#!/usr/bin/perl # # insns.pl produce insnsa.c, insnsd.c, insnsi.h, insnsn.c from insns.dat # # The Netwide Assembler is copyright (C) 1996 Simon Tatham and # Julian Hall. All rights reserved. The software is # redistributable under the license given in the file "LICENSE" # distributed in the NASM archive. # Opcode prefixes which need their own opcode tables # LONGER PREFIXES FIRST! @disasm_prefixes = qw(0F24 0F25 0F38 0F3A 0F7A 0FA6 0FA7 0F); # This should match MAX_OPERANDS from nasm.h $MAX_OPERANDS = 5; # Add VEX prefixes @vexlist = (); for ($m = 0; $m < 32; $m++) { for ($lp = 0; $lp < 8; $lp++) { push(@vexlist, sprintf("VEX%02X%01X", $m, $lp)); } } @disasm_prefixes = (@vexlist, @disasm_prefixes); @bytecode_count = (0) x 256; print STDERR "Reading insns.dat...\n"; @args = (); undef $output; foreach $arg ( @ARGV ) { if ( $arg =~ /^\-/ ) { if ( $arg =~ /^\-([abdin])$/ ) { $output = $1; } else { die "$0: Unknown option: ${arg}\n"; } } else { push (@args, $arg); } } $fname = "insns.dat" unless $fname = $args[0]; open (F, $fname) || die "unable to open $fname"; %dinstables = (); @bytecode_list = (); $line = 0; $insns = 0; while () { $line++; chomp; next if ( /^\s*(\;.*|)$/ ); # comments or blank lines unless (/^\s*(\S+)\s+(\S+)\s+(\S+|\[.*\])\s+(\S+)\s*$/) { warn "line $line does not contain four fields\n"; next; } @fields = ($1, $2, $3, $4); ($formatted, $nd) = format_insn(@fields); if ($formatted) { $insns++; $aname = "aa_$fields[0]"; push @$aname, $formatted; } if ( $fields[0] =~ /cc$/ ) { # Conditional instruction $k_opcodes_cc{$fields[0]}++; } else { # Unconditional instruction $k_opcodes{$fields[0]}++; } if ($formatted && !$nd) { push @big, $formatted; my @sseq = startseq($fields[2]); foreach $i (@sseq) { if (!defined($dinstables{$i})) { $dinstables{$i} = []; } push(@{$dinstables{$i}}, $#big); } } } close F; # # Generate the bytecode array. At this point, @bytecode_list contains # the full set of bytecodes. # # Sort by descending length @bytecode_list = sort { scalar(@$b) <=> scalar(@$a) } @bytecode_list; @bytecode_array = (); %bytecode_pos = (); $bytecode_next = 0; foreach $bl (@bytecode_list) { my $h = hexstr(@$bl); next if (defined($bytecode_pos{$h})); push(@bytecode_array, $bl); while ($h ne '') { $bytecode_pos{$h} = $bytecode_next; $h = substr($h, 2); $bytecode_next++; } } undef @bytecode_list; @opcodes = sort keys(%k_opcodes); @opcodes_cc = sort keys(%k_opcodes_cc); if ( !defined($output) || $output eq 'b') { print STDERR "Writing insnsb.c...\n"; open B, ">insnsb.c"; print B "/* This file auto-generated from insns.dat by insns.pl" . " - don't edit it */\n\n"; print B "#include \"nasm.h\"\n"; print B "#include \"insns.h\"\n\n"; print B "const uint8_t nasm_bytecodes[$bytecode_next] = {\n"; $p = 0; foreach $bl (@bytecode_array) { printf B " /* %5d */ ", $p; foreach $d (@$bl) { printf B "%#o,", $d; $p++; } printf B "\n"; } print B "};\n"; print B "\n"; print B "/*\n"; print B " * Bytecode frequencies (including reuse):\n"; print B " *\n"; for ($i = 0; $i < 32; $i++) { print B " *"; for ($j = 0; $j < 256; $j += 32) { print B " |" if ($j); printf B " %3o:%4d", $i+$j, $bytecode_count[$i+$j]; } print B "\n"; } print B " */\n"; close B; } if ( !defined($output) || $output eq 'a' ) { print STDERR "Writing insnsa.c...