]}, $formatted);
}
if (!defined($k_opcodes{$fields->[0]})) {
$k_opcodes{$fields->[0]} = $n_opcodes++;
}
if ($formatted && !$nd) {
push @big, $formatted;
my @sseq = startseq($fields->[2], $fields->[4]);
foreach my $i (@sseq) {
xpush(\$dinstables{$i}, $#big);
}
}
}
}
close F;
#
# Generate the bytecode array. At this point, @bytecode_list contains
# the full set of bytecodes.
#
# Sort by descending length
@bytecode_list = sort { scalar(@$b) <=> scalar(@$a) } @bytecode_list;
@bytecode_array = ();
%bytecode_pos = ();
$bytecode_next = 0;
foreach $bl (@bytecode_list) {
my $h = hexstr(@$bl);
next if (defined($bytecode_pos{$h}));
push(@bytecode_array, $bl);
while ($h ne '') {
$bytecode_pos{$h} = $bytecode_next;
$h = substr($h, 2);
$bytecode_next++;
}
}
undef @bytecode_list;
@opcodes = sort { $k_opcodes{$a} <=> $k_opcodes{$b} } keys(%k_opcodes);
if ( $output eq 'b') {
print STDERR "Writing $oname...\n";
open(B, '>', $oname);
print B "/* This file auto-generated from insns.dat by insns.pl" .
" - don't edit it */\n\n";
print B "#include \"nasm.h\"\n";
print B "#include \"insns.h\"\n\n";
print B "const uint8_t nasm_bytecodes[$bytecode_next] = {\n";
$p = 0;
foreach $bl (@bytecode_array) {
printf B " /* %5d */ ", $p;
foreach $d (@$bl) {
printf B "%#o,", $d;
$p++;
}
printf B "\n";
}
print B "};\n";
print B "\n";
print B "/*\n";
print B " * Bytecode frequencies (including reuse):\n";
print B " *\n";
for ($i = 0; $i < 32; $i++) {
print B " *";
for ($j = 0; $j < 256; $j += 32) {
print B " |" if ($j);
printf B " %3o:%4d", $i+$j, $bytecode_count[$i+$j];
}
print B "\n";
}
print B " */\n";
close B;
}
if ( $output eq 'a' ) {
print STDERR "Writing $oname...\n";
open(A, '>', $oname);
print A "/* This file auto-generated from insns.dat by insns.pl" .
" - don't edit it */\n\n";
print A "#include \"nasm.h\"\n";
print A "#include \"insns.h\"\n\n";
foreach $i (@opcodes) {
print A "static const struct itemplate instrux_${i}[] = {\n";
foreach $j (@{$aname{$i}}) {
print A " ", codesubst($j), "\n";
}
print A " ITEMPLATE_END\n};\n\n";
}
print A "const struct itemplate * const nasm_instructions[] = {\n";
foreach $i (@opcodes) {
print A " instrux_${i},\n";
}
print A "};\n";
close A;
}
if ( $output eq 'd' ) {
print STDERR "Writing $oname...\n";
open(D, '>', $oname);
print D "/* This file auto-generated from insns.dat by insns.pl" .
