mirror of
https://github.com/netwide-assembler/nasm.git
synced 2024-11-21 03:14:19 +08:00
86142b00e1
Don't do an out-of-range check for the operands, even temporarily. Setting the operand pointer to NULL will help catch errors when accessing non-operands, too. Signed-off-by: H. Peter Anvin <hpa@zytor.com>
3405 lines
105 KiB
C
3405 lines
105 KiB
C
/* ----------------------------------------------------------------------- *
|
|
*
|
|
* Copyright 1996-2024 The NASM Authors - All Rights Reserved
|
|
* See the file AUTHORS included with the NASM distribution for
|
|
* the specific copyright holders.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
|
|
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* ----------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* assemble.c code generation for the Netwide Assembler
|
|
*
|
|
*/
|
|
|
|
#include "compiler.h"
|
|
|
|
|
|
#include "nasm.h"
|
|
#include "nasmlib.h"
|
|
#include "error.h"
|
|
#include "assemble.h"
|
|
#include "insns.h"
|
|
#include "tables.h"
|
|
#include "disp8.h"
|
|
#include "listing.h"
|
|
#include "dbginfo.h"
|
|
|
|
enum match_result {
|
|
/*
|
|
* Matching errors. These should be sorted so that more specific
|
|
* errors come later in the sequence.
|
|
*/
|
|
MERR_INVALOP,
|
|
MERR_OPSIZEMISSING,
|
|
MERR_OPSIZEMISMATCH,
|
|
MERR_BRNOTHERE,
|
|
MERR_BRNUMMISMATCH,
|
|
MERR_MASKNOTHERE,
|
|
MERR_DECONOTHERE,
|
|
MERR_BADCPU,
|
|
MERR_BADMODE,
|
|
MERR_BADHLE,
|
|
MERR_ENCMISMATCH,
|
|
MERR_BADBND,
|
|
MERR_BADREPNE,
|
|
MERR_REGSETSIZE,
|
|
MERR_REGSET,
|
|
/*
|
|
* Matching success; the conditional ones first
|
|
*/
|
|
MOK_JUMP, /* Matching OK but needs jmp_match() */
|
|
MOK_GOOD /* Matching unconditionally OK */
|
|
};
|
|
|
|
typedef struct {
|
|
enum ea_type type; /* what kind of EA is this? */
|
|
int sib_present; /* is a SIB byte necessary? */
|
|
int bytes; /* # of bytes of offset needed */
|
|
int size; /* lazy - this is sib+bytes+1 */
|
|
uint8_t modrm, sib, rex, rip; /* the bytes themselves */
|
|
int8_t disp8; /* compressed displacement for EVEX */
|
|
} ea;
|
|
|
|
#define GEN_SIB(scale, index, base) \
|
|
(((scale) << 6) | ((index) << 3) | ((base)))
|
|
|
|
#define GEN_MODRM(mod, reg, rm) \
|
|
(((mod) << 6) | (((reg) & 7) << 3) | ((rm) & 7))
|
|
|
|
static int64_t calcsize(int32_t, int64_t, int, insn *,
|
|
const struct itemplate *);
|
|
static int emit_prefix(struct out_data *data, const int bits, insn *ins);
|
|
static void gencode(struct out_data *data, insn *ins);
|
|
static enum match_result find_match(const struct itemplate **tempp,
|
|
insn *instruction,
|
|
int32_t segment, int64_t offset, int bits);
|
|
static enum match_result matches(const struct itemplate *, insn *, int bits);
|
|
static opflags_t regflag(const operand *);
|
|
static int32_t regval(const operand *);
|
|
static int rexflags(int, opflags_t, int);
|
|
static int op_rexflags(const operand *, int);
|
|
static int op_evexflags(const operand *, int, uint8_t);
|
|
static void add_asp(insn *, int);
|
|
|
|
static int process_ea(operand *, ea *, int, int, opflags_t,
|
|
insn *, enum ea_type, const char **);
|
|
|
|
/* Get the pointer to an operand if it exits */
|
|
static inline struct operand *get_operand(insn *ins, unsigned int n)
|
|
{
|
|
if (n >= (unsigned int)ins->operands)
|
|
return NULL;
|
|
else
|
|
return &ins->oprs[n];
|
|
}
|
|
|
|
static inline bool absolute_op(const struct operand *o)
|
|
{
|
|
return o && o->segment == NO_SEG && o->wrt == NO_SEG &&
|
|
!(o->opflags & OPFLAG_RELATIVE);
|
|
}
|
|
|
|
static int has_prefix(insn * ins, enum prefix_pos pos, int prefix)
|
|
{
|
|
return ins->prefixes[pos] == prefix;
|
|
}
|
|
|
|
static void assert_no_prefix(insn * ins, enum prefix_pos pos)
|
|
{
|
|
if (ins->prefixes[pos])
|
|
nasm_nonfatal("invalid %s prefix", prefix_name(ins->prefixes[pos]));
|
|
}
|
|
|
|
static const char *size_name(int size)
|
|
{
|
|
switch (size) {
|
|
case 1:
|
|
return "byte";
|
|
case 2:
|
|
return "word";
|
|
case 4:
|
|
return "dword";
|
|
case 8:
|
|
return "qword";
|
|
case 10:
|
|
return "tword";
|
|
case 16:
|
|
return "oword";
|
|
case 32:
|
|
return "yword";
|
|
case 64:
|
|
return "zword";
|
|
default:
|
|
return "???";
|
|
}
|
|
}
|
|
|
|
static void warn_overflow(int size)
|
|
{
|
|
nasm_warn(ERR_PASS2 | WARN_NUMBER_OVERFLOW, "%s data exceeds bounds",
|
|
size_name(size));
|
|
}
|
|
|
|
static void warn_overflow_const(int64_t data, int size)
|
|
{
|
|
if (overflow_general(data, size))
|
|
warn_overflow(size);
|
|
}
|
|
|
|
static void warn_overflow_out(int64_t data, int size, enum out_flags flags)
|
|
{
|
|
bool err;
|
|
|
|
if (flags & OUT_SIGNED)
|
|
err = overflow_signed(data, size);
|
|
else if (flags & OUT_UNSIGNED)
|
|
err = overflow_unsigned(data, size);
|
|
else
|
|
err = overflow_general(data, size);
|
|
|
|
if (err)
|
|
warn_overflow(size);
|
|
}
|
|
|
|
/*
|
|
* Collect macro-related debug information, if applicable.
|
|
*/
|
|
static void debug_macro_out(const struct out_data *data)
|
|
{
|
|
struct debug_macro_addr *addr;
|
|
uint64_t start = data->offset;
|
|
uint64_t end = start + data->size;
|
|
|
|
addr = debug_macro_get_addr(data->segment);
|
|
while (addr) {
|
|
if (!addr->len)
|
|
addr->start = start;
|
|
addr->len = end - addr->start;
|
|
addr = addr->up;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This routine wrappers the real output format's output routine,
|
|
* in order to pass a copy of the data off to the listing file
|
|
* generator at the same time, flatten unnecessary relocations,
|
|
* and verify backend compatibility.
|
|
*/
|
|
/*
|
|
* This warning is currently issued by backends, but in the future
|
|
* this code should be centralized.
|
|
*
|
|
*!zeroing [on] \c{RES}\e{x} in initialized section becomes zero
|
|
*! a \c{RES}\e{x} directive was used in a section which contains
|
|
*! initialized data, and the output format does not support
|
|
*! this. Instead, this will be replaced with explicit zero
|
|
*! content, which may produce a large output file.
|
|
*/
|
|
static void out(struct out_data *data)
|
|
{
|
|
static struct last_debug_info {
|
|
struct src_location where;
|
|
int32_t segment;
|
|
} dbg;
|
|
union {
|
|
uint8_t b[8];
|
|
uint64_t q;
|
|
} xdata;
|
|
size_t asize, amax;
|
|
uint64_t zeropad = 0;
|
|
int64_t addrval;
|
|
int32_t fixseg; /* Segment for which to produce fixed data */
|
|
|
|
if (!data->size)
|
|
return; /* Nothing to do */
|
|
|
|
/*
|
|
* Convert addresses to RAWDATA if possible
|
|
* XXX: not all backends want this for global symbols!!!!
|
|
*/
|
|
switch (data->type) {
|
|
case OUT_ADDRESS:
|
|
addrval = data->toffset;
|
|
fixseg = NO_SEG; /* Absolute address is fixed data */
|
|
goto address;
|
|
|
|
case OUT_RELADDR:
|
|
addrval = data->toffset - data->relbase;
|
|
fixseg = data->segment; /* Our own segment is fixed data */
|
|
goto address;
|
|
|
|
address:
|
|
nasm_assert(data->size <= 8);
|
|
asize = data->size;
|
|
amax = ofmt->maxbits >> 3; /* Maximum address size in bytes */
|
|
if (data->tsegment == fixseg && data->twrt == NO_SEG) {
|
|
if (!(ofmt->flags & OFMT_KEEP_ADDR)) {
|
|
if (asize >= (size_t)(data->bits >> 3)) {
|
|
/* Support address space wrapping for low-bit modes */
|
|
data->flags &= ~OUT_SIGNMASK;
|
|
}
|
|
warn_overflow_out(addrval, asize, data->flags);
|
|
xdata.q = cpu_to_le64(addrval);
|
|
data->data = xdata.b;
|
|
data->type = OUT_RAWDATA;
|
|
asize = amax = 0; /* No longer an address */
|
|
}
|
|
} else {
|
|
/*!
|
|
*!reloc-abs-byte [off] 8-bit absolute section-crossing relocation
|
|
*! warns that an 8-bit absolute relocation that could
|
|
*! not be resolved at assembly time was generated in
|
|
*! the output format.
|
|
*!
|
|
*! This is usually normal, but may not be handled by all
|
|
*! possible target environments
|
|
*/
|
|
/*!
|
|
*!reloc-abs-word [off] 16-bit absolute section-crossing relocation
|
|
*! warns that a 16-bit absolute relocation that could
|
|
*! not be resolved at assembly time was generated in
|
|
*! the output format.
|
|
*!
|
|
*! This is usually normal, but may not be handled by all
|
|
*! possible target environments
|
|
*/
|
|
/*!
|
|
*!reloc-abs-dword [off] 32-bit absolute section-crossing relocation
|
|
*! warns that a 32-bit absolute relocation that could
|
|
*! not be resolved at assembly time was generated in
|
|
*! the output format.
|
|
*!
|
|
*! This is usually normal, but may not be handled by all
|
|
*! possible target environments
|
|
*/
|
|
/*!
|
|
*!reloc-abs-qword [off] 64-bit absolute section-crossing relocation
|
|
*! warns that a 64-bit absolute relocation that could
|
|
*! not be resolved at assembly time was generated in
|
|
*! the output format.
|
|
*!
|
|
*! This is usually normal, but may not be handled by all
|
|
*! possible target environments
|
|
*/
|
|
/*!
|
|
*!reloc-rel-byte [off] 8-bit relative section-crossing relocation
|
|
*! warns that an 8-bit relative relocation that could
|
|
*! not be resolved at assembly time was generated in
|
|
*! the output format.
|
|
*!
|
|
*! This is usually normal, but may not be handled by all
|
|
*! possible target environments
|
|
*/
|
|
/*!
|
|
*!reloc-rel-word [off] 16-bit relative section-crossing relocation
|
|
*! warns that a 16-bit relative relocation that could
|
|
*! not be resolved at assembly time was generated in
|
|
*! the output format.
|
|
*!
|
|
*! This is usually normal, but may not be handled by all
|
|
*! possible target environments
|
|
*/
|
|
/*!
|
|
*!reloc-rel-dword [off] 32-bit relative section-crossing relocation
|
|
*! warns that a 32-bit relative relocation that could
|
|
*! not be resolved at assembly time was generated in
|
|
*! the output format.
|
|
*!
|
|
*! This is usually normal, but may not be handled by all
|
|
*! possible target environments
|
|
*/
|
|
/*!
|
|
*!reloc-rel-qword [off] 64-bit relative section-crossing relocation
|
|
*! warns that an 64-bit relative relocation that could
|
|
*! not be resolved at assembly time was generated in
|
|
*! the output format.
|
|
*!
|
|
*! This is usually normal, but may not be handled by all
|
|
*! possible target environments
|
|
*/
|
|
int warn;
|
|
const char *type;
|
|
|
|
switch (data->type) {
|
|
case OUT_ADDRESS:
|
|
type = "absolute";
|
|
switch (asize) {
|
|
case 1: warn = WARN_RELOC_ABS_BYTE; break;
|
|
case 2: warn = WARN_RELOC_ABS_WORD; break;
|
|
case 4: warn = WARN_RELOC_ABS_DWORD; break;
|
|
case 8: warn = WARN_RELOC_ABS_QWORD; break;
|
|
default: panic();
|
|
}
|
|
break;
|
|
case OUT_RELADDR:
|
|
type = "relative";
|
|
switch (asize) {
|
|
case 1: warn = WARN_RELOC_REL_BYTE; break;
|
|
case 2: warn = WARN_RELOC_REL_WORD; break;
|
|
case 4: warn = WARN_RELOC_REL_DWORD; break;
|
|
case 8: warn = WARN_RELOC_REL_QWORD; break;
|
|
default: panic();
|
|
}
|
|
break;
|
|
default:
|
|
warn = 0;
|
|
}
|
|
|
|
if (warn) {
|
|
nasm_warn(warn, "%u-bit %s section-crossing relocation",
|
|
(unsigned int)(asize << 3), type);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case OUT_SEGMENT:
|
|
nasm_assert(data->size <= 8);
|
|
asize = data->size;
|
|
amax = 2;
|
|
break;
|
|
|
|
default:
|
|
asize = amax = 0; /* Not an address */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If the source location or output segment has changed,
|
|
* let the debug backend know. Some backends really don't
|
|
* like being given a NULL filename as can happen if we
|
|
* use -Lb and expand a macro, so filter out that case.
|
|
*/
|
|
data->where = src_where();
|
|
if (data->where.filename &&
|
|
(!src_location_same(data->where, dbg.where) |
|
|
(data->segment != dbg.segment))) {
|
|
dbg.where = data->where;
|
|
dbg.segment = data->segment;
|
|
dfmt->linenum(dbg.where.filename, dbg.where.lineno, data->segment);
|
|
}
|
|
|
|
if (asize > amax) {
|
|
if (data->type == OUT_RELADDR || (data->flags & OUT_SIGNED)) {
|
|
nasm_nonfatal("%u-bit signed relocation unsupported by output format %s",
|
|
(unsigned int)(asize << 3), ofmt->shortname);
|
|
} else {
|
|
/*!
|
|
*!zext-reloc [on] relocation zero-extended to match output format
|
|
*! warns that a relocation has been zero-extended due
|
|
*! to limitations in the output format.