" - don't edit it */\n\n";
print D "#include \"nasm.h\"\n";
print D "#include \"insns.h\"\n\n";
print D "static const struct itemplate instrux[] = {\n";
$n = 0;
foreach $j (@big) {
printf D " /* %4d */ %s\n", $n++, codesubst($j);
}
print D "};\n";
foreach $h (sort(keys(%dinstables))) {
next if ($h eq ''); # Skip pseudo-instructions
print D "\nstatic const struct itemplate * const itable_${h}[] = {\n";
foreach $j (@{$dinstables{$h}}) {
print D " instrux + $j,\n";
}
print D "};\n";
}
@prefix_list = ();
foreach $h (@disasm_prefixes) {
for ($c = 0; $c < 256; $c++) {
$nn = sprintf("%s%02X", $h, $c);
if ($is_prefix{$nn} || defined($dinstables{$nn})) {
# At least one entry in this prefix table
push(@prefix_list, $h);
$is_prefix{$h} = 1;
last;
}
}
}
foreach $h (@prefix_list) {
print D "\n";
print D "static " unless ($h eq '');
print D "const struct disasm_index ";
print D ($h eq '') ? 'itable' : "itable_$h";
print D "[256] = {\n";
for ($c = 0; $c < 256; $c++) {
$nn = sprintf("%s%02X", $h, $c);
if ($is_prefix{$nn}) {
if ($dinstables{$nn}) {
print STDERR "$fname: ambiguous decoding, prefix $nn aliases:\n";
foreach my $dc (@{$dinstables{$nn}}) {
print STDERR codesubst($big[$dc]), "\n";
}
exit 1;
}
printf D " /* 0x%02x */ { itable_%s, -1 },\n", $c, $nn;
} elsif ($dinstables{$nn}) {
printf D " /* 0x%02x */ { itable_%s, %u },\n", $c,
$nn, scalar(@{$dinstables{$nn}});
} else {
printf D " /* 0x%02x */ { NULL, 0 },\n", $c;
}
}
print D "};\n";
}
printf D "\nconst struct disasm_index * const itable_vex[NASM_VEX_CLASSES][32][4] =\n";
print D "{\n";
for ($c = 0; $c < $vex_classes; $c++) {
print D " {\n";
for ($m = 0; $m < 32; $m++) {
print D " { ";
for ($p = 0; $p < 4; $p++) {
$vp = sprintf("%s%02X%01X", $vex_class[$c], $m, $p);
printf D "%-15s",
($is_prefix{$vp} ? sprintf("itable_%s,", $vp) : 'NULL,');
}
print D "},\n";
}
print D " },\n";
}
print D "};\n";
close D;
}
if ( $output eq 'i' ) {
print STDERR "Writing $oname...\n";
open(I, '>', $oname);
print I "/* This file is auto-generated from insns.dat by insns.pl" .
" - don't edit it */\n\n";
print I "/* This file in included by nasm.h */\n\n";
print I "/* Instruction names */\n\n";
print I "#ifndef NASM_INSNSI_H\n";
print I "#define NASM_INSNSI_H 1\n\n";
print I "enum opcode {\n";
$maxlen = 0;
foreach $i (@opcodes) {
print I "\tI_${i},\n";
$len = length($i);
$maxlen = $len if ( $len > $maxlen );
}
print I "\tI_none = -1\n";
print I "};\n\n";
print I "#define MAX_INSLEN ", $maxlen, "\n";
print I "#define NASM_VEX_CLASSES ", $vex_classes, "\n";
print I "#define NO_DECORATOR\t{", join(',',(0) x $MAX_OPERANDS), "}\n";
print I "#endif /* NASM_INSNSI_H */\n";
close I;
}
if ( $output eq 'n' ) {
print STDERR "Writing $oname...\n";
open(N, '>', $oname);
print N "/* This file is auto-generated from insns.dat by insns.pl" .