|
|
*/
|
|
nasm_warn(WARN_ZEXT_RELOC,
|
|
"%u-bit %s relocation zero-extended from %u bits",
|
|
(unsigned int)(asize << 3),
|
|
data->type == OUT_SEGMENT ? "segment" : "unsigned",
|
|
(unsigned int)(amax << 3));
|
|
}
|
|
zeropad = data->size - amax;
|
|
data->size = amax;
|
|
}
|
|
lfmt->output(data);
|
|
|
|
if (likely(data->segment != NO_SEG)) {
|
|
/*
|
|
* Collect macro-related information for the debugger, if applicable
|
|
*/
|
|
if (debug_current_macro)
|
|
debug_macro_out(data);
|
|
|
|
ofmt->output(data);
|
|
} else {
|
|
/* Outputting to ABSOLUTE section - only reserve is permitted */
|
|
if (data->type != OUT_RESERVE)
|
|
nasm_nonfatal("attempt to assemble code in [ABSOLUTE] space");
|
|
/* No need to push to the backend */
|
|
}
|
|
|
|
data->offset += data->size;
|
|
data->insoffs += data->size;
|
|
|
|
if (zeropad) {
|
|
data->type = OUT_ZERODATA;
|
|
data->size = zeropad;
|
|
lfmt->output(data);
|
|
ofmt->output(data);
|
|
data->offset += zeropad;
|
|
data->insoffs += zeropad;
|
|
data->size += zeropad; /* Restore original size value */
|
|
}
|
|
}
|
|
|
|
static inline void out_rawdata(struct out_data *data, const void *rawdata,
|
|
size_t size)
|
|
{
|
|
data->type = OUT_RAWDATA;
|
|
data->data = rawdata;
|
|
data->size = size;
|
|
out(data);
|
|
}
|
|
|
|
static void out_rawbyte(struct out_data *data, uint8_t byte)
|
|
{
|
|
data->type = OUT_RAWDATA;
|
|
data->data = &byte;
|
|
data->size = 1;
|
|
out(data);
|
|
}
|
|
|
|
static inline void out_reserve(struct out_data *data, uint64_t size)
|
|
{
|
|
data->type = OUT_RESERVE;
|
|
data->size = size;
|
|
out(data);
|
|
}
|
|
|
|
static void out_segment(struct out_data *data, const struct operand *opx)
|
|
{
|
|
if (opx->opflags & OPFLAG_RELATIVE)
|
|
nasm_nonfatal("segment references cannot be relative");
|
|
|
|
data->type = OUT_SEGMENT;
|
|
data->flags = OUT_UNSIGNED;
|
|
data->size = 2;
|
|
data->toffset = opx->offset;
|
|
data->tsegment = ofmt->segbase(opx->segment | 1);
|
|
data->twrt = opx->wrt;
|
|
out(data);
|
|
}
|
|
|
|
static void out_imm(struct out_data *data, const struct operand *opx,
|
|
int size, enum out_flags sign)
|
|
{
|
|
if (opx->segment != NO_SEG && (opx->segment & 1)) {
|
|
/*
|
|
* This is actually a segment reference, but eval() has
|
|
* already called ofmt->segbase() for us. Sigh.
|
|
*/
|
|
if (size < 2)
|
|
nasm_nonfatal("segment reference must be 16 bits");
|
|
|
|
data->type = OUT_SEGMENT;
|
|
} else {
|
|
data->type = (opx->opflags & OPFLAG_RELATIVE)
|
|
? OUT_RELADDR : OUT_ADDRESS;
|
|
}
|
|
data->flags = sign;
|
|
data->toffset = opx->offset;
|
|
data->tsegment = opx->segment;
|
|
data->twrt = opx->wrt;
|
|
/*
|
|
* XXX: improve this if at some point in the future we can
|
|
* distinguish the subtrahend in expressions like [foo - bar]
|
|
* where bar is a symbol in the current segment. However, at the
|
|
* current point, if OPFLAG_RELATIVE is set that subtraction has
|
|
* already occurred.
|
|
*/
|
|
data->relbase = 0;
|
|
data->size = size;
|
|
out(data);
|
|
}
|
|
|
|
static void out_reladdr(struct out_data *data, const struct operand *opx,
|
|
int size)
|
|
{
|
|
if (opx->opflags & OPFLAG_RELATIVE)
|
|
nasm_nonfatal("invalid use of self-relative expression");
|
|
|
|
data->type = OUT_RELADDR;
|
|
data->flags = OUT_SIGNED;
|
|
data->size = size;
|
|
data->toffset = opx->offset;
|
|
data->tsegment = opx->segment;
|
|
data->twrt = opx->wrt;
|
|
data->relbase = data->offset + (data->inslen - data->insoffs);
|
|
out(data);
|
|
}
|
|
|
|
static bool jmp_match(int32_t segment, int64_t offset, int bits,
|
|
insn * ins, const struct itemplate *temp)
|
|
{
|
|
int64_t isize;
|
|
const uint8_t *code = temp->code;
|
|
uint8_t c = code[0];
|
|
bool is_byte;
|
|
const struct operand * const op0 = get_operand(ins, 0);
|
|
|
|
if (((c & ~1) != 0370) || (op0->type & STRICT))
|
|
return false;
|
|
if (!optimizing.level || (optimizing.flag & OPTIM_DISABLE_JMP_MATCH))
|
|
return false;
|
|
if (optimizing.level < 0 && c == 0371)
|
|
return false;
|
|
|
|
isize = calcsize(segment, offset, bits, ins, temp);
|
|
|
|
if (op0->opflags & OPFLAG_UNKNOWN)
|
|
/* Be optimistic in pass 1 */
|
|
return true;
|
|
|
|
if (op0->segment != segment)
|
|
return false;
|
|
|
|
isize = op0->offset - offset - isize; /* isize is delta */
|
|
is_byte = (isize >= -128 && isize <= 127); /* is it byte size? */
|
|
|
|
if (is_byte && c == 0371 && ins->prefixes[PPS_REP] == P_BND) {
|
|
/* jmp short (opcode eb) cannot be used with bnd prefix. */
|
|
ins->prefixes[PPS_REP] = P_none;
|
|
/*!
|
|
*!prefix-bnd [on] invalid \c{BND} prefix
|
|
*!=bnd
|
|
*! warns about ineffective use of the \c{BND} prefix when the
|
|
*! \c{JMP} instruction is converted to the \c{SHORT} form.
|
|
*! This should be extremely rare since the short \c{JMP} only
|
|
*! is applicable to jumps inside the same module, but if
|
|
*! it is legitimate, it may be necessary to use
|
|
*! \c{bnd jmp dword}.
|
|
*/
|
|
nasm_warn(WARN_PREFIX_BND|ERR_PASS2 ,
|
|
"jmp short does not init bnd regs - bnd prefix dropped");
|
|
}
|
|
|
|
return is_byte;
|
|
}
|
|
|
|
static inline int64_t merge_resb(insn *ins, int64_t isize)
|
|
{
|
|
int nbytes = resb_bytes(ins->opcode);
|
|
|
|
if (likely(!nbytes))
|
|
return isize;
|
|
|
|
if (isize != nbytes * ins->oprs[0].offset)
|
|
return isize; /* Has prefixes of some sort */
|
|
|
|
ins->oprs[0].offset *= ins->times;
|
|
isize *= ins->times;
|
|
ins->times = 1;
|
|
return isize;
|
|
}
|
|
|
|
/* This must be handle non-power-of-2 alignment values */
|
|
static inline size_t pad_bytes(size_t len, size_t align)
|
|
{
|
|
size_t partial = len % align;
|
|
return partial ? align - partial : 0;
|
|
}
|
|
|
|
static void out_eops(struct out_data *data, const extop *e)
|
|
{
|
|
while (e) {
|
|
size_t dup = e->dup;
|
|
|
|
switch (e->type) {
|
|
case EOT_NOTHING:
|
|
break;
|
|
|
|
case EOT_EXTOP:
|
|
while (dup--)
|
|
out_eops(data, e->val.subexpr);
|
|
break;
|
|
|
|
case EOT_DB_NUMBER:
|
|
if (e->elem > 8) {
|
|
nasm_nonfatal("integer supplied as %d-bit data",
|
|
e->elem << 3);
|
|
} else {
|
|
while (dup--) {
|
|
data->insoffs = 0;
|
|
data->inslen = data->size = e->elem;
|
|
data->tsegment = e->val.num.segment;
|
|
data->toffset = e->val.num.offset;
|
|
data->twrt = e->val.num.wrt;
|
|
data->relbase = 0;
|
|
if (e->val.num.segment != NO_SEG &&
|
|
(e->val.num.segment & 1)) {
|
|
data->type = OUT_SEGMENT;
|
|
data->flags = OUT_UNSIGNED;
|
|
} else {
|
|
data->type = e->val.num.relative
|
|
? OUT_RELADDR : OUT_ADDRESS;
|
|
data->flags = OUT_WRAP;
|
|
}
|
|
out(data);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case EOT_DB_FLOAT:
|
|
case EOT_DB_STRING:
|
|
case EOT_DB_STRING_FREE:
|
|
{
|
|
size_t pad, len;
|
|
|
|
pad = pad_bytes(e->val.string.len, e->elem);
|
|
len = e->val.string.len + pad;
|
|
|
|
while (dup--) {
|
|
data->insoffs = 0;
|
|
data->inslen = len;
|
|
out_rawdata(data, e->val.string.data, e->val.string.len);
|
|
if (pad)
|
|
out_rawdata(data, zero_buffer, pad);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case EOT_DB_RESERVE:
|
|
data->insoffs = 0;
|
|
data->inslen = dup * e->elem;
|
|
out_reserve(data, data->inslen);
|
|
break;
|
|
}
|
|
|
|
e = e->next;
|
|
}
|
|
}
|
|
|
|
/* This is totally just a wild guess what is reasonable... */
|
|
#define INCBIN_MAX_BUF (ZERO_BUF_SIZE * 16)
|
|
|
|
int64_t assemble(int32_t segment, int64_t start, int bits, insn *instruction)
|
|
{
|
|
struct out_data data;
|
|
const struct itemplate *temp;
|
|
enum match_result m;
|
|
|
|
if (instruction->opcode == I_none)
|
|
return 0;
|
|
|
|
nasm_zero(data);
|
|
data.offset = start;
|
|
data.segment = segment;
|
|
data.itemp = NULL;
|
|
data.bits = bits;
|
|
|
|
if (opcode_is_db(instruction->opcode)) {
|
|
out_eops(&data, instruction->eops);
|
|
} else if (instruction->opcode == I_INCBIN) {
|
|
const char *fname = instruction->eops->val.string.data;
|
|
FILE *fp;
|
|
size_t t = instruction->times; /* INCBIN handles TIMES by itself */
|
|
off_t base = 0;
|
|
off_t len;
|
|
const void *map = NULL;
|
|
char *buf = NULL;
|
|
size_t blk = 0; /* Buffered I/O block size */
|
|
size_t m = 0; /* Bytes last read */
|
|
|
|
if (!t)
|
|
goto done;
|
|
|
|
fp = nasm_open_read(fname, NF_BINARY|NF_FORMAP);
|
|
if (!fp) {
|
|
nasm_nonfatal("`incbin': unable to open file `%s'",
|
|
fname);
|
|
goto done;
|
|
}
|
|
|
|
len = nasm_file_size(fp);
|
|
|
|
if (len == (off_t)-1) {
|
|
nasm_nonfatal("`incbin': unable to get length of file `%s'",
|
|
fname);
|
|
goto close_done;
|
|
}
|
|
|
|
if (instruction->eops->next) {
|
|
base = instruction->eops->next->val.num.offset;
|
|
if (base >= len) {
|
|
len = 0;
|
|
} else {
|
|
len -= base;
|
|
if (instruction->eops->next->next &&
|
|
len > (off_t)instruction->eops->next->next->val.num.offset)
|
|
len = (off_t)instruction->eops->next->next->val.num.offset;
|
|
}
|
|
}
|
|
|
|
lfmt->set_offset(data.offset);
|
|
lfmt->uplevel(LIST_INCBIN, len);
|
|
|
|
if (!len)
|
|
goto end_incbin;
|
|
|
|
/* Try to map file data */
|
|
map = nasm_map_file(fp, base, len);
|
|
if (!map) {
|
|
blk = len < (off_t)INCBIN_MAX_BUF ? (size_t)len : INCBIN_MAX_BUF;
|
|
buf = nasm_malloc(blk);
|
|
}
|
|
|
|
while (t--) {
|
|
/*
|
|
* Consider these irrelevant for INCBIN, since it is fully
|
|
* possible that these might be (way) bigger than an int
|
|
* can hold; there is, however, no reason to widen these
|
|
* types just for INCBIN. data.inslen == 0 signals to the
|
|
* backend that these fields are meaningless, if at all
|
|
* needed.
|
|
*/
|
|
data.insoffs = 0;
|
|
data.inslen = 0;
|
|
|
|
if (map) {
|
|
out_rawdata(&data, map, len);
|
|
} else if ((off_t)m == len) {
|
|
out_rawdata(&data, buf, len);
|
|
} else {
|
|
off_t l = len;
|
|
|
|
if (fseeko(fp, base, SEEK_SET) < 0 || ferror(fp)) {
|
|
nasm_nonfatal("`incbin': unable to seek on file `%s'",
|
|
fname);
|
|
goto end_incbin;
|
|
}
|
|
while (l > 0) {
|
|
m = fread(buf, 1, l < (off_t)blk ? (size_t)l : blk, fp);
|
|
if (!m || feof(fp)) {
|
|
/*
|
|
* This shouldn't happen unless the file
|
|
* actually changes while we are reading
|
|
* it.
|
|
*/
|
|
nasm_nonfatal("`incbin': unexpected EOF while"
|
|
" reading file `%s'", fname);
|
|
goto end_incbin;
|
|
}
|
|
out_rawdata(&data, buf, m);
|
|
l -= m;
|
|
}
|
|
}
|
|
}
|
|
end_incbin:
|
|
lfmt->downlevel(LIST_INCBIN);
|
|
if (instruction->times > 1) {
|
|
lfmt->uplevel(LIST_TIMES, instruction->times);
|
|
lfmt->downlevel(LIST_TIMES);
|
|
}
|
|
if (ferror(fp)) {
|
|
nasm_nonfatal("`incbin': error while"
|
|
" reading file `%s'", fname);
|
|
}
|
|
close_done:
|
|
if (buf)
|
|
nasm_free(buf);
|
|
if (map)
|
|
nasm_unmap_file(map, len);
|
|
fclose(fp);
|
|
done:
|
|
instruction->times = 1; /* Tell the upper layer not to iterate */
|
|
;
|
|
} else {
|
|
/* "Real" instruction */
|
|
|
|
/* Check to see if we need an address-size prefix */
|
|
add_asp(instruction, bits);
|
|
|
|
m = find_match(&temp, instruction, data.segment, data.offset, bits);
|
|
|
|
if (m == MOK_GOOD) {
|
|
/* Matches! */
|
|
if (unlikely(itemp_has(temp, IF_OBSOLETE))) {
|
|
errflags warning;
|
|
const char *whathappened;
|
|
const char *validity;
|
|
bool never = itemp_has(temp, IF_NEVER);
|
|
|
|
/*
|
|
* If IF_OBSOLETE is set, warn the user. Different
|
|
* warning classes for "obsolete but valid for this
|
|
* specific CPU" and "obsolete and gone."
|
|
*
|
|
*!obsolete-removed [on] instruction obsolete and removed on the target CPU
|
|
*! warns for an instruction which has been removed
|
|
*! from the architecture, and is no longer included
|
|
*! in the CPU definition given in the \c{[CPU]}
|
|
*! directive, for example \c{POP CS}, the opcode for
|
|
*! which, \c{0Fh}, instead is an opcode prefix on
|
|
*! CPUs newer than the first generation 8086.