" - don't edit it */\n\n";
print N "#include \"tables.h\"\n\n";
print N "const char * const nasm_insn_names[] = {";
foreach $i (@opcodes) {
print N "\n\t\"\L$i\"";
print N ',' if ($i < $#opcodes);
}
print N "\n};\n";
close N;
}
if ( $output eq 'fh') {
write_iflaggen_h();
}
if ( $output eq 'fc') {
write_iflag_c();
}
printf STDERR "Done: %d instructions\n", $insns;
# Count primary bytecodes, for statistics
sub count_bytecodes(@) {
my $skip = 0;
foreach my $bc (@_) {
if ($skip) {
$skip--;
next;
}
$bytecode_count[$bc]++;
if ($bc >= 01 && $bc <= 04) {
$skip = $bc;
} elsif (($bc & ~03) == 010) {
$skip = 1;
} elsif (($bc & ~013) == 0144) {
$skip = 1;
} elsif ($bc == 0172 || $bc == 0173) {
$skip = 1;
} elsif (($bc & ~3) == 0260 || $bc == 0270) { # VEX
$skip = 2;
} elsif (($bc & ~3) == 0240 || $bc == 0250) { # EVEX
$skip = 3;
} elsif ($bc == 0330) {
$skip = 1;
}
}
}
sub format_insn($$$$$) {
my ($opcode, $operands, $codes, $flags, $relax) = @_;
my $nd = 0;
my ($num, $flagsindex);
my @bytecode;
my ($op, @ops, @opsize, $opp, @opx, @oppx, @decos, @opevex);
return (undef, undef) if $operands eq "ignore";
# format the operands
$operands =~ s/\*//g;
$operands =~ s/:/|colon,/g;
@ops = ();
@opsize = ();
@decos = ();
if ($operands ne 'void') {
foreach $op (split(/,/, $operands)) {
my $opsz = 0;
@opx = ();
@opevex = ();
foreach $opp (split(/\|/, $op)) {
@oppx = ();
if ($opp =~ s/^(b(16|32|64)|mask|z|er|sae)$//) {
push(@opevex, $1);
}
if ($opp =~ s/(?<!\d)(8|16|32|64|80|128|256|512)$//) {
push(@oppx, "bits$1");
$opsz = $1 + 0;
}
$opp =~ s/^mem$/memory/;
$opp =~ s/^memory_offs$/mem_offs/;
$opp =~ s/^imm$/immediate/;
$opp =~ s/^([a-z]+)rm$/rm_$1/;
$opp =~ s/^rm$/rm_gpr/;
$opp =~ s/^reg$/reg_gpr/;
# only for evex insns, high-16 regs are allowed
if ($codes !~ /(^|\s)evex\./) {
$opp =~ s/^(rm_[xyz]mm)$/$1_l16/;
$opp =~ s/^([xyz]mm)reg$/$1_l16/;
}
push(@opx, $opp, @oppx) if $opp;
}
$op = join('|', @opx);
push(@ops, $op);
push(@opsize, $opsz);
push(@decos, (@opevex ? join('|', @opevex) : '0'));
}
}
$num = scalar(@ops);
while (scalar(@ops) < $MAX_OPERANDS) {
push(@ops, '0');
push(@opsize, 0);
push(@decos, '0');
}
$operands = join(',', @ops);
$operands =~ tr/a-z/A-Z/;
$decorators = "{" . join(',', @decos) . "}";
if ($decorators =~ /^{(0,)+0}$/) {
$decorators = "NO_DECORATOR";
}
$decorators =~ tr/a-z/A-Z/;
# Remember if we have an ARx flag
my $arx = undef;
# expand and uniqify the flags
my %flags;
foreach my $flag (split(',', $flags)) {
next if ($flag eq '');
if ($flag eq 'ND') {
$nd = 1;
} else {
$flags{$flag}++;
}
if ($flag eq 'NEVER' || $flag eq 'NOP') {
# These flags imply OBSOLETE
$flags{'OBSOLETE'}++;
}
if ($flag =~ /^AR([0-9]+)$/) {
$arx = $1+0;
}
}
if ($codes =~ /evex\./) {
$flags{'EVEX'}++;
} elsif ($codes =~ /(vex|xop)\./) {
$flags{'VEX'}++;
}
# Look for SM flags clearly inconsistent with operand bitsizes
if ($flags{'SM'} || $flags{'SM2'}) {
my $ssize = 0;
my $e = $flags{'SM2'} ? 2 : $MAX_OPERANDS;
for (my $i = 0; $i < $e; $i++) {
next if (!$opsize[$i]);
if (!$ssize) {
$ssize = $opsize[$i];
} elsif ($opsize[$i] != $ssize) {
die "$fname:$line: inconsistent SM flag for argument $i\n";
}
}
}
# Look for Sx flags that can never match operand bitsizes. If the
# intent is to never match (require explicit sizes), use the SX flag.
# This doesn't apply to registers that pre-define specific sizes;
# this should really be derived from include/opflags.h...
my %sflags = ( 'SB' => 8, 'SW' => 16, 'SD' => 32, 'SQ' => 64,
'SO' => 128, 'SY' => 256, 'SZ' => 512 );
my $s = defined($arx) ? $arx : 0;
my $e = defined($arx) ? $arx : $MAX_OPERANDS - 1;
foreach my $sf (keys(%sflags)) {
next if (!$flags{$sf});
for (my $i = $s; $i <= $e; $i++) {
if ($opsize[$i] && $ops[$i] !~ /\breg_(gpr|[cdts]reg)\b/) {
die "$fname:$line: inconsistent $sf flag for argument $i ($ops[$i])\n"
if ($opsize[$i] != $sflags{$sf});
}
}
}
$flagsindex = insns_flag_index(keys %flags);
die "$fname:$line: error in flags $flags\n" unless (defined($flagsindex));
@bytecode = (decodify($codes, $relax), 0);
push(@bytecode_list, [@bytecode]);
$codes = hexstr(@bytecode);
count_bytecodes(@bytecode);
("{I_$opcode, $num, {$operands}, $decorators, \@\@CODES-$codes\@\@, $flagsindex},", $nd);
}
#
# Look for @@CODES-xxx@@ sequences and replace them with the appropriate
# offset into nasm_bytecodes
#
sub codesubst($) {
my($s) = @_;
my $n;
while ($s =~ /\@\@CODES-([0-9A-F]+)\@\@/) {
my $pos = $bytecode_pos{$1};
if (!defined($pos)) {
die "$fname:$line: no position assigned to byte code $1\n";
}
$s = $` . "nasm_bytecodes+${pos}" . "$'";
}
return $s;
}
sub addprefix ($@) {
my ($prefix, @list) = @_;
my $x;
my @l = ();
foreach $x (@list) {
push(@l, sprintf("%s%02X", $prefix, $x));
}
return @l;
}
#
# Turn a code string into a sequence of bytes
#
sub decodify($$) {
# Although these are C-syntax strings, by convention they should have
# only octal escapes (for directives) and hexadecimal escapes
# (for verbatim bytes)
my($codestr, $relax) = @_;
if ($codestr =~ /^\s*\[([^\]]*)\]\s*$/) {
return byte_code_compile($1, $relax);
}
my $c = $codestr;
my @codes = ();
unless ($codestr eq 'ignore') {
while ($c ne '') {
if ($c =~ /^\\x([0-9a-f]+)(.*)$/i) {
push(@codes, hex $1);
$c = $2;
next;
} elsif ($c =~ /^\\([0-7]{1,3})(.*)$/) {
push(@codes, oct $1);
$c = $2;
next;
} else {
die "$fname:$line: unknown code format in \"$codestr\"\n";
}
}
}
return @codes;
}
# Turn a numeric list into a hex string
sub hexstr(@) {
my $s = '';
my $c;