|
|
*
|
|
*!obsolete-nop [on] instruction obsolete and is a noop on the target CPU
|
|
*! warns for an instruction which has been removed
|
|
*! from the architecture, but has been architecturally
|
|
*! defined to be a noop for future CPUs.
|
|
*
|
|
*!obsolete-valid [on] instruction obsolete but valid on the target CPU
|
|
*! warns for an instruction which has been removed
|
|
*! from the architecture, but is still valid on the
|
|
*! specific CPU given in the \c{CPU} directive. Code
|
|
*! using these instructions is most likely not
|
|
*! forward compatible.
|
|
*/
|
|
|
|
whathappened = never ? "never implemented" : "obsolete";
|
|
|
|
if (!never && !iflag_cmp_cpu_level(&insns_flags[temp->iflag_idx], &cpu)) {
|
|
warning = WARN_OBSOLETE_VALID;
|
|
validity = "but valid on";
|
|
} else if (itemp_has(temp, IF_NOP)) {
|
|
warning = WARN_OBSOLETE_NOP;
|
|
validity = "and is a noop on";
|
|
} else {
|
|
warning = WARN_OBSOLETE_REMOVED;
|
|
validity = never ? "and invalid on" : "and removed from";
|
|
}
|
|
|
|
nasm_warn(warning, "instruction %s %s the target CPU",
|
|
whathappened, validity);
|
|
}
|
|
|
|
data.itemp = temp;
|
|
data.bits = bits;
|
|
data.insoffs = 0;
|
|
|
|
data.inslen = calcsize(data.segment, data.offset,
|
|
bits, instruction, temp);
|
|
nasm_assert(data.inslen >= 0);
|
|
data.inslen = merge_resb(instruction, data.inslen);
|
|
|
|
gencode(&data, instruction);
|
|
nasm_assert(data.insoffs == data.inslen);
|
|
} else {
|
|
/* No match */
|
|
switch (m) {
|
|
case MERR_OPSIZEMISSING:
|
|
nasm_nonfatal("operation size not specified");
|
|
break;
|
|
case MERR_OPSIZEMISMATCH:
|
|
nasm_nonfatal("mismatch in operand sizes");
|
|
break;
|
|
case MERR_BRNOTHERE:
|
|
nasm_nonfatal("broadcast not permitted on this operand");
|
|
break;
|
|
case MERR_BRNUMMISMATCH:
|
|
nasm_nonfatal("mismatch in the number of broadcasting elements");
|
|
break;
|
|
case MERR_MASKNOTHERE:
|
|
nasm_nonfatal("mask not permitted on this operand");
|
|
break;
|
|
case MERR_DECONOTHERE:
|
|
nasm_nonfatal("unsupported mode decorator for instruction");
|
|
break;
|
|
case MERR_BADCPU:
|
|
nasm_nonfatal("no instruction for this cpu level");
|
|
break;
|
|
case MERR_BADMODE:
|
|
nasm_nonfatal("instruction not supported in %d-bit mode", bits);
|
|
break;
|
|
case MERR_ENCMISMATCH:
|
|
if (!instruction->prefixes[PPS_REX]) {
|
|
nasm_nonfatal("instruction not encodable without explicit prefix");
|
|
} else {
|
|
nasm_nonfatal("instruction not encodable with %s prefix",
|
|
prefix_name(instruction->prefixes[PPS_REX]));
|
|
}
|
|
break;
|
|
case MERR_BADBND:
|
|
case MERR_BADREPNE:
|
|
nasm_nonfatal("%s prefix is not allowed",
|
|
prefix_name(instruction->prefixes[PPS_REP]));
|
|
break;
|
|
case MERR_REGSETSIZE:
|
|
nasm_nonfatal("invalid register set size");
|
|
break;
|
|
case MERR_REGSET:
|
|
nasm_nonfatal("register set not valid for operand");
|
|
break;
|
|
default:
|
|
nasm_nonfatal("invalid combination of opcode and operands");
|
|
break;
|
|
}
|
|
|
|
instruction->times = 1; /* Avoid repeated error messages */
|
|
}
|
|
}
|
|
return data.offset - start;
|
|
}
|
|
|
|
static int32_t eops_typeinfo(const extop *e)
|
|
{
|
|
int32_t typeinfo = 0;
|
|
|
|
while (e) {
|
|
switch (e->type) {
|
|
case EOT_NOTHING:
|
|
break;
|
|
|
|
case EOT_EXTOP:
|
|
typeinfo |= eops_typeinfo(e->val.subexpr);
|
|
break;
|
|
|
|
case EOT_DB_FLOAT:
|
|
switch (e->elem) {
|
|
case 1: typeinfo |= TY_BYTE; break;
|
|
case 2: typeinfo |= TY_WORD; break;
|
|
case 4: typeinfo |= TY_FLOAT; break;
|
|
case 8: typeinfo |= TY_QWORD; break; /* double? */
|
|
case 10: typeinfo |= TY_TBYTE; break; /* long double? */
|
|
case 16: typeinfo |= TY_YWORD; break;
|
|
case 32: typeinfo |= TY_ZWORD; break;
|
|
default: break;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
switch (e->elem) {
|
|
case 1: typeinfo |= TY_BYTE; break;
|
|
case 2: typeinfo |= TY_WORD; break;
|
|
case 4: typeinfo |= TY_DWORD; break;
|
|
case 8: typeinfo |= TY_QWORD; break;
|
|
case 10: typeinfo |= TY_TBYTE; break;
|
|
case 16: typeinfo |= TY_YWORD; break;
|
|
case 32: typeinfo |= TY_ZWORD; break;
|
|
default: break;
|
|
}
|
|
break;
|
|
}
|
|
e = e->next;
|
|
}
|
|
|
|
return typeinfo;
|
|
}
|
|
|
|
static inline void debug_set_db_type(insn *instruction)
|
|
{
|
|
|
|
int32_t typeinfo = TYS_ELEMENTS(instruction->operands);
|
|
|
|
typeinfo |= eops_typeinfo(instruction->eops);
|
|
dfmt->debug_typevalue(typeinfo);
|
|
}
|
|
|
|
static void debug_set_type(insn *instruction)
|
|
{
|
|
int32_t typeinfo;
|
|
|
|
if (opcode_is_resb(instruction->opcode)) {
|
|
typeinfo = TYS_ELEMENTS(instruction->oprs[0].offset);
|
|
|
|
switch (instruction->opcode) {
|
|
case I_RESB:
|
|
typeinfo |= TY_BYTE;
|
|
break;
|
|
case I_RESW:
|
|
typeinfo |= TY_WORD;
|
|
break;
|
|
case I_RESD:
|
|
typeinfo |= TY_DWORD;
|
|
break;
|
|
case I_RESQ:
|
|
typeinfo |= TY_QWORD;
|
|
break;
|
|
case I_REST:
|
|
typeinfo |= TY_TBYTE;
|
|
break;
|
|
case I_RESO:
|
|
typeinfo |= TY_OWORD;
|
|
break;
|
|
case I_RESY:
|
|
typeinfo |= TY_YWORD;
|
|
break;
|
|
case I_RESZ:
|
|
typeinfo |= TY_ZWORD;
|
|
break;
|
|
default:
|
|
panic();
|
|
}
|
|
} else {
|
|
typeinfo = TY_LABEL;
|
|
}
|
|
|
|
dfmt->debug_typevalue(typeinfo);
|
|
}
|
|
|
|
|
|
/* Proecess an EQU directive */
|
|
static void define_equ(insn * instruction)
|
|
{
|
|
if (!instruction->label) {
|
|
nasm_nonfatal("EQU not preceded by label");
|
|
} else if (instruction->operands == 1 &&
|
|
(instruction->oprs[0].type & IMMEDIATE) &&
|
|
instruction->oprs[0].wrt == NO_SEG) {
|
|
define_label(instruction->label,
|
|
instruction->oprs[0].segment,
|
|
instruction->oprs[0].offset, false);
|
|
} else if (instruction->operands == 2
|
|
&& (instruction->oprs[0].type & IMMEDIATE)
|
|
&& (instruction->oprs[0].type & COLON)
|
|
&& instruction->oprs[0].segment == NO_SEG
|
|
&& instruction->oprs[0].wrt == NO_SEG
|
|
&& (instruction->oprs[1].type & IMMEDIATE)
|
|
&& instruction->oprs[1].segment == NO_SEG
|
|
&& instruction->oprs[1].wrt == NO_SEG) {
|
|
define_label(instruction->label,
|
|
instruction->oprs[0].offset | SEG_ABS,
|
|
instruction->oprs[1].offset, false);
|
|
} else {
|
|
nasm_nonfatal("bad syntax for EQU");
|
|
}
|
|
}
|
|
|
|
static int64_t len_extops(const extop *e)
|
|
{
|
|
int64_t isize = 0;
|
|
size_t pad;
|
|
|
|
while (e) {
|
|
switch (e->type) {
|
|
case EOT_NOTHING:
|
|
break;
|
|
|
|
case EOT_EXTOP:
|
|
isize += e->dup * len_extops(e->val.subexpr);
|
|
break;
|
|
|
|
case EOT_DB_STRING:
|
|
case EOT_DB_STRING_FREE:
|
|
case EOT_DB_FLOAT:
|
|
pad = pad_bytes(e->val.string.len, e->elem);
|
|
isize += e->dup * (e->val.string.len + pad);
|
|
break;
|
|
|
|
case EOT_DB_NUMBER:
|
|
warn_overflow_const(e->val.num.offset, e->elem);
|
|
isize += e->dup * e->elem;
|
|
break;
|
|
|
|
case EOT_DB_RESERVE:
|
|
isize += e->dup * e->elem;
|
|
break;
|
|
}
|
|
|
|
e = e->next;
|
|
}
|
|
|
|
return isize;
|
|
}
|
|
|
|
int64_t insn_size(int32_t segment, int64_t offset, int bits, insn *instruction)
|
|
{
|
|
const struct itemplate *temp;
|
|
enum match_result m;
|
|
int64_t isize = 0;
|
|
|
|
if (instruction->opcode == I_none) {
|
|
return 0;
|
|
} else if (instruction->opcode == I_EQU) {
|
|
define_equ(instruction);
|
|
return 0;
|
|
} else if (opcode_is_db(instruction->opcode)) {
|
|
isize = len_extops(instruction->eops);
|
|
debug_set_db_type(instruction);
|
|
return isize;
|
|
} else if (instruction->opcode == I_INCBIN) {
|
|
const extop *e = instruction->eops;
|
|
const char *fname = e->val.string.data;
|
|
off_t len;
|
|
|
|
len = nasm_file_size_by_path(fname);
|
|
if (len == (off_t)-1) {
|
|
nasm_nonfatal("`incbin': unable to get length of file `%s'",
|
|
fname);
|
|
return 0;
|
|
}
|
|
|
|
e = e->next;
|
|
if (e) {
|
|
if (len <= (off_t)e->val.num.offset) {
|
|
len = 0;
|
|
} else {
|
|
len -= e->val.num.offset;
|
|
e = e->next;
|
|
if (e && len > (off_t)e->val.num.offset) {
|
|
len = (off_t)e->val.num.offset;
|
|
}
|
|
}
|
|
}
|
|
|
|
len *= instruction->times;
|
|
instruction->times = 1; /* Tell the upper layer to not iterate */
|
|
|
|
return len;
|
|
} else {
|
|
/* Normal instruction, or RESx */
|
|
|
|
/* Check to see if we need an address-size prefix */
|
|
add_asp(instruction, bits);
|
|
|
|
m = find_match(&temp, instruction, segment, offset, bits);
|
|
if (m != MOK_GOOD)
|
|
return -1; /* No match */
|
|
|
|
isize = calcsize(segment, offset, bits, instruction, temp);
|
|
debug_set_type(instruction);
|
|
isize = merge_resb(instruction, isize);
|
|
|
|
return isize;
|
|
}
|
|
}
|
|
|
|
static void bad_hle_warn(const insn * ins, uint8_t hleok)
|
|
{
|
|
enum prefixes rep_pfx = ins->prefixes[PPS_REP];
|
|
enum whatwarn { w_none, w_lock, w_inval } ww;
|
|
static const enum whatwarn warn[2][4] =
|
|
{
|
|
{ w_inval, w_inval, w_none, w_lock }, /* XACQUIRE */
|
|
{ w_inval, w_none, w_none, w_lock }, /* XRELEASE */
|
|
};
|
|
unsigned int n;
|
|
|
|
n = (unsigned int)rep_pfx - P_XACQUIRE;
|
|
if (n > 1)
|
|
return; /* Not XACQUIRE/XRELEASE */
|
|
|
|
ww = warn[n][hleok];
|
|
if (!is_class(MEMORY, ins->oprs[0].type))
|
|
ww = w_inval; /* HLE requires operand 0 to be memory */
|
|
|
|
/*!
|
|
*!prefix-hle [on] invalid HLE prefix
|
|
*!=hle
|
|
*! warns about invalid use of the HLE \c{XACQUIRE} or \c{XRELEASE}
|
|
*! prefixes.
|
|
*/
|
|
switch (ww) {
|
|
case w_none:
|
|
break;
|
|
|
|
case w_lock:
|
|
if (ins->prefixes[PPS_LOCK] != P_LOCK) {
|
|
nasm_warn(WARN_PREFIX_HLE|ERR_PASS2,
|
|
"%s with this instruction requires lock",
|
|
prefix_name(rep_pfx));
|
|
}
|
|
break;
|
|
|
|
case w_inval:
|
|
nasm_warn(WARN_PREFIX_HLE|ERR_PASS2,
|
|
"%s invalid with this instruction",
|
|
prefix_name(rep_pfx));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Common construct */
|
|
#define case3(x) case (x): case (x)+1: case (x)+2
|
|
#define case4(x) case3(x): case (x)+3
|
|
|
|
static int64_t calcsize(int32_t segment, int64_t offset, int bits,
|
|
insn * ins, const struct itemplate *temp)
|
|
{
|
|
const uint8_t *codes = temp->code;
|
|
int64_t length = 0;
|
|
uint8_t c;
|
|
int rex_mask = ~0;
|
|
int op1, op2;
|
|
struct operand *opx, *opy;
|
|
uint8_t opex = 0;
|
|
enum ea_type eat;
|
|
uint8_t hleok = 0;
|
|
bool lockcheck = true;
|
|
enum reg_enum mib_index = R_none; /* For a separate index reg form */
|
|
const char *errmsg;
|
|
|
|
ins->rex = 0; /* Ensure REX is reset */
|
|
eat = EA_SCALAR; /* Expect a scalar EA */
|
|
memset(ins->evex_p, 0, 3); /* Ensure EVEX is reset */
|
|
|
|
if (ins->prefixes[PPS_OSIZE] == P_O64)
|
|
ins->rex |= REX_W;
|
|
|
|
(void)segment; /* Don't warn that this parameter is unused */
|
|
(void)offset; /* Don't warn that this parameter is unused */
|
|
|
|
while (*codes) {
|
|
c = *codes++;
|
|
op1 = (c & 3) + ((opex & 1) << 2);
|
|
opx = get_operand(ins, op1);
|
|
op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
|
|
opy = NULL;
|
|
opex = 0; /* For the next iteration */
|
|
|
|
switch (c) {
|
|
case4(01):
|
|
codes += c, length += c;
|
|
break;
|
|
|
|
case3(05):
|
|
opex = c;
|
|
break;
|
|
|
|
case4(010):
|
|
ins->rex |=
|
|
op_rexflags(opx, REX_B|REX_H|REX_P|REX_W);
|
|
codes++, length++;
|
|
break;
|
|
|
|
case4(014):
|
|
/* this is an index reg of a split SIB operand */
|
|
mib_index = opx->basereg;
|
|
break;
|
|
|
|
case4(020):
|
|
case4(024):
|
|
length++;
|
|
break;
|
|
|
|
case4(030):
|
|
length += 2;
|
|
break;
|
|
|
|
case4(034):
|
|
if (opx->type & (BITS16 | BITS32 | BITS64))
|
|
length += (opx->type & BITS16) ? 2 : 4;
|
|
else
|
|
length += (bits == 16) ? 2 : 4;
|
|
break;
|
|
|
|
case4(040):
|
|
length += 4;
|
|
break;
|
|
|
|
case4(044):
|
|
length += ins->addr_size >> 3;
|
|
break;
|
|
|
|
case4(050):
|
|
length++;
|
|
break;
|
|
|
|
case4(054):
|
|
length += 8; /* MOV reg64/imm */
|
|
break;
|
|
|
|
case4(060):
|
|
length += 2;
|
|
break;
|
|
|
|
case4(064):
|
|
if (opx->type & (BITS16 | BITS32 | BITS64))
|
|
length += (opx->type & BITS16) ? 2 : 4;
|
|
else
|
|
length += (bits == 16) ? 2 : 4;
|
|
break;
|
|
|
|
case4(070):
|
|
length += 4;
|
|
break;
|
|
|
|
case4(074):
|
|
length += 2;
|
|
break;
|
|
|
|
case 0171:
|
|
c = *codes++;
|
|
op2 = (op2 & ~3) | ((c >> 3) & 3);
|
|
opy = get_operand(ins, op2);
|
|
ins->rex |= op_rexflags(opy, REX_R|REX_H|REX_P|REX_W);
|
|
length++;
|
|
break;
|
|
|
|
case 0172:
|
|
case 0173:
|
|
codes++;
|
|
length++;
|
|
break;
|
|
|
|
case4(0174):
|
|
length++;
|
|
break;
|
|
|
|
case4(0240):
|
|
ins->rex |= REX_EV;
|
|
ins->vexreg = regval(opx);
|
|
ins->evex_p[2] |= op_evexflags(opx, EVEX_P2VP, 2); /* High-16 NDS */
|
|
ins->vex_cm = *codes++;
|
|
ins->vex_wlp = *codes++;
|
|
ins->evex_tuple = (*codes++ - 0300);
|
|
break;
|
|
|
|
case 0250:
|
|
ins->rex |= REX_EV;
|
|
ins->vexreg = 0;
|
|
ins->vex_cm = *codes++;
|
|
ins->vex_wlp = *codes++;
|
|
ins->evex_tuple = (*codes++ - 0300);
|
|
break;
|
|
|
|
case4(0254):
|
|
length += 4;
|
|
break;
|
|
|
|
case4(0260):
|
|
ins->rex |= REX_V;
|
|
ins->vexreg = regval(opx);
|
|
ins->vex_cm = *codes++;
|
|
ins->vex_wlp = *codes++;
|
|
break;
|
|
|
|
case 0270:
|
|
ins->rex |= REX_V;
|
|
ins->vexreg = 0;
|
|
ins->vex_cm = *codes++;
|
|
ins->vex_wlp = *codes++;
|
|
break;
|
|
|
|
case3(0271):
|
|
hleok = c & 3;
|
|
break;
|
|
|
|
case4(0274):
|
|
length++;
|
|
break;
|
|
|
|
case4(0300):
|
|
break;
|
|
|
|
case 0310:
|
|
if (bits == 64)
|
|
return -1;
|
|
length += (bits != 16) && !has_prefix(ins, PPS_ASIZE, P_A16);
|
|
break;
|
|
|
|
case 0311:
|
|
length += (bits != 32) && !has_prefix(ins, PPS_ASIZE, P_A32);
|
|
break;
|
|
|
|
case 0312:
|
|
break;
|
|
|
|
case 0313:
|
|
if (bits != 64 || has_prefix(ins, PPS_ASIZE, P_A16) ||
|
|
has_prefix(ins, PPS_ASIZE, P_A32))
|
|
return -1;
|
|
break;
|
|
|
|
case4(0314):
|
|
break;
|
|
|
|
case 0320:
|
|
{
|
|
/*! prefix-opsize [on] invalid operand size prefix
|
|
*! warns that an operand prefix (\c{o16}, \c{o32}, \c{o64},
|
|
*! \c{osp}) invalid for the specified instruction has been specified.
|
|
*! The operand prefix will be ignored by the assembler.
|
|
*/
|
|
enum prefixes pfx = ins->prefixes[PPS_OSIZE];
|
|
if (pfx == P_O16)
|
|
break;
|
|
if (pfx != P_none)
|
|
nasm_warn(WARN_PREFIX_OPSIZE|ERR_PASS2,
|
|
"invalid operand size prefix, must be o16");
|
|
else
|
|
ins->prefixes[PPS_OSIZE] = P_O16;
|
|
break;
|
|
}
|
|
|
|
case 0321:
|
|
{
|
|
enum prefixes pfx = ins->prefixes[PPS_OSIZE];
|
|
if (pfx == P_O32)
|
|
break;
|
|
if (pfx != P_none)
|
|
nasm_warn(WARN_PREFIX_OPSIZE|ERR_PASS2,
|
|
"invalid operand size prefix, must be o32");
|
|
else
|
|
ins->prefixes[PPS_OSIZE] = P_O32;
|
|
break;
|
|
}
|
|
|
|
case 0322:
|
|
break;
|
|
|
|
case 0323:
|
|
rex_mask &= ~REX_W;
|
|
break;
|
|
|
|
case 0324:
|
|
ins->rex |= REX_W;
|
|
break;
|
|
|
|
case 0325:
|
|
ins->rex |= REX_NH;
|
|
break;
|
|
|
|
case 0326:
|
|
break;
|
|
|
|
case 0331:
|
|
break;
|
|
|
|
case 0332:
|
|
case 0333:
|
|
length++;
|
|
break;
|
|
|
|
case 0334:
|
|
ins->rex |= REX_L;
|
|
break;
|
|
|
|
case 0335:
|
|
break;
|
|
|
|
case 0336:
|
|
if (!ins->prefixes[PPS_REP])
|
|
ins->prefixes[PPS_REP] = P_REP;
|
|
break;
|
|
|
|
case 0337:
|
|
if (!ins->prefixes[PPS_REP])
|
|
ins->prefixes[PPS_REP] = P_REPNE;
|
|
break;
|
|
|
|
case 0340:
|
|
/*!
|
|
*!forward [on] forward reference may have unpredictable results
|
|
*! warns that a forward reference is used which may have
|
|
*! unpredictable results, notably in a \c{RESB}-type
|
|
*! pseudo-instruction. These would be \i\e{critical
|
|
*! expressions} (see \k{crit}) but are permitted in a
|
|
*! handful of cases for compatibility with older
|
|
*! versions of NASM. This warning should be treated as a
|
|
*! severe programming error as the code could break at
|
|
*! any time for any number of reasons.
|
|
*/
|
|
/* The bytecode ends in 0, so opx points to operand 0 */
|
|
if (!absolute_op(opx))
|
|
nasm_nonfatal("attempt to reserve non-constant"
|
|
" quantity of BSS space");
|
|
else if (opx->opflags & OPFLAG_FORWARD)
|
|
nasm_warn(WARN_FORWARD, "forward reference in RESx "
|
|
"can have unpredictable results");
|
|
else
|
|
length += opx->offset * resb_bytes(ins->opcode);
|
|
break;
|
|
|
|
case 0341:
|
|
if (!ins->prefixes[PPS_WAIT])
|
|
ins->prefixes[PPS_WAIT] = P_WAIT;
|
|
break;
|
|
|
|
case 0360:
|
|
break;
|
|
|
|
case 0361:
|
|
length++;
|
|
break;
|
|
|
|
case 0364:
|
|
case 0365:
|
|
break;
|
|
|
|
case 0366:
|
|
case 0367:
|
|
length++;
|
|
break;
|
|
|
|
case 0370:
|
|
case 0371:
|
|
break;
|
|
|
|
case 0373:
|
|
length++;
|
|
break;
|
|
|
|
case 0374:
|
|
eat = EA_XMMVSIB;
|
|
break;
|
|
|
|
case 0375:
|
|
eat = EA_YMMVSIB;
|
|
break;
|
|
|
|
case 0376:
|
|
eat = EA_ZMMVSIB;
|
|
break;
|
|
|
|
case4(0100):
|
|
case4(0110):
|
|
case4(0120):
|
|
case4(0130):
|
|
case4(0200):
|
|
case4(0204):
|
|
case4(0210):
|
|
case4(0214):
|
|
case4(0220):
|
|
case4(0224):
|
|
case4(0230):
|
|
case4(0234):
|
|
{
|
|
ea ea_data;
|
|
int rfield;
|
|
opflags_t rflags;
|
|
const struct operand *op_er_sae;
|
|
|
|
opy = get_operand(ins, op2);
|
|
|
|
ea_data.rex = 0; /* Ensure ea.REX is initially 0 */
|
|
|
|
if (c <= 0177) {
|
|
/* pick rfield from operand b (opx) */
|
|
rflags = regflag(opx);
|
|
rfield = nasm_regvals[opx->basereg];
|
|
} else {
|
|
rflags = 0;
|
|
rfield = c & 7;
|
|
opx = NULL;
|
|
}
|
|
|
|
/* EVEX.b1 : evex_brerop contains the operand position */
|
|
op_er_sae = ins->evex_brerop;
|
|
|
|
if (op_er_sae && (op_er_sae->decoflags & (ER | SAE))) {
|
|
/* set EVEX.b */
|
|
ins->evex_p[2] |= EVEX_P2B;
|
|
if (op_er_sae->decoflags & ER) {
|
|
/* set EVEX.RC (rounding control) */
|
|
ins->evex_p[2] |= ((ins->evex_rm - BRC_RN) << 5)
|
|
& EVEX_P2RC;
|
|
}
|
|
} else {
|
|
/* set EVEX.L'L (vector length) */
|
|
ins->evex_p[2] |= ((ins->vex_wlp << (5 - 2)) & EVEX_P2LL);
|
|
ins->evex_p[1] |= ((ins->vex_wlp << (7 - 4)) & EVEX_P1W);
|
|
if (opy->decoflags & BRDCAST_MASK) {
|
|
/* set EVEX.b */
|
|
ins->evex_p[2] |= EVEX_P2B;
|
|
}
|
|
}
|
|
|
|
if (itemp_has(temp, IF_MIB)) {
|
|
opy->eaflags |= EAF_MIB;
|
|
/*
|
|
* if a separate form of MIB (ICC style) is used,
|
|
* the index reg info is merged into mem operand
|
|
*/
|
|
if (mib_index != R_none) {
|
|
opy->indexreg = mib_index;
|
|
opy->scale = 1;
|
|
opy->hintbase = mib_index;
|
|
opy->hinttype = EAH_NOTBASE;
|
|
}
|
|
}
|
|
|
|
/* SIB encoding required */
|
|
if (itemp_has(temp, IF_SIB))
|
|
opy->eaflags |= EAF_SIB;
|
|
|
|
if (process_ea(opy, &ea_data, bits,
|
|
rfield, rflags, ins, eat, &errmsg)) {
|
|
nasm_nonfatal("%s", errmsg);
|
|
return -1;
|
|
} else {
|
|
ins->rex |= ea_data.rex;
|
|
length += ea_data.size;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
nasm_panic("internal instruction table corrupt"
|
|
": instruction code \\%o (0x%02X) given", c, c);
|
|
break;
|
|
}
|
|
}
|
|
|
|
ins->rex &= rex_mask;
|
|
|
|
if (ins->rex & REX_NH) {
|
|
if (ins->rex & REX_H) {
|
|
nasm_nonfatal("instruction cannot use high registers");
|
|
return -1;
|
|
}
|
|
ins->rex &= ~REX_P; /* Don't force REX prefix due to high reg */
|
|
}
|
|
|
|
switch (ins->prefixes[PPS_REX]) {
|
|
case P_EVEX:
|
|
if (!(ins->rex & REX_EV))
|
|
return -1;
|
|
break;
|
|
case P_VEX:
|
|
case P_VEX3:
|
|
case P_VEX2:
|
|
if (!(ins->rex & REX_V))
|
|
return -1;
|
|
break;
|
|
case P_REX:
|
|
if (ins->rex & (REX_V|REX_EV))
|
|
return -1;
|
|
ins->rex |= REX_P; /* Force REX prefix */
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (ins->rex & (REX_V | REX_EV)) {
|
|
int bad32 = REX_R|REX_W|REX_X|REX_B;
|
|
|
|
if (ins->rex & REX_H) {
|
|
nasm_nonfatal("cannot use high register in AVX instruction");
|
|
return -1;
|
|
}
|
|
switch (ins->vex_wlp & 060) {
|
|
case 000:
|
|
case 040:
|
|
ins->rex &= ~REX_W;
|
|
break;
|
|
case 020:
|
|
ins->rex |= REX_W;
|
|
bad32 &= ~REX_W;
|
|
break;
|
|
case 060:
|
|
/* Follow REX_W */
|
|
break;
|
|
}
|
|
|
|
if (bits != 64 && ((ins->rex & bad32) || ins->vexreg > 7)) {
|
|
nasm_nonfatal("invalid operands in non-64-bit mode");
|
|
return -1;
|
|
} else if (!(ins->rex & REX_EV) &&
|
|
((ins->vexreg > 15) || (ins->evex_p[0] & 0xf0))) {
|
|
nasm_nonfatal("invalid high-16 register in non-AVX-512");
|
|
return -1;
|
|
}
|
|
if (ins->rex & REX_EV) {
|
|
length += 4;
|
|
} else if (ins->vex_cm != 1 || (ins->rex & (REX_W|REX_X|REX_B)) ||
|
|
ins->prefixes[PPS_REX] == P_VEX3) {
|
|
if (ins->prefixes[PPS_REX] == P_VEX2)
|
|
nasm_nonfatal("instruction not encodable with {vex2} prefix");
|
|
length += 3;
|
|
} else {
|
|
length += 2;
|
|
}
|
|
} else if (ins->rex & REX_MASK) {
|
|
if (ins->rex & REX_H) {
|
|
nasm_nonfatal("cannot use high byte register in rex instruction");
|
|
return -1;
|
|
} else if (bits == 64) {
|
|
length++;
|
|
} else if ((ins->rex & REX_L) &&
|
|
!(ins->rex & (REX_P|REX_W|REX_X|REX_B)) &&
|
|
iflag_cpu_level_ok(&cpu, IF_X86_64)) {
|
|
/* LOCK-as-REX.R */
|
|
assert_no_prefix(ins, PPS_LOCK);
|
|
lockcheck = false; /* Already errored, no need for warning */
|
|
length++;
|
|
} else {
|
|
nasm_nonfatal("invalid operands in non-64-bit mode");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (lockcheck && has_prefix(ins, PPS_LOCK, P_LOCK)) {
|
|
if ((!itemp_has(temp,IF_LOCK) || !is_class(MEMORY, ins->oprs[0].type)) &&
|
|
(!itemp_has(temp,IF_LOCK1) || !is_class(MEMORY, ins->oprs[1].type))) {
|
|
/*!