foreach $c (@_) {
$s .= sprintf("%02X", $c);
}
return $s;
}
# Here we determine the range of possible starting bytes for a given
# instruction. We need only consider the codes:
# \[1234] mean literal bytes, of course
# \1[0123] mean byte plus register value
# \0 or \340 mean give up and return empty set
# \34[4567] mean PUSH/POP of segment registers: special case
# \17[234] skip is4 control byte
# \26x \270 skip VEX control bytes
# \24x \250 skip EVEX control bytes
sub startseq($$) {
my ($codestr, $relax) = @_;
my $word;
my @codes = ();
my $c = $codestr;
my($c0, $c1, $i);
my $prefix = '';
@codes = decodify($codestr, $relax);
while (defined($c0 = shift(@codes))) {
$c1 = $codes[0];
if ($c0 >= 01 && $c0 <= 04) {
# Fixed byte string
my $fbs = $prefix;
while (defined($c0)) {
if ($c0 >= 01 && $c0 <= 04) {
while ($c0--) {
$fbs .= sprintf("%02X", shift(@codes));
}
} else {
last;
}
$c0 = shift(@codes);
}
foreach $pfx (@disasm_prefixes) {
my $len = length($pfx);
if (substr($fbs, 0, $len) eq $pfx) {
$prefix = $pfx;
$fbs = substr($fbs, $len, 2);
last;
}
}
if ($fbs ne '') {
return ($prefix.$fbs);
}
unshift(@codes, $c0);
} elsif ($c0 >= 010 && $c0 <= 013) {
return addprefix($prefix, $c1..($c1+7));
} elsif (($c0 & ~013) == 0144) {
return addprefix($prefix, $c1, $c1|2);
} elsif ($c0 == 0 || $c0 == 0340) {
return $prefix;
} elsif (($c0 & ~3) == 0260 || $c0 == 0270 ||
($c0 & ~3) == 0240 || $c0 == 0250) {
my($c,$m,$wlp);
$m = shift(@codes);
$wlp = shift(@codes);
$c = ($m >> 6);
$m = $m & 31;
$prefix .= sprintf('%s%02X%01X', $vex_class[$c], $m, $wlp & 3);
if ($c0 < 0260) {
my $tuple = shift(@codes);
}
} elsif ($c0 >= 0172 && $c0 <= 173) {
shift(@codes); # Skip is4 control byte
} else {
# We really need to be able to distinguish "forbidden"
# and "ignorable" codes here
}
}
return ();
}
# EVEX tuple types offset is 0300. e.g. 0301 is for full vector(fv).
sub tupletype($) {
my ($tuplestr) = @_;
my %tuple_codes = (
'' => 000,
'fv' => 001,
'hv' => 002,
'fvm' => 003,
't1s8' => 004,
't1s16' => 005,
't1s' => 006,
't1f32' => 007,
't1f64' => 010,
't2' => 011,
't4' => 012,
't8' => 013,
'hvm' => 014,
'qvm' => 015,
'ovm' => 016,
'm128' => 017,
'dup' => 020,
);
if (defined $tuple_codes{$tuplestr}) {
return 0300 + $tuple_codes{$tuplestr};
} else {
die "$fname:$line: undefined tuple type : $tuplestr\n";