|
|
*!prefix-lock-error [on] \c{LOCK} prefix on unlockable instruction
|
|
*!=lock
|
|
*! warns about \c{LOCK} prefixes on unlockable instructions.
|
|
*/
|
|
nasm_warn(WARN_PREFIX_LOCK_ERROR|ERR_PASS2 , "instruction is not lockable");
|
|
} else if (temp->opcode == I_XCHG) {
|
|
/*!
|
|
*!prefix-lock-xchg [on] superfluous \c{LOCK} prefix on \c{XCHG} instruction
|
|
*! warns about a \c{LOCK} prefix added to an \c{XCHG} instruction.
|
|
*! The \c{XCHG} instruction is \e{always} locking, and so this
|
|
*! prefix is not necessary; however, NASM will generate it if
|
|
*! explicitly provided by the user, so this warning indicates that
|
|
*! suboptimal code is being generated.
|
|
*/
|
|
nasm_warn(WARN_PREFIX_LOCK_XCHG|ERR_PASS2,
|
|
"superfluous LOCK prefix on XCHG instruction");
|
|
}
|
|
}
|
|
|
|
bad_hle_warn(ins, hleok);
|
|
|
|
/*
|
|
* when BND prefix is set by DEFAULT directive,
|
|
* BND prefix is added to every appropriate instruction line
|
|
* unless it is overridden by NOBND prefix.
|
|
*/
|
|
if (globalbnd &&
|
|
(itemp_has(temp, IF_BND) && !has_prefix(ins, PPS_REP, P_NOBND)))
|
|
ins->prefixes[PPS_REP] = P_BND;
|
|
|
|
/*
|
|
* Add length of legacy prefixes
|
|
*/
|
|
length += emit_prefix(NULL, bits, ins);
|
|
|
|
return length;
|
|
}
|
|
|
|
static inline void emit_rex(struct out_data *data, insn *ins)
|
|
{
|
|
if (data->bits == 64) {
|
|
if ((ins->rex & REX_MASK) &&
|
|
!(ins->rex & (REX_V | REX_EV)) &&
|
|
!ins->rex_done) {
|
|
uint8_t rex = (ins->rex & REX_MASK) | REX_P;
|
|
out_rawbyte(data, rex);
|
|
ins->rex_done = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int emit_prefix(struct out_data *data, const int bits, insn *ins)
|
|
{
|
|
int bytes = 0;
|
|
int j;
|
|
|
|
for (j = 0; j < MAXPREFIX; j++) {
|
|
uint8_t c = 0;
|
|
switch (ins->prefixes[j]) {
|
|
case P_WAIT:
|
|
c = 0x9B;
|
|
break;
|
|
case P_LOCK:
|
|
c = 0xF0;
|
|
break;
|
|
case P_REPNE:
|
|
case P_REPNZ:
|
|
case P_XACQUIRE:
|
|
case P_BND:
|
|
c = 0xF2;
|
|
break;
|
|
case P_REPE:
|
|
case P_REPZ:
|
|
case P_REP:
|
|
case P_XRELEASE:
|
|
c = 0xF3;
|
|
break;
|
|
case R_CS:
|
|
/*!
|
|
*!prefix-seg [on] segment prefix ignored in 64-bit mode
|
|
*! warns that an \c{es}, \c{cs}, \c{ss} or \c{ds} segment override
|
|
*! prefix has no effect in 64-bit mode. The prefix will still be
|
|
*! generated as requested.
|
|
*/
|
|
if (bits == 64)
|
|
nasm_warn(WARN_PREFIX_SEG|ERR_PASS2, "cs segment base generated, "
|
|
"but will be ignored in 64-bit mode");
|
|
c = 0x2E;
|
|
break;
|
|
case R_DS:
|
|
if (bits == 64)
|
|
nasm_warn(WARN_PREFIX_SEG|ERR_PASS2, "ds segment base generated, "
|
|
"but will be ignored in 64-bit mode");
|
|
c = 0x3E;
|
|
break;
|
|
case R_ES:
|
|
if (bits == 64)
|
|
nasm_warn(WARN_PREFIX_SEG|ERR_PASS2, "es segment base generated, "
|
|
"but will be ignored in 64-bit mode");
|
|
c = 0x26;
|
|
break;
|
|
case R_FS:
|
|
c = 0x64;
|
|
break;
|
|
case R_GS:
|
|
c = 0x65;
|
|
break;
|
|
case R_SS:
|
|
if (bits == 64) {
|
|
nasm_warn(WARN_PREFIX_SEG|ERR_PASS2, "ss segment base generated, "
|
|
"but will be ignored in 64-bit mode");
|
|
}
|
|
c = 0x36;
|
|
break;
|
|
case R_SEGR6:
|
|
case R_SEGR7:
|
|
nasm_nonfatal("segr6 and segr7 cannot be used as prefixes");
|
|
break;
|
|
case P_A16:
|
|
if (bits == 64) {
|
|
nasm_nonfatal("16-bit addressing is not supported "
|
|
"in 64-bit mode");
|
|
} else if (bits != 16)
|
|
c = 0x67;
|
|
break;
|
|
case P_A32:
|
|
if (bits != 32)
|
|
c = 0x67;
|
|
break;
|
|
case P_A64:
|
|
if (bits != 64) {
|
|
nasm_nonfatal("64-bit addressing is only supported "
|
|
"in 64-bit mode");
|
|
}
|
|
break;
|
|
case P_ASP:
|
|
c = 0x67;
|
|
break;
|
|
case P_O16:
|
|
if (bits != 16)
|
|
c = 0x66;
|
|
break;
|
|
case P_O32:
|
|
if (bits == 16)
|
|
c = 0x66;
|
|
break;
|
|
case P_O64:
|
|
/* REX.W */
|
|
break;
|
|
case P_OSP:
|
|
c = 0x66;
|
|
break;
|
|
case P_REX:
|
|
case P_VEX:
|
|
case P_EVEX:
|
|
case P_VEX3:
|
|
case P_VEX2:
|
|
case P_NOBND:
|
|
case P_none:
|
|
break;
|
|
default:
|
|
nasm_panic("invalid instruction prefix");
|
|
}
|
|
if (c) {
|
|
if (data)
|
|
out_rawbyte(data, c);
|
|
bytes++;
|
|
}
|
|
}
|
|
return bytes;
|
|
}
|
|
|
|
static void gencode(struct out_data *data, insn *ins)
|
|
{
|
|
uint8_t c;
|
|
uint8_t bytes[4];
|
|
int64_t size;
|
|
int op1, op2;
|
|
struct operand *opx, *opy;
|
|
const uint8_t *codes = data->itemp->code;
|
|
uint8_t opex = 0;
|
|
enum ea_type eat = EA_SCALAR;
|
|
int r;
|
|
const int bits = data->bits;
|
|
const char *errmsg;
|
|
|
|
ins->rex_done = false;
|
|
|
|
emit_prefix(data, bits, ins);
|
|
|
|
while (*codes) {
|
|
c = *codes++;
|
|
op1 = (c & 3) + ((opex & 1) << 2);
|
|
opx = get_operand(ins, op1);
|
|
op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
|
|
opy = NULL;
|
|
opex = 0; /* For the next iteration */
|
|
|
|
|
|
switch (c) {
|
|
case 01:
|
|
case 02:
|
|
case 03:
|
|
case 04:
|
|
emit_rex(data, ins);
|
|
out_rawdata(data, codes, c);
|
|
codes += c;
|
|
break;
|
|
|
|
case 05:
|
|
case 06:
|
|
case 07:
|
|
opex = c;
|
|
break;
|
|
|
|
case4(010):
|
|
emit_rex(data, ins);
|
|
out_rawbyte(data, *codes++ + (regval(opx) & 7));
|
|
break;
|
|
|
|
case4(014):
|
|
break;
|
|
|
|
case4(020):
|
|
out_imm(data, opx, 1, OUT_WRAP);
|
|
break;
|
|
|
|
case4(024):
|
|
out_imm(data, opx, 1, OUT_UNSIGNED);
|
|
break;
|
|
|
|
case4(030):
|
|
out_imm(data, opx, 2, OUT_WRAP);
|
|
break;
|
|
|
|
case4(034):
|
|
if (opx->type & (BITS16 | BITS32))
|
|
size = (opx->type & BITS16) ? 2 : 4;
|
|
else
|
|
size = (bits == 16) ? 2 : 4;
|
|
out_imm(data, opx, size, OUT_WRAP);
|
|
break;
|
|
|
|
case4(040):
|
|
out_imm(data, opx, 4, OUT_WRAP);
|
|
break;
|
|
|
|
case4(044):
|
|
size = ins->addr_size >> 3;
|
|
out_imm(data, opx, size, OUT_WRAP);
|
|
break;
|
|
|
|
case4(050):
|
|
if (opx->segment == data->segment) {
|
|
int64_t delta = opx->offset - data->offset
|
|
- (data->inslen - data->insoffs);
|
|
if (delta > 127 || delta < -128)
|
|
nasm_nonfatal("short jump is out of range");
|
|
}
|
|
out_reladdr(data, opx, 1);
|
|
break;
|
|
|
|
case4(054):
|
|
out_imm(data, opx, 8, OUT_WRAP);
|
|
break;
|
|
|
|
case4(060):
|
|
out_reladdr(data, opx, 2);
|
|
break;
|
|
|
|
case4(064):
|
|
if (opx->type & (BITS16 | BITS32 | BITS64))
|
|
size = (opx->type & BITS16) ? 2 : 4;
|
|
else
|
|
size = (bits == 16) ? 2 : 4;
|
|
|
|
out_reladdr(data, opx, size);
|
|
break;
|
|
|
|
case4(070):
|
|
out_reladdr(data, opx, 4);
|
|
break;
|
|
|
|
case4(074):
|
|
if (opx->segment == NO_SEG)
|
|
nasm_nonfatal("value referenced by FAR is not relocatable");
|
|
out_segment(data, opx);
|
|
break;
|
|
|
|
case 0171:
|
|
c = *codes++;
|
|
op2 = (op2 & ~3) | ((c >> 3) & 3);
|
|
opx = &ins->oprs[op2];
|
|
r = nasm_regvals[opx->basereg];
|
|
c = (c & ~070) | ((r & 7) << 3);
|
|
out_rawbyte(data, c);
|
|
break;
|
|
|
|
case 0172:
|
|
{
|
|
int mask = ins->prefixes[PPS_REX] == P_EVEX ? 7 : 15;
|
|
const struct operand *opy;
|
|
|
|
c = *codes++;
|
|
opx = get_operand(ins, op1 = (c >> 3) & 7);
|
|
opy = get_operand(ins, op2 = c & 7);
|
|
if (!absolute_op(opy))
|
|
nasm_nonfatal("non-absolute expression not permitted "
|
|
"as argument %d", op2);
|
|
else if (opy->offset & ~mask)
|
|
nasm_warn(ERR_PASS2|WARN_NUMBER_OVERFLOW,
|
|
"is4 argument exceeds bounds");
|
|
c = opy->offset & mask;
|
|
goto emit_is4;
|
|
}
|
|
|
|
case 0173:
|
|
c = *codes++;
|
|
opx = get_operand(ins, op1 = c >> 4);
|
|
c &= 15;
|
|
goto emit_is4;
|
|
|
|
case4(0174):
|
|
c = 0;
|
|
emit_is4:
|
|
r = nasm_regvals[opx->basereg];
|
|
out_rawbyte(data, (r << 4) | ((r & 0x10) >> 1) | c);
|
|
break;
|
|
|
|
case4(0254):
|
|
if (absolute_op(opx) &&
|
|
(int32_t)opx->offset != (int64_t)opx->offset) {
|
|
nasm_warn(ERR_PASS2|WARN_NUMBER_OVERFLOW,
|
|
"signed dword immediate exceeds bounds");
|
|
}
|
|
out_imm(data, opx, 4, OUT_SIGNED);
|
|
break;
|
|
|
|
case4(0240):
|
|
case 0250:
|
|
codes += 3;
|
|
ins->evex_p[2] |= op_evexflags(&ins->oprs[0],
|
|
EVEX_P2Z | EVEX_P2AAA, 2);
|
|
ins->evex_p[2] ^= EVEX_P2VP; /* 1's complement */
|
|
bytes[0] = 0x62;
|
|
/* EVEX.X can be set by either REX or EVEX for different reasons */
|
|
bytes[1] = ((((ins->rex & 7) << 5) |
|
|
(ins->evex_p[0] & (EVEX_P0X | EVEX_P0RP))) ^ 0xf0) |
|
|
(ins->vex_cm & EVEX_P0MM);
|
|
bytes[2] = ((ins->rex & REX_W) << (7 - 3)) |
|
|
((~ins->vexreg & 15) << 3) |
|
|
(1 << 2) | (ins->vex_wlp & 3);
|
|
bytes[3] = ins->evex_p[2];
|
|
out_rawdata(data, bytes, 4);
|
|
break;
|
|
|
|
case4(0260):
|
|
case 0270:
|
|
codes += 2;
|
|
if (ins->vex_cm != 1 || (ins->rex & (REX_W|REX_X|REX_B)) ||
|
|
ins->prefixes[PPS_REX] == P_VEX3) {
|
|
bytes[0] = (ins->vex_cm >> 6) ? 0x8f : 0xc4;
|
|
bytes[1] = (ins->vex_cm & 31) | ((~ins->rex & 7) << 5);
|
|
bytes[2] = ((ins->rex & REX_W) << (7-3)) |
|
|
((~ins->vexreg & 15)<< 3) | (ins->vex_wlp & 07);
|
|
out_rawdata(data, bytes, 3);
|
|
} else {
|
|
bytes[0] = 0xc5;
|
|
bytes[1] = ((~ins->rex & REX_R) << (7-2)) |
|
|
((~ins->vexreg & 15) << 3) | (ins->vex_wlp & 07);
|
|
out_rawdata(data, bytes, 2);
|
|
}
|
|
break;
|
|
|
|
case 0271:
|
|
case 0272:
|
|
case 0273:
|
|
break;
|
|
|
|
case4(0274):
|
|
{
|
|
uint64_t uv, um;
|
|
int s;
|
|
|
|
if (absolute_op(opx)) {
|
|
if (ins->rex & REX_W)
|
|
s = 64;
|
|
else if (ins->prefixes[PPS_OSIZE] == P_O16)
|
|
s = 16;
|
|
else if (ins->prefixes[PPS_OSIZE] == P_O32)
|
|
s = 32;
|
|
else
|
|
s = bits;
|
|
|
|
um = (uint64_t)2 << (s-1);
|
|
uv = opx->offset;
|
|
|
|
if (uv > 127 && uv < (uint64_t)-128 &&
|
|
(uv < um-128 || uv > um-1)) {
|
|
/* If this wasn't explicitly byte-sized, warn as though we
|
|
* had fallen through to the imm16/32/64 case.
|
|
*/
|
|
nasm_warn(ERR_PASS2|WARN_NUMBER_OVERFLOW,
|
|
"%s value exceeds bounds",
|
|
(opx->type & BITS8) ? "signed byte" :
|
|
s == 16 ? "word" :
|
|
s == 32 ? "dword" :
|
|
"signed dword");
|
|
}
|
|
|
|
/* Output as a raw byte to avoid byte overflow check */
|
|
out_rawbyte(data, (uint8_t)uv);
|
|
} else {
|
|
out_imm(data, opx, 1, OUT_WRAP); /* XXX: OUT_SIGNED? */
|
|
}
|
|
break;
|
|
}
|
|
|
|
case4(0300):
|
|
break;
|
|
|
|
case 0310:
|
|
if (bits == 32 && !has_prefix(ins, PPS_ASIZE, P_A16))
|
|
out_rawbyte(data, 0x67);
|
|
break;
|
|
|
|
case 0311:
|
|
if (bits != 32 && !has_prefix(ins, PPS_ASIZE, P_A32))
|
|
out_rawbyte(data, 0x67);
|
|
break;
|
|
|
|
case 0312:
|
|
break;
|
|
|
|
case 0313:
|
|
break;
|
|
|
|
case4(0314):
|
|
break;
|
|
|
|
case 0320:
|
|
case 0321:
|
|
break;
|
|
|
|
case 0322:
|
|
case 0323:
|
|
break;
|
|
|
|
case 0324:
|
|
ins->rex |= REX_W;
|
|
break;
|
|
|
|
case 0325:
|
|
break;
|
|
|
|
case 0326:
|
|
break;
|
|
|
|
case 0331:
|
|
break;
|
|
|
|
case 0332:
|
|
case 0333:
|
|
out_rawbyte(data, c - 0332 + 0xF2);
|
|
break;
|
|
|
|
case 0334:
|
|
if (ins->rex & REX_R)
|
|
out_rawbyte(data, 0xF0);
|
|
ins->rex &= ~(REX_L|REX_R);
|
|
break;
|
|
|
|
case 0335:
|
|
break;
|
|
|
|
case 0336:
|
|
case 0337:
|
|
break;
|
|
|
|
case 0340:
|
|
if (ins->oprs[0].segment != NO_SEG)
|
|
nasm_panic("non-constant BSS size in pass two");
|
|
|
|
out_reserve(data, ins->oprs[0].offset * resb_bytes(ins->opcode));
|
|
break;
|
|
|
|
case 0341:
|
|
break;
|
|
|
|
case 0360:
|
|
break;
|
|
|
|
case 0361:
|
|
out_rawbyte(data, 0x66);
|
|
break;
|
|
|
|
case 0364:
|
|
case 0365:
|
|
break;
|
|
|
|
case 0366:
|
|
case 0367:
|
|
out_rawbyte(data, c - 0366 + 0x66);
|
|
break;
|
|
|
|
case3(0370):
|
|
break;
|
|
|
|
case 0373:
|
|
out_rawbyte(data, bits == 16 ? 3 : 5);
|
|
break;
|
|
|
|
case 0374:
|
|
eat = EA_XMMVSIB;
|
|
break;
|
|
|
|
case 0375:
|
|
eat = EA_YMMVSIB;
|
|
break;
|
|
|
|
case 0376:
|
|
eat = EA_ZMMVSIB;
|
|
break;
|
|
|
|
case4(0100):
|
|
case4(0110):
|
|
case4(0120):
|
|
case4(0130):
|
|
case4(0200):
|
|
case4(0204):
|
|
case4(0210):
|
|
case4(0214):
|
|
case4(0220):
|
|
case4(0224):
|
|
case4(0230):
|
|
case4(0234):
|
|
{
|
|
ea ea_data;
|
|
int rfield;
|
|
opflags_t rflags;
|
|
uint8_t *p;
|
|
|
|
opy = get_operand(ins, op2);
|
|
|
|
if (c <= 0177) {
|
|
/* pick rfield from operand b (opx) */
|
|
rflags = regflag(opx);
|
|
rfield = nasm_regvals[opx->basereg];
|
|
} else {
|
|
/* rfield is constant */
|
|
rflags = 0;
|
|
rfield = c & 7;
|
|
opx = NULL;
|
|
}
|
|
|
|
if (process_ea(opy, &ea_data, bits,
|
|
rfield, rflags, ins, eat, &errmsg))
|
|
nasm_nonfatal("%s", errmsg);
|
|
|
|
p = bytes;
|
|
*p++ = ea_data.modrm;
|
|
if (ea_data.sib_present)
|
|
*p++ = ea_data.sib;
|
|
out_rawdata(data, bytes, p - bytes);
|
|
|
|
/*
|
|
* Make sure the address gets the right offset in case
|
|
* the line breaks in the .lst file (BR 1197827)
|
|
*/
|
|
|
|
if (ea_data.bytes) {
|
|
/* use compressed displacement, if available */
|
|
if (ea_data.disp8) {
|
|
out_rawbyte(data, ea_data.disp8);
|
|
} else if (ea_data.rip) {
|
|
out_reladdr(data, opy, ea_data.bytes);
|
|
} else {
|
|
int asize = ins->addr_size >> 3;
|
|
|
|
if (overflow_general(opy->offset, asize) ||
|
|
signed_bits(opy->offset, ins->addr_size) !=
|
|
signed_bits(opy->offset, ea_data.bytes << 3))
|
|
warn_overflow(ea_data.bytes);
|
|
|
|
out_imm(data, opy, ea_data.bytes,
|
|
(asize > ea_data.bytes)
|
|
? OUT_SIGNED : OUT_WRAP);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
nasm_panic("internal instruction table corrupt"
|
|
": instruction code \\%o (0x%02X) given", c, c);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static opflags_t regflag(const operand * o)
|
|
{
|
|
if (!is_register(o->basereg))
|
|
nasm_panic("invalid operand passed to regflag()");
|
|
return nasm_reg_flags[o->basereg];
|
|
}
|
|
|
|
static int32_t regval(const operand * o)
|
|
{
|
|
if (!is_register(o->basereg))
|
|
nasm_panic("invalid operand passed to regval()");
|
|
return nasm_regvals[o->basereg];
|
|
}
|
|
|
|
static int op_rexflags(const operand * o, int mask)
|
|
{
|
|
opflags_t flags;
|
|
int val;
|
|
|
|
if (!is_register(o->basereg))
|
|
nasm_panic("invalid operand passed to op_rexflags()");
|
|
|
|
flags = nasm_reg_flags[o->basereg];
|
|
val = nasm_regvals[o->basereg];
|
|
|
|
return rexflags(val, flags, mask);
|
|
}
|
|
|
|
static int rexflags(int val, opflags_t flags, int mask)
|
|
{
|
|
int rex = 0;
|
|
|
|
if (val >= 0 && (val & 8))
|
|
rex |= REX_B|REX_X|REX_R;
|
|
if (flags & BITS64)
|
|
rex |= REX_W;
|
|
if (!(REG_HIGH & ~flags)) /* AH, CH, DH, BH */
|
|
rex |= REX_H;
|
|
else if (!(REG8 & ~flags) && val >= 4) /* SPL, BPL, SIL, DIL */
|
|
rex |= REX_P;
|
|
|
|
return rex & mask;
|
|
}
|
|
|
|
static int evexflags(int val, decoflags_t deco,
|
|
int mask, uint8_t byte)
|
|
{
|
|
int evex = 0;
|
|
|
|
switch (byte) {
|
|
case 0:
|
|
if (val >= 0 && (val & 16))
|
|
evex |= (EVEX_P0RP | EVEX_P0X);
|
|
break;
|
|
case 2:
|
|
if (val >= 0 && (val & 16))
|
|
evex |= EVEX_P2VP;
|
|
if (deco & Z)
|
|
evex |= EVEX_P2Z;
|
|
if (deco & OPMASK_MASK)
|
|
evex |= deco & EVEX_P2AAA;
|
|
break;
|
|
}
|
|
return evex & mask;
|
|
}
|
|
|
|
static int op_evexflags(const operand * o, int mask, uint8_t byte)
|
|
{
|
|
int val;
|
|
|
|
val = nasm_regvals[o->basereg];
|
|
|
|
return evexflags(val, o->decoflags, mask, byte);
|
|
}
|
|
|
|
static enum match_result find_match(const struct itemplate **tempp,
|
|
insn *instruction,
|
|
int32_t segment, int64_t offset, int bits)
|
|
{
|
|
const struct itemplate *temp;
|
|
enum match_result m, merr;
|
|
opflags_t xsizeflags[MAX_OPERANDS];
|
|
bool opsizemissing = false;
|
|
int i;
|
|
|
|
for (i = 0; i < instruction->operands; i++)
|
|
xsizeflags[i] = instruction->oprs[i].xsize;
|
|
|
|
merr = MERR_INVALOP;
|
|
|
|
for (temp = nasm_instructions[instruction->opcode];
|
|
temp->opcode != I_none; temp++) {
|
|
m = matches(temp, instruction, bits);
|
|
if (m == MOK_JUMP) {
|
|
if (jmp_match(segment, offset, bits, instruction, temp))
|
|
m = MOK_GOOD;
|
|
else
|
|
m = MERR_INVALOP;
|
|
} else if (m == MERR_OPSIZEMISSING && !itemp_has(temp, IF_SX)) {
|
|
/*
|
|
* Missing operand size and a candidate for fuzzy matching...
|
|
*/
|
|
for (i = 0; i < temp->operands; i++) {
|
|
if (instruction->oprs[i].bcast)
|
|
xsizeflags[i] |= temp->deco[i] & BRSIZE_MASK;
|
|
else
|
|
xsizeflags[i] |= temp->opd[i] & SIZE_MASK;
|
|
}
|
|
opsizemissing = true;
|
|
}
|
|
if (m > merr)
|
|
merr = m;
|
|
if (merr == MOK_GOOD)
|
|
goto done;
|
|
}
|
|
|
|
/* No match, but see if we can get a fuzzy operand size match... */
|
|
if (!opsizemissing)
|
|
goto done;
|
|
|
|
for (i = 0; i < instruction->operands; i++) {
|
|
struct operand *op = &instruction->oprs[i];
|
|
/*
|
|
* We ignore extrinsic operand sizes on registers, so we should
|
|
* never try to fuzzy-match on them. This also resolves the case
|
|
* when we have e.g. "xmmrm128" in two different positions.
|
|
*/
|
|
if (is_class(REGISTER, op->type))
|
|
continue;
|
|
|
|
/* This tests if xsizeflags[i] has more than one bit set */
|
|
if ((xsizeflags[i] & (xsizeflags[i]-1)))
|
|
goto done; /* No luck */
|
|
|
|
if (op->bcast) {
|
|
op->decoflags |= xsizeflags[i];
|
|
op->type |= brsize_to_size(xsizeflags[i]);
|
|
} else {
|
|
op->type |= xsizeflags[i]; /* Set the size */
|
|
}
|
|
}
|
|
|
|
/* Try matching again... */
|
|
for (temp = nasm_instructions[instruction->opcode];
|
|
temp->opcode != I_none; temp++) {
|
|
m = matches(temp, instruction, bits);
|
|
if (m == MOK_JUMP) {
|
|
if (jmp_match(segment, offset, bits, instruction, temp))
|
|
m = MOK_GOOD;
|
|
else
|
|
m = MERR_INVALOP;
|
|
}
|
|
if (m > merr)
|
|
merr = m;
|
|
if (merr == MOK_GOOD)
|
|
goto done;
|
|
}
|
|
|
|
done:
|
|
*tempp = temp;
|
|
return merr;
|
|
}
|
|
|
|
static uint8_t get_broadcast_num(opflags_t opflags, opflags_t brsize)
|
|
{
|
|
unsigned int opsize = (opflags & SIZE_MASK) >> SIZE_SHIFT;
|
|
uint8_t brcast_num;
|
|
|
|
if (brsize > BITS64)
|
|
nasm_fatal("size of broadcasting element is greater than 64 bits");
|
|
|
|
/*
|
|
* The shift term is to take care of the extra BITS80 inserted
|
|
* between BITS64 and BITS128.
|
|
*/
|
|
brcast_num = ((opsize / (BITS64 >> SIZE_SHIFT)) * (BITS64 / brsize))
|
|
>> (opsize > (BITS64 >> SIZE_SHIFT));
|
|
|
|
return brcast_num;
|
|
}
|
|
|
|
static enum match_result matches(const struct itemplate *itemp,
|
|
insn *instruction, int bits)
|
|
{
|
|
opflags_t size[MAX_OPERANDS], asize;
|
|
bool opsizemissing = false;
|
|
int i, oprs;
|
|
|
|
/*
|
|
* Check the opcode
|
|
*/
|
|
if (itemp->opcode != instruction->opcode)
|
|
return MERR_INVALOP;
|
|
|
|
/*
|
|
* Count the operands
|
|
*/
|
|
if (itemp->operands != instruction->operands)
|
|
return MERR_INVALOP;
|
|
|
|
/*
|
|
* Is it legal?
|
|
*/
|
|
if (!(optimizing.level > 0) && itemp_has(itemp, IF_OPT))
|
|
return MERR_INVALOP;
|
|
|
|
/*
|
|
* {rex/vexn/evex} available?
|
|
*/
|
|
switch (instruction->prefixes[PPS_REX]) {
|
|
case P_EVEX:
|
|
if (!itemp_has(itemp, IF_EVEX))
|
|
return MERR_ENCMISMATCH;
|
|
break;
|
|
case P_VEX:
|
|
case P_VEX3:
|
|
case P_VEX2:
|
|
if (!itemp_has(itemp, IF_VEX))
|
|
return MERR_ENCMISMATCH;
|
|
break;
|
|
case P_REX:
|
|
if (itemp_has(itemp, IF_VEX) || itemp_has(itemp, IF_EVEX) ||
|
|
bits != 64)
|
|
return MERR_ENCMISMATCH;
|
|
break;
|
|
default:
|
|
if (itemp_has(itemp, IF_EVEX)) {
|
|
if (!iflag_test(&cpu, IF_EVEX))
|
|
return MERR_ENCMISMATCH;
|
|
} else if (itemp_has(itemp, IF_VEX)) {
|
|
if (!iflag_test(&cpu, IF_VEX)) {
|
|
return MERR_ENCMISMATCH;
|
|
} else if (itemp_has(itemp, IF_LATEVEX)) {
|
|
if (!iflag_test(&cpu, IF_LATEVEX) && iflag_test(&cpu, IF_EVEX))
|
|
return MERR_ENCMISMATCH;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Check that no spurious colons or TOs are present
|
|
*/
|
|
for (i = 0; i < itemp->operands; i++)
|
|
if (instruction->oprs[i].type & ~itemp->opd[i] & (COLON | TO))
|
|
return MERR_INVALOP;
|
|
|
|
/*
|
|
* Process size flags
|
|
*/
|
|
switch (itemp_smask(itemp)) {
|
|
case IF_GENBIT(IF_SB):
|
|
asize = BITS8;
|
|
break;
|
|
case IF_GENBIT(IF_SW):
|
|
asize = BITS16;
|
|
break;
|
|
case IF_GENBIT(IF_SD):
|
|
asize = BITS32;
|
|
break;
|
|
case IF_GENBIT(IF_SQ):
|
|
asize = BITS64;
|
|
break;
|
|
case IF_GENBIT(IF_SO):
|
|
asize = BITS128;
|
|
break;
|
|
case IF_GENBIT(IF_SY):
|
|
asize = BITS256;
|
|
break;
|
|
case IF_GENBIT(IF_SZ):
|
|
asize = BITS512;
|
|
break;
|
|
case IF_GENBIT(IF_ANYSIZE):
|
|
asize = SIZE_MASK;
|
|
break;
|
|
case IF_GENBIT(IF_SIZE):
|
|
switch (bits) {
|
|
case 16:
|
|
asize = BITS16;
|
|
break;
|
|
case 32:
|
|
asize = BITS32;
|
|
break;
|
|
case 64:
|
|
asize = BITS64;
|
|
break;
|
|
default:
|
|
asize = 0;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
asize = 0;
|
|
break;
|
|
}
|
|
|
|
if (itemp_armask(itemp)) {
|
|
/* S- flags only apply to a specific operand */
|
|
i = itemp_arg(itemp);
|
|
memset(size, 0, sizeof size);
|
|
size[i] = asize;
|
|
} else {
|
|
/* S- flags apply to all operands */
|
|
for (i = 0; i < MAX_OPERANDS; i++)
|
|
size[i] = asize;
|
|
}
|
|
|
|
/*
|
|
* Check that the operand flags all match up,
|
|
* it's a bit tricky so lets be verbose:
|
|
*
|
|
* 1) Find out the size of operand. If instruction
|
|
* doesn't have one specified -- we're trying to
|
|
* guess it either from template (IF_S* flag) or
|
|
* from code bits.