}
}
#
# This function takes a series of byte codes in a format which is more
# typical of the Intel documentation, and encode it.
#
# The format looks like:
#
# [operands: opcodes]
#
# The operands word lists the order of the operands:
#
# r = register field in the modr/m
# m = modr/m
# v = VEX "v" field
# i = immediate
# s = register field of is4/imz2 field
# - = implicit (unencoded) operand
# x = indeX register of mib. 014..017 bytecodes are used.
#
# For an operand that should be filled into more than one field,
# enter it as e.g. "r+v".
#
sub byte_code_compile($$) {
my($str, $relax) = @_;
my $opr;
my $opc;
my @codes = ();
my $litix = undef;
my %oppos = ();
my $i;
my ($op, $oq);
my $opex;
my %imm_codes = (
'ib' => 020, # imm8
'ib,u' => 024, # Unsigned imm8
'iw' => 030, # imm16
'ib,s' => 0274, # imm8 sign-extended to opsize or bits
'iwd' => 034, # imm16 or imm32, depending on opsize
'id' => 040, # imm32
'id,s' => 0254, # imm32 sign-extended to 64 bits
'iwdq' => 044, # imm16/32/64, depending on addrsize
'rel8' => 050,
'iq' => 054,
'rel16' => 060,
'rel' => 064, # 16 or 32 bit relative operand
'rel32' => 070,
'seg' => 074,
);
my %plain_codes = (
'o16' => 0320, # 16-bit operand size
'o32' => 0321, # 32-bit operand size
'odf' => 0322, # Operand size is default
'o64' => 0324, # 64-bit operand size requiring REX.W
'o64nw' => 0323, # Implied 64-bit operand size (no REX.W)
'a16' => 0310,
'a32' => 0311,
'adf' => 0312, # Address size is default
'a64' => 0313,
'!osp' => 0364,
'!asp' => 0365,
'f2i' => 0332, # F2 prefix, but 66 for operand size is OK
'f3i' => 0333, # F3 prefix, but 66 for operand size is OK
'mustrep' => 0336,
'mustrepne' => 0337,
'rex.l' => 0334,
'norexb' => 0314,
'norexx' => 0315,
'norexr' => 0316,
'norexw' => 0317,
'repe' => 0335,
'nohi' => 0325, # Use spl/bpl/sil/dil even without REX
'nof3' => 0326, # No REP 0xF3 prefix permitted
'norep' => 0331, # No REP prefix permitted
'wait' => 0341, # Needs a wait prefix
'resb' => 0340,
'np' => 0360, # No prefix
'jcc8' => 0370, # Match only if Jcc possible with single byte
'jmp8' => 0371, # Match only if JMP possible with single byte
'jlen' => 0373, # Length of jump
'hlexr' => 0271,
'hlenl' => 0272,
'hle' => 0273,
# This instruction takes XMM VSIB
'vsibx' => 0374,
'vm32x' => 0374,
'vm64x' => 0374,
# This instruction takes YMM VSIB
'vsiby' => 0375,
'vm32y' => 0375,
'vm64y' => 0375,
# This instruction takes ZMM VSIB
'vsibz' => 0376,
'vm32z' => 0376,
'vm64z' => 0376,
);
unless ($str =~ /^(([^\s:]*)\:*([^\s:]*)\:|)\s*(.*\S)\s*$/) {
die "$fname:$line: cannot parse: [$str]\n";
}
$opr = lc($2);
$tuple = lc($3); # Tuple type for AVX512
$opc = lc($4);
$op = 0;
for ($i = 0; $i < length($opr); $i++) {
my $c = substr($opr,$i,1);
if ($c eq '+') {
$op--;
} else {
if ($relax & 1) {
$op--;
}
$relax >>= 1;
$oppos{$c} = $op++;
}
}
$tup = tupletype($tuple);
my $last_imm = 'h';
my $prefix_ok = 1;
foreach $op (split(/\s*(?:\s|(?=[\/\\]))/, $opc)) {