|
|
*
|
|
* 2) If template operand do not match the instruction OR
|
|
* template has an operand size specified AND this size differ
|
|
* from which instruction has (perhaps we got it from code bits)
|
|
* we are:
|
|
* a) Check that only size of instruction and operand is differ
|
|
* other characteristics do match
|
|
* b) Perhaps it's a register specified in instruction so
|
|
* for such a case we just mark that operand as "size
|
|
* missing" and this will turn on fuzzy operand size
|
|
* logic facility (handled by a caller)
|
|
*/
|
|
for (i = 0; i < itemp->operands; i++) {
|
|
opflags_t type = instruction->oprs[i].type;
|
|
decoflags_t deco = instruction->oprs[i].decoflags;
|
|
decoflags_t ideco = itemp->deco[i];
|
|
bool is_broadcast = deco & BRDCAST_MASK;
|
|
uint8_t brcast_num = 0;
|
|
opflags_t template_opsize, insn_opsize;
|
|
|
|
if (!(type & SIZE_MASK))
|
|
type |= size[i];
|
|
|
|
insn_opsize = type & SIZE_MASK;
|
|
if (!is_broadcast) {
|
|
template_opsize = itemp->opd[i] & SIZE_MASK;
|
|
} else {
|
|
decoflags_t deco_brsize = ideco & BRSIZE_MASK;
|
|
|
|
if (~ideco & BRDCAST_MASK)
|
|
return MERR_BRNOTHERE;
|
|
|
|
/*
|
|
* when broadcasting, the element size depends on
|
|
* the instruction type. decorator flag should match.
|
|
*/
|
|
if (deco_brsize) {
|
|
template_opsize = brsize_to_size(deco_brsize);
|
|
/* calculate the proper number : {1to<brcast_num>} */
|
|
brcast_num = get_broadcast_num(itemp->opd[i], template_opsize);
|
|
} else {
|
|
template_opsize = 0;
|
|
}
|
|
}
|
|
|
|
if (~ideco & deco & OPMASK_MASK)
|
|
return MERR_MASKNOTHERE;
|
|
|
|
if (~ideco & deco & (Z_MASK|STATICRND_MASK|SAE_MASK))
|
|
return MERR_DECONOTHERE;
|
|
|
|
if (itemp->opd[i] & ~type & ~(SIZE_MASK|REGSET_MASK))
|
|
return MERR_INVALOP;
|
|
|
|
if (~itemp->opd[i] & type & REGSET_MASK)
|
|
return (itemp->opd[i] & REGSET_MASK)
|
|
? MERR_REGSETSIZE : MERR_REGSET;
|
|
|
|
if (template_opsize) {
|
|
if (template_opsize != insn_opsize) {
|
|
if (insn_opsize) {
|
|
return MERR_INVALOP;
|
|
} else if (!is_class(REGISTER, type)) {
|
|
/*
|
|
* Note: we don't honor extrinsic operand sizes for registers,
|
|
* so "missing operand size" for a register should be
|
|
* considered a wildcard match rather than an error.
|
|
*/
|
|
opsizemissing = true;
|
|
} else if (is_class(REG_HIGH, type) &&
|
|
instruction->prefixes[PPS_REX]) {
|
|
return MERR_ENCMISMATCH;
|
|
}
|
|
} else if (is_broadcast &&
|
|
(brcast_num !=
|
|
(2U << ((deco & BRNUM_MASK) >> BRNUM_SHIFT)))) {
|
|
/*
|
|
* broadcasting opsize matches but the number of repeated memory
|
|
* element does not match.
|
|
* if 64b double precision float is broadcasted to ymm (256b),
|
|
* broadcasting decorator must be {1to4}.
|
|
*/
|
|
return MERR_BRNUMMISMATCH;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (opsizemissing)
|
|
return MERR_OPSIZEMISSING;
|
|
|
|
/*
|
|
* Check operand sizes
|
|
*/
|
|
if (itemp_has(itemp, IF_SM) || itemp_has(itemp, IF_SM2)) {
|
|
oprs = (itemp_has(itemp, IF_SM2) ? 2 : itemp->operands);
|
|
for (i = 0; i < oprs; i++) {
|
|
asize = itemp->opd[i] & SIZE_MASK;
|
|
if (asize) {
|
|
for (i = 0; i < oprs; i++)
|
|
size[i] = asize;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
oprs = itemp->operands;
|
|
}
|
|
|
|
for (i = 0; i < itemp->operands; i++) {
|
|
if (!(itemp->opd[i] & SIZE_MASK) &&
|
|
(instruction->oprs[i].type & SIZE_MASK & ~size[i]))
|
|
return MERR_OPSIZEMISMATCH;
|
|
}
|
|
|
|
/*
|
|
* Check template is okay at the set cpu level
|
|
*/
|
|
if (iflag_cmp_cpu_level(&insns_flags[itemp->iflag_idx], &cpu) > 0)
|
|
return MERR_BADCPU;
|
|
|
|
/*
|
|
* Verify the appropriate long mode flag.
|
|
*/
|
|
if (itemp_has(itemp, (bits == 64 ? IF_NOLONG : IF_LONG)))
|
|
return MERR_BADMODE;
|
|
|
|
/*
|
|
* If we have a HLE prefix, look for the NOHLE flag
|
|
*/
|
|
if (itemp_has(itemp, IF_NOHLE) &&
|
|
(has_prefix(instruction, PPS_REP, P_XACQUIRE) ||
|
|
has_prefix(instruction, PPS_REP, P_XRELEASE)))
|
|
return MERR_BADHLE;
|
|
|
|
/*
|
|
* Check if special handling needed for Jumps
|
|
*/
|
|
if ((itemp->code[0] & ~1) == 0370)
|
|
return MOK_JUMP;
|
|
|
|
/*
|
|
* Check if BND prefix is allowed.
|
|
* Other 0xF2 (REPNE/REPNZ) prefix is prohibited.
|
|
*/
|
|
if (!itemp_has(itemp, IF_BND) &&
|
|
(has_prefix(instruction, PPS_REP, P_BND) ||
|
|
has_prefix(instruction, PPS_REP, P_NOBND)))
|
|
return MERR_BADBND;
|
|
else if (itemp_has(itemp, IF_BND) &&
|
|
(has_prefix(instruction, PPS_REP, P_REPNE) ||
|
|
has_prefix(instruction, PPS_REP, P_REPNZ)))
|
|
return MERR_BADREPNE;
|
|
|
|
return MOK_GOOD;
|
|
}
|
|
|
|
/*
|
|
* Check if ModR/M.mod should/can be 01.
|
|
* - EAF_BYTEOFFS is set
|
|
* - offset can fit in a byte when EVEX is not used
|
|
* - offset can be compressed when EVEX is used
|
|
*/
|
|
#define IS_MOD_01() (!(input->eaflags & EAF_WORDOFFS) && \
|
|
(ins->rex & REX_EV ? seg == NO_SEG && !forw_ref && \
|
|
is_disp8n(input, ins, &output->disp8) : \
|
|
input->eaflags & EAF_BYTEOFFS || (o >= -128 && \
|
|
o <= 127 && seg == NO_SEG && !forw_ref)))
|
|
|
|
static int process_ea(operand *input, ea *output, int bits,
|
|
int rfield, opflags_t rflags, insn *ins,
|
|
enum ea_type expected, const char **errmsgp)
|
|
{
|
|
bool forw_ref = !!(input->opflags & OPFLAG_UNKNOWN);
|
|
const int addrbits = ins->addr_size;
|
|
const int eaflags = input->eaflags;
|
|
const char *errmsg = NULL;
|
|
|
|
errmsg = NULL;
|
|
|
|
output->type = EA_SCALAR;
|
|
output->rip = false;
|
|
output->disp8 = 0;
|
|
|
|
/* REX flags for the rfield operand */
|
|
output->rex |= rexflags(rfield, rflags, REX_R | REX_P | REX_W | REX_H);
|
|
/* EVEX.R' flag for the REG operand */
|
|
ins->evex_p[0] |= evexflags(rfield, 0, EVEX_P0RP, 0);
|
|
|
|
if (is_class(REGISTER, input->type)) {
|
|
/*
|
|
* It's a direct register.
|
|
*/
|
|
if (!is_register(input->basereg))
|
|
goto err;
|
|
|
|
if (!is_reg_class(REG_EA, input->basereg))
|
|
goto err;
|
|
|
|
/* broadcasting is not available with a direct register operand. */
|
|
if (input->decoflags & BRDCAST_MASK) {
|
|
errmsg = "broadcast not allowed with register operand";
|
|
goto err;
|
|
}
|
|
|
|
output->rex |= op_rexflags(input, REX_B | REX_P | REX_W | REX_H);
|
|
ins->evex_p[0] |= op_evexflags(input, EVEX_P0X, 0);
|
|
output->sib_present = false; /* no SIB necessary */
|
|
output->bytes = 0; /* no offset necessary either */
|
|
output->modrm = GEN_MODRM(3, rfield, nasm_regvals[input->basereg]);
|
|
} else {
|
|
/*
|
|
* It's a memory reference.
|
|
*/
|
|
|
|
/* Embedded rounding or SAE is not available with a mem ref operand. */
|
|
if (input->decoflags & (ER | SAE)) {
|
|
errmsg = "embedded rounding is available only with "
|
|
"register-register operations";
|
|
goto err;
|
|
}
|
|
|
|
if (input->basereg == -1 &&
|
|
(input->indexreg == -1 || input->scale == 0)) {
|
|
/*
|
|
* It's a pure offset. If it is an IMMEDIATE, it is a pattern
|
|
* in insns.dat which allows an immediate to be used as a memory
|
|
* address, in which case apply the default REL/ABS.
|
|
*/
|
|
if (bits == 64) {
|
|
if (is_class(IMMEDIATE, input->type)) {
|
|
if (!(input->eaflags & EAF_ABS) &&
|
|
((input->eaflags & EAF_REL) || globalrel))
|
|
input->type |= IP_REL;
|
|
}
|
|
if ((input->type & IP_REL) == IP_REL) {
|
|
/*!
|
|
*!ea-absolute [on] absolute address cannot be RIP-relative
|
|
*! warns that an address that is inherently absolute cannot
|
|
*! be generated with RIP-relative encoding using \c{REL},
|
|
*! see \k{REL & ABS}.
|
|
*/
|
|
if (input->segment == NO_SEG ||
|
|
(input->opflags & OPFLAG_RELATIVE)) {
|
|
nasm_warn(WARN_EA_ABSOLUTE|ERR_PASS2,
|
|
"absolute address can not be RIP-relative");
|
|
input->type &= ~IP_REL;
|
|
input->type |= MEMORY;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (bits == 64 && !(IP_REL & ~input->type) && (eaflags & EAF_SIB)) {
|
|
errmsg = "instruction requires SIB encoding, cannot be RIP-relative";
|
|
goto err;
|
|
}
|
|
|
|
if (eaflags & EAF_BYTEOFFS ||
|
|
(eaflags & EAF_WORDOFFS &&
|
|
input->disp_size != (addrbits != 16 ? 32 : 16))) {
|
|
/*!
|
|
*!ea-dispsize [on] displacement size ignored on absolute address
|
|
*! warns that NASM does not support generating displacements for
|
|
*! inherently absolute addresses that do not match the address size
|
|
*! of the instruction.
|
|
*/
|
|
nasm_warn(WARN_EA_DISPSIZE, "displacement size ignored on absolute address");
|
|
}
|
|
|
|
if ((eaflags & EAF_SIB) || (bits == 64 && (~input->type & IP_REL))) {
|
|
output->sib_present = true;
|
|
output->sib = GEN_SIB(0, 4, 5);
|
|
output->bytes = 4;
|
|
output->modrm = GEN_MODRM(0, rfield, 4);
|
|
output->rip = false;
|
|
} else {
|
|
output->sib_present = false;
|
|
output->bytes = (addrbits != 16 ? 4 : 2);
|
|
output->modrm = GEN_MODRM(0, rfield,
|
|
(addrbits != 16 ? 5 : 6));
|
|
output->rip = bits == 64;
|
|
}
|
|
} else {
|
|
/*
|
|
* It's an indirection.
|
|
*/
|
|
int i = input->indexreg, b = input->basereg, s = input->scale;
|
|
int32_t seg = input->segment;
|
|
int hb = input->hintbase, ht = input->hinttype;
|
|
int t, it, bt; /* register numbers */
|
|
opflags_t x, ix, bx; /* register flags */
|
|
|
|
if (s == 0)
|
|
i = -1; /* make this easy, at least */
|
|
|
|
if (is_register(i)) {
|
|
it = nasm_regvals[i];
|
|
ix = nasm_reg_flags[i];
|
|
} else {
|
|
it = -1;
|
|
ix = 0;
|
|
}
|
|
|
|
if (is_register(b)) {
|
|
bt = nasm_regvals[b];
|
|
bx = nasm_reg_flags[b];
|
|
} else {
|
|
bt = -1;
|
|
bx = 0;
|
|
}
|
|
|
|
/* if either one are a vector register... */
|
|
if ((ix|bx) & (XMMREG|YMMREG|ZMMREG) & ~REG_EA) {
|
|
opflags_t sok = BITS32 | BITS64;
|
|
int32_t o = input->offset;
|
|
int mod, scale, index, base;
|
|
|
|
/*
|
|
* For a vector SIB, one has to be a vector and the other,
|
|
* if present, a GPR. The vector must be the index operand.