my $pc = $plain_codes{$op};
if (defined $pc) {
# Plain code
push(@codes, $pc);
} elsif ($prefix_ok && $op =~ /^(66|f2|f3)$/) {
# 66/F2/F3 prefix used as an opcode extension
if ($op eq '66') {
push(@codes, 0361);
} elsif ($op eq 'f2') {
push(@codes, 0332);
} else {
push(@codes, 0333);
}
} elsif ($op =~ /^[0-9a-f]{2}$/) {
if (defined($litix) && $litix+$codes[$litix]+1 == scalar @codes &&
$codes[$litix] < 4) {
$codes[$litix]++;
push(@codes, hex $op);
} else {
$litix = scalar(@codes);
push(@codes, 01, hex $op);
}
$prefix_ok = 0;
} elsif ($op eq '/r') {
if (!defined($oppos{'r'}) || !defined($oppos{'m'})) {
die "$fname:$line: $op requires r and m operands\n";
}
$opex = (($oppos{'m'} & 4) ? 06 : 0) |
(($oppos{'r'} & 4) ? 05 : 0);
push(@codes, $opex) if ($opex);
# if mib is composed with two separate operands - ICC style
push(@codes, 014 + ($oppos{'x'} & 3)) if (defined($oppos{'x'}));
push(@codes, 0100 + (($oppos{'m'} & 3) << 3) + ($oppos{'r'} & 3));
$prefix_ok = 0;
} elsif ($op =~ m:^/([0-7])$:) {
if (!defined($oppos{'m'})) {
die "$fname:$line: $op requires an m operand\n";
}
push(@codes, 06) if ($oppos{'m'} & 4);
push(@codes, 0200 + (($oppos{'m'} & 3) << 3) + $1);
$prefix_ok = 0;
} elsif ($op =~ m:^/([0-3]?)r([0-7])$:) {
if (!defined($oppos{'r'})) {
die "$fname:$line: $op requires an r operand\n";
}
push(@codes, 05) if ($oppos{'r'} & 4);
push(@codes, 0171);
push(@codes, (($1+0) << 6) + (($oppos{'r'} & 3) << 3) + $2);
$prefix_ok = 0;
} elsif ($op =~ /^(vex|xop)(|\..*)$/) {
my $vexname = $1;
my $c = $vexmap{$vexname};
my ($m,$w,$l,$p) = (undef,2,undef,0);
my $has_nds = 0;
my @subops = split(/\./, $op);
shift @subops; # Drop prefix
foreach $oq (@subops) {
if ($oq eq '128' || $oq eq 'l0' || $oq eq 'lz') {
$l = 0;
} elsif ($oq eq '256' || $oq eq 'l1') {
$l = 1;
} elsif ($oq eq 'lig') {
$l = 2;
} elsif ($oq eq 'w0') {
$w = 0;
} elsif ($oq eq 'w1') {
$w = 1;
} elsif ($oq eq 'wig') {
$w = 2;
} elsif ($oq eq 'ww') {
$w = 3;
} elsif ($oq eq 'np' || $oq eq 'p0') {
$p = 0;
} elsif ($oq eq '66' || $oq eq 'p1') {
$p = 1;
} elsif ($oq eq 'f3' || $oq eq 'p2') {
$p = 2;
} elsif ($oq eq 'f2' || $oq eq 'p3') {
$p = 3;
} elsif ($oq eq '0f') {
$m = 1;
} elsif ($oq eq '0f38') {
$m = 2;
} elsif ($oq eq '0f3a') {
$m = 3;
} elsif ($oq =~ /^(m|map)([0-9]+)$/) {
$m = $2+0;
} elsif ($oq eq 'nds' || $oq eq 'ndd' || $oq eq 'dds') {
if (!defined($oppos{'v'})) {
die "$fname:$line: $vexname.$oq without 'v' operand\n";
}
$has_nds = 1;
} else {
die "$fname:$line: undefined \U$vexname\E subcode: $oq\n";
}
}
if (!defined($m) || !defined($w) || !defined($l) || !defined($p)) {
die "$fname:$line: missing fields in \U$vexname\E specification\n";
}
my $minmap = ($c == 1) ? 8 : 0; # 0-31 for VEX, 8-31 for XOP
if ($m < $minmap || $m > 31) {
die "$fname:$line: Only maps ${minmap}-31 are valid for \U${vexname}\n";
}
push(@codes, defined($oppos{'v'}) ? 0260+($oppos{'v'} & 3) : 0270,