|
|
*/
|
|
if (it == -1 || (bx & (XMMREG|YMMREG|ZMMREG) & ~REG_EA)) {
|
|
if (s == 0)
|
|
s = 1;
|
|
else if (s != 1)
|
|
goto err;
|
|
|
|
t = bt, bt = it, it = t;
|
|
x = bx, bx = ix, ix = x;
|
|
}
|
|
|
|
if (bt != -1) {
|
|
if (REG_GPR & ~bx)
|
|
goto err;
|
|
if (!(REG64 & ~bx) || !(REG32 & ~bx))
|
|
sok &= bx;
|
|
else
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* While we're here, ensure the user didn't specify
|
|
* WORD or QWORD
|
|
*/
|
|
if (input->disp_size == 16 || input->disp_size == 64)
|
|
goto err;
|
|
|
|
if (addrbits == 16 ||
|
|
(addrbits == 32 && !(sok & BITS32)) ||
|
|
(addrbits == 64 && !(sok & BITS64)))
|
|
goto err;
|
|
|
|
output->type = ((ix & ZMMREG & ~REG_EA) ? EA_ZMMVSIB
|
|
: ((ix & YMMREG & ~REG_EA)
|
|
? EA_YMMVSIB : EA_XMMVSIB));
|
|
|
|
output->rex |= rexflags(it, ix, REX_X);
|
|
output->rex |= rexflags(bt, bx, REX_B);
|
|
ins->evex_p[2] |= evexflags(it, 0, EVEX_P2VP, 2);
|
|
|
|
index = it & 7; /* it is known to be != -1 */
|
|
|
|
switch (s) {
|
|
case 1:
|
|
scale = 0;
|
|
break;
|
|
case 2:
|
|
scale = 1;
|
|
break;
|
|
case 4:
|
|
scale = 2;
|
|
break;
|
|
case 8:
|
|
scale = 3;
|
|
break;
|
|
default: /* then what the smeg is it? */
|
|
goto err; /* panic */
|
|
}
|
|
|
|
if (bt == -1) {
|
|
base = 5;
|
|
mod = 0;
|
|
} else {
|
|
base = (bt & 7);
|
|
if (base != REG_NUM_EBP && o == 0 &&
|
|
seg == NO_SEG && !forw_ref &&
|
|
!(eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
|
|
mod = 0;
|
|
else if (IS_MOD_01())
|
|
mod = 1;
|
|
else
|
|
mod = 2;
|
|
}
|
|
|
|
output->sib_present = true;
|
|
output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
|
|
output->modrm = GEN_MODRM(mod, rfield, 4);
|
|
output->sib = GEN_SIB(scale, index, base);
|
|
} else if ((ix|bx) & (BITS32|BITS64)) {
|
|
/*
|
|
* it must be a 32/64-bit memory reference. Firstly we have
|
|
* to check that all registers involved are type E/Rxx.
|
|
*/
|
|
opflags_t sok = BITS32 | BITS64;
|
|
int32_t o = input->offset;
|
|
|
|
if (it != -1) {
|
|
if (!(REG64 & ~ix) || !(REG32 & ~ix))
|
|
sok &= ix;
|
|
else
|
|
goto err;
|
|
}
|
|
|
|
if (bt != -1) {
|
|
if (REG_GPR & ~bx)
|
|
goto err; /* Invalid register */
|
|
if (~sok & bx & SIZE_MASK)
|
|
goto err; /* Invalid size */
|
|
sok &= bx;
|
|
}
|
|
|
|
/*
|
|
* While we're here, ensure the user didn't specify
|
|
* WORD or QWORD
|
|
*/
|
|
if (input->disp_size == 16 || input->disp_size == 64)
|
|
goto err;
|
|
|
|
if (addrbits == 16 ||
|
|
(addrbits == 32 && !(sok & BITS32)) ||
|
|
(addrbits == 64 && !(sok & BITS64)))
|
|
goto err;
|
|
|
|
/* now reorganize base/index */
|
|
if (s == 1 && bt != it && bt != -1 && it != -1 &&
|
|
((hb == b && ht == EAH_NOTBASE) ||
|
|
(hb == i && ht == EAH_MAKEBASE))) {
|
|
/* swap if hints say so */
|
|
t = bt, bt = it, it = t;
|
|
x = bx, bx = ix, ix = x;
|
|
}
|
|
|
|
if (bt == -1 && s == 1 && !(hb == i && ht == EAH_NOTBASE)) {
|
|
/* make single reg base, unless hint */
|
|
bt = it, bx = ix, it = -1, ix = 0;
|
|
}
|
|
if (eaflags & EAF_MIB) {
|
|
/* MIB/split-SIB encoding */
|
|
if (it == -1 && (hb == b && ht == EAH_NOTBASE)) {
|
|
/*
|
|
* make a single reg index [reg*1].
|
|
* gas uses this form for an explicit index register.
|
|
*/
|
|
it = bt, ix = bx, bt = -1, bx = 0, s = 1;
|
|
}
|
|
if ((ht == EAH_SUMMED) && bt == -1) {
|
|
/* separate once summed index into [base, index] */
|
|
bt = it, bx = ix, s--;
|
|
}
|
|
} else {
|
|
if (((s == 2 && it != REG_NUM_ESP &&
|
|
(!(eaflags & EAF_TIMESTWO) || (ht == EAH_SUMMED))) ||
|
|
s == 3 || s == 5 || s == 9) && bt == -1) {
|
|
/* convert 3*EAX to EAX+2*EAX */
|
|
bt = it, bx = ix, s--;
|
|
}
|
|
if (it == -1 && (bt & 7) != REG_NUM_ESP &&
|
|
(eaflags & EAF_TIMESTWO) &&
|
|
(hb == b && ht == EAH_NOTBASE)) {
|
|
/*
|
|
* convert [NOSPLIT EAX*1]
|
|
* to sib format with 0x0 displacement - [EAX*1+0].
|
|
*/
|
|
it = bt, ix = bx, bt = -1, bx = 0, s = 1;
|
|
}
|
|
}
|
|
if (s == 1 && it == REG_NUM_ESP) {
|
|
/* swap ESP into base if scale is 1 */
|
|
t = it, it = bt, bt = t;
|
|
x = ix, ix = bx, bx = x;
|
|
}
|
|
if (it == REG_NUM_ESP ||
|
|
(s != 1 && s != 2 && s != 4 && s != 8 && it != -1))
|
|
goto err; /* wrong, for various reasons */
|
|
|
|
output->rex |= rexflags(it, ix, REX_X);
|
|
output->rex |= rexflags(bt, bx, REX_B);
|
|
|
|
if (it == -1 && (bt & 7) != REG_NUM_ESP && !(eaflags & EAF_SIB)) {
|
|
/* no SIB needed */
|
|
int mod, rm;
|
|
|
|
if (bt == -1) {
|
|
rm = 5;
|
|
mod = 0;
|
|
} else {
|
|
rm = (bt & 7);
|
|
if (rm != REG_NUM_EBP && o == 0 &&
|
|
seg == NO_SEG && !forw_ref &&
|
|
!(eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
|
|
mod = 0;
|
|
else if (IS_MOD_01())
|
|
mod = 1;
|
|
else
|
|
mod = 2;
|
|
}
|
|
|
|
output->sib_present = false;
|
|
output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
|
|
output->modrm = GEN_MODRM(mod, rfield, rm);
|
|
} else {
|
|
/* we need a SIB */
|
|
int mod, scale, index, base;
|
|
|
|
if (it == -1)
|
|
index = 4, s = 1;
|
|
else
|
|
index = (it & 7);
|
|
|
|
switch (s) {
|
|
case 1:
|
|
scale = 0;
|
|
break;
|
|
case 2:
|
|
scale = 1;
|
|
break;
|
|
case 4:
|
|
scale = 2;
|
|
break;
|
|
case 8:
|
|
scale = 3;
|
|
break;
|
|
default: /* then what the smeg is it? */
|
|
goto err; /* panic */
|
|
}
|
|
|
|
if (bt == -1) {
|
|
base = 5;
|
|
mod = 0;
|
|
} else {
|
|
base = (bt & 7);
|
|
if (base != REG_NUM_EBP && o == 0 &&
|
|
seg == NO_SEG && !forw_ref &&
|
|
!(eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
|
|
mod = 0;
|
|
else if (IS_MOD_01())
|
|
mod = 1;
|
|
else
|
|
mod = 2;
|
|
}
|
|
|
|
output->sib_present = true;
|
|
output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
|
|
output->modrm = GEN_MODRM(mod, rfield, 4);
|
|
output->sib = GEN_SIB(scale, index, base);
|
|
}
|
|
} else { /* it's 16-bit */
|
|
int mod, rm;
|
|
int16_t o = input->offset;
|
|
|
|
/* check for 64-bit long mode */
|
|
if (addrbits == 64)
|
|
goto err;
|
|
|
|
/* check all registers are BX, BP, SI or DI */
|
|
if ((b != -1 && b != R_BP && b != R_BX && b != R_SI && b != R_DI) ||
|
|
(i != -1 && i != R_BP && i != R_BX && i != R_SI && i != R_DI))
|
|
goto err;
|
|
|
|
/* ensure the user didn't specify DWORD/QWORD */
|
|
if (input->disp_size == 32 || input->disp_size == 64)
|
|
goto err;
|
|
|
|
if (s != 1 && i != -1)
|
|
goto err; /* no can do, in 16-bit EA */
|
|
if (b == -1 && i != -1) {
|
|
int tmp = b;
|
|
b = i;
|
|
i = tmp;
|
|
} /* swap */
|
|
if ((b == R_SI || b == R_DI) && i != -1) {
|
|
int tmp = b;
|
|
b = i;
|
|
i = tmp;
|
|
}
|
|
/* have BX/BP as base, SI/DI index */
|
|
if (b == i)
|
|
goto err; /* shouldn't ever happen, in theory */
|
|
if (i != -1 && b != -1 &&
|
|
(i == R_BP || i == R_BX || b == R_SI || b == R_DI))
|
|
goto err; /* invalid combinations */
|
|
if (b == -1) /* pure offset: handled above */
|
|
goto err; /* so if it gets to here, panic! */
|
|
|
|
rm = -1;
|
|
if (i != -1)
|
|
switch (i * 256 + b) {
|
|
case R_SI * 256 + R_BX:
|
|
rm = 0;
|
|
break;
|
|
case R_DI * 256 + R_BX:
|
|
rm = 1;
|
|
break;
|
|
case R_SI * 256 + R_BP:
|
|
rm = 2;
|
|
break;
|
|
case R_DI * 256 + R_BP:
|
|
rm = 3;
|
|
break;
|
|
} else
|
|
switch (b) {
|
|
case R_SI:
|
|
rm = 4;
|
|
break;
|
|
case R_DI:
|
|
rm = 5;
|
|
break;
|
|
case R_BP:
|
|
rm = 6;
|
|
break;
|
|
case R_BX:
|
|
rm = 7;
|
|
break;
|
|
}
|
|
if (rm == -1) /* can't happen, in theory */
|
|
goto err; /* so panic if it does */
|
|
|
|
if (o == 0 && seg == NO_SEG && !forw_ref && rm != 6 &&
|
|
!(eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
|
|
mod = 0;
|
|
else if (IS_MOD_01())
|
|
mod = 1;
|
|
else
|
|
mod = 2;
|
|
|
|
output->sib_present = false; /* no SIB - it's 16-bit */
|
|
output->bytes = mod; /* bytes of offset needed */
|
|
output->modrm = GEN_MODRM(mod, rfield, rm);
|
|
}
|
|
|
|
if (eaflags & EAF_REL) {
|
|
/* Explicit REL reference with indirect memory */
|
|
nasm_warn(WARN_OTHER,
|
|
"indirect address displacements cannot be RIP-relative");
|
|
}
|
|
}
|
|
}
|
|
|
|
output->size = 1 + output->sib_present + output->bytes;
|
|
/*
|
|
* The type parsed might not match one supplied by
|
|
* a caller. In this case exit with error and let
|
|
* the caller to decide how critical it is.
|
|
*/
|
|
if (output->type != expected)
|
|
goto err_set_msg;
|
|
|
|
return 0;
|
|
|
|
err_set_msg:
|
|
if (!errmsg) {
|
|
/* Default error message */
|
|
static char invalid_address_msg[40];
|
|
snprintf(invalid_address_msg, sizeof invalid_address_msg,
|
|
"invalid %d-bit effective address", bits);
|
|
errmsg = invalid_address_msg;
|
|
}
|
|
*errmsgp = errmsg;
|
|
return -1;
|
|
|
|
err:
|
|
output->type = EA_INVALID;
|
|
goto err_set_msg;
|
|
}
|
|
|
|
static void add_asp(insn *ins, int addrbits)
|
|
{
|
|
int j, valid;
|
|
int defdisp;
|
|
|
|
valid = (addrbits == 64) ? 64|32 : 32|16;
|
|
|
|
switch (ins->prefixes[PPS_ASIZE]) {
|
|
case P_A16:
|
|
valid &= 16;
|
|
break;
|
|
case P_A32:
|
|
valid &= 32;
|
|
break;
|
|
case P_A64:
|
|
valid &= 64;
|
|
break;
|
|
case P_ASP:
|
|
valid &= (addrbits == 32) ? 16 : 32;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
for (j = 0; j < ins->operands; j++) {
|
|
if (is_class(MEMORY, ins->oprs[j].type)) {
|
|
opflags_t i, b;
|
|
|
|
/* Verify as Register */
|
|
if (!is_register(ins->oprs[j].indexreg))
|
|
i = 0;
|
|
else
|
|
i = nasm_reg_flags[ins->oprs[j].indexreg];
|
|
|
|
/* Verify as Register */
|
|
if (!is_register(ins->oprs[j].basereg))
|
|
b = 0;
|
|
else
|
|
b = nasm_reg_flags[ins->oprs[j].basereg];
|
|
|
|
if (ins->oprs[j].scale == 0)
|
|
i = 0;
|
|
|
|
if (!i && !b) {
|
|
int ds = ins->oprs[j].disp_size;
|
|
if ((addrbits != 64 && ds > 8) ||
|
|
(addrbits == 64 && ds == 16))
|
|
valid &= ds;
|
|
} else {
|
|
if (!(REG16 & ~b))
|
|
valid &= 16;
|
|
if (!(REG32 & ~b))
|
|
valid &= 32;
|
|
if (!(REG64 & ~b))
|
|
valid &= 64;
|
|
|
|
if (!(REG16 & ~i))
|
|
valid &= 16;
|
|
if (!(REG32 & ~i))
|
|
valid &= 32;
|
|
if (!(REG64 & ~i))
|
|
valid &= 64;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (valid & addrbits) {
|
|
ins->addr_size = addrbits;
|
|
} else if (valid & ((addrbits == 32) ? 16 : 32)) {
|
|
/* Add an address size prefix */
|
|
ins->prefixes[PPS_ASIZE] = (addrbits == 32) ? P_A16 : P_A32;;
|
|
ins->addr_size = (addrbits == 32) ? 16 : 32;
|
|
} else {
|
|
/* Impossible... */
|
|
nasm_nonfatal("impossible combination of address sizes");
|
|
ins->addr_size = addrbits; /* Error recovery */
|
|
}
|
|
|
|
defdisp = ins->addr_size == 16 ? 16 : 32;
|
|
|
|
for (j = 0; j < ins->operands; j++) {
|
|
if (!(MEM_OFFS & ~ins->oprs[j].type) &&
|
|
(ins->oprs[j].disp_size ? ins->oprs[j].disp_size : defdisp) != ins->addr_size) {
|
|
/*
|
|
* mem_offs sizes must match the address size; if not,
|
|
* strip the MEM_OFFS bit and match only EA instructions
|
|
*/
|
|
ins->oprs[j].type &= ~(MEM_OFFS & ~MEMORY);
|
|
}
|
|
}
|
|
}
|