($c << 6)+$m, ($w << 4)+($l << 2)+$p);
$prefix_ok = 0;
} elsif ($op =~ /^(evex)(|\..*)$/) {
my $c = $vexmap{$1};
my ($m,$w,$l,$p) = (undef,2,undef,0);
my $has_nds = 0;
my @subops = split(/\./, $op);
shift @subops; # Drop prefix
foreach $oq (@subops) {
if ($oq eq '128' || $oq eq 'l0' || $oq eq 'lz' || $oq eq 'lig') {
$l = 0;
} elsif ($oq eq '256' || $oq eq 'l1') {
$l = 1;
} elsif ($oq eq '512' || $oq eq 'l2') {
$l = 2;
} elsif ($oq eq 'w0') {
$w = 0;
} elsif ($oq eq 'w1') {
$w = 1;
} elsif ($oq eq 'wig') {
$w = 2;
} elsif ($oq eq 'ww') {
$w = 3;
} elsif ($oq eq 'np' || $oq eq 'p0') {
$p = 0;
} elsif ($oq eq '66' || $oq eq 'p1') {
$p = 1;
} elsif ($oq eq 'f3' || $oq eq 'p2') {
$p = 2;
} elsif ($oq eq 'f2' || $oq eq 'p3') {
$p = 3;
} elsif ($oq eq '0f') {
$m = 1;
} elsif ($oq eq '0f38') {
$m = 2;
} elsif ($oq eq '0f3a') {
$m = 3;
} elsif ($oq eq 'map5') {
$m = 5;
} elsif ($oq eq 'map6') {
$m = 6;
} elsif ($oq =~ /^m([0-9]+)$/) {
$m = $1+0;
} elsif ($oq eq 'nds' || $oq eq 'ndd' || $oq eq 'dds') {
if (!defined($oppos{'v'})) {
die "$fname:$line: evex.$oq without 'v' operand\n";
}
$has_nds = 1;
} else {
die "$fname:$line: undefined EVEX subcode: $oq\n";
}
}
if (!defined($m) || !defined($w) || !defined($l) || !defined($p)) {
die "$fname:$line: missing fields in EVEX specification\n";
}
if ($m > 15) {
die "$fname:$line: Only maps 0-15 are valid for EVEX\n";
}
push(@codes, defined($oppos{'v'}) ? 0240+($oppos{'v'} & 3) : 0250,
($c << 6)+$m, ($w << 4)+($l << 2)+$p, $tup);
$prefix_ok = 0;
} elsif (defined $imm_codes{$op}) {
if ($op eq 'seg') {
if ($last_imm lt 'i') {
die "$fname:$line: seg without an immediate operand\n";
}
} else {
$last_imm++;
if ($last_imm gt 'j') {
die "$fname:$line: too many immediate operands\n";
}
}
if (!defined($oppos{$last_imm})) {
die "$fname:$line: $op without '$last_imm' operand\n";
}
push(@codes, 05) if ($oppos{$last_imm} & 4);
push(@codes, $imm_codes{$op} + ($oppos{$last_imm} & 3));
$prefix_ok = 0;
} elsif ($op eq '/is4') {
if (!defined($oppos{'s'})) {
die "$fname:$line: $op without 's' operand\n";
}
if (defined($oppos{'i'})) {
push(@codes, 0172, ($oppos{'s'} << 3)+$oppos{'i'});
} else {
push(@codes, 05) if ($oppos{'s'} & 4);
push(@codes, 0174+($oppos{'s'} & 3));
}
$prefix_ok = 0;
} elsif ($op =~ /^\/is4\=([0-9]+)$/) {
my $imm = $1;
if (!defined($oppos{'s'})) {
die "$fname:$line: $op without 's' operand\n";
}
if ($imm < 0 || $imm > 15) {
die "$fname:$line: invalid imm4 value for $op: $imm\n";
}
push(@codes, 0173, ($oppos{'s'} << 4) + $imm);
$prefix_ok = 0;
} elsif ($op =~ /^([0-9a-f]{2})\+r$/) {
if (!defined($oppos{'r'})) {
die "$fname:$line: $op without 'r' operand\n";
}
push(@codes, 05) if ($oppos{'r'} & 4);
push(@codes, 010 + ($oppos{'r'} & 3), hex $1);
$prefix_ok = 0;
} elsif ($op =~ /^\\([0-7]+|x[0-9a-f]{2})$/) {
# Escape to enter literal bytecodes
push(@codes, oct $1);
} else {
die "$fname:$line: unknown operation: $op\n";
}
}
return @codes;
}