\n"; open A, ">insnsa.c"; print A "/* This file auto-generated from insns.dat by insns.pl" . " - don't edit it */\n\n"; print A "#include \"nasm.h\"\n"; print A "#include \"insns.h\"\n\n"; foreach $i (@opcodes, @opcodes_cc) { print A "static const struct itemplate instrux_${i}[] = {\n"; $aname = "aa_$i"; foreach $j (@$aname) { print A " ", codesubst($j), "\n"; } print A " ITEMPLATE_END\n};\n\n"; } print A "const struct itemplate * const nasm_instructions[] = {\n"; foreach $i (@opcodes, @opcodes_cc) { print A " instrux_${i},\n"; } print A "};\n"; close A; } if ( !defined($output) || $output eq 'd' ) { print STDERR "Writing insnsd.c...\n"; open D, ">insnsd.c"; print D "/* This file auto-generated from insns.dat by insns.pl" . " - don't edit it */\n\n"; print D "#include \"nasm.h\"\n"; print D "#include \"insns.h\"\n\n"; print D "static const struct itemplate instrux[] = {\n"; $n = 0; foreach $j (@big) { printf D " /* %4d */ %s\n", $n++, codesubst($j); } print D "};\n"; foreach $h (sort(keys(%dinstables))) { next if ($h eq ''); # Skip pseudo-instructions print D "\nstatic const struct itemplate * const itable_${h}[] = {\n"; foreach $j (@{$dinstables{$h}}) { print D " instrux + $j,\n"; } print D "};\n"; } @prefix_list = (); foreach $h (@disasm_prefixes, '') { for ($c = 0; $c < 256; $c++) { $nn = sprintf("%s%02X", $h, $c); if ($is_prefix{$nn} || defined($dinstables{$nn})) { # At least one entry in this prefix table push(@prefix_list, $h); $is_prefix{$h} = 1; last; } } } foreach $h (@prefix_list) { print D "\n"; print D "static " unless ($h eq ''); print D "const struct disasm_index "; print D ($h eq '') ? 'itable' : "itable_$h"; print D "[256] = {\n"; for ($c = 0; $c < 256; $c++) { $nn = sprintf("%s%02X", $h, $c); if ($is_prefix{$nn}) { die "$fname: ambiguous decoding of $nn\n" if (defined($dinstables{$nn})); printf D " { itable_%s, -1 },\n", $nn; } elsif (defined($dinstables{$nn})) { printf D " { itable_%s, %u },\n", $nn, scalar(@{$dinstables{$nn}}); } else { printf D " { NULL, 0 },\n"; } } print D "};\n"; } print D "\nconst struct disasm_index * const itable_VEX[32][8] = {\n "; for ($m = 0; $m < 32; $m++) { print D " {\n"; for ($lp = 0; $lp < 8; $lp++) { $vp = sprintf("VEX%02X%01X", $m, $lp); if ($is_prefix{$vp}) { printf D " itable_%s,\n", $vp; } else { print D " NULL,\n"; } } print D " },"; } print D "\n};\n"; close D; } if ( !defined($output) || $output eq 'i' ) { print STDERR "Writing insnsi.h...\n"; open I, ">insnsi.h"; print I "/* This file is auto-generated from insns.dat by insns.pl" . " - don't edit it */\n\n"; print I "/* This file in included by nasm.h */\n\n"; print I "/* Instruction names */\n\n"; print I "#ifndef NASM_INSNSI_H\n"; print I "#define NASM_INSNSI_H 1\n\n"; print I "enum opcode {\n"; $maxlen = 0; foreach $i (@opcodes, @opcodes_cc) { print I "\tI_${i},\n"; $len = length($i); $len++ if ( $i =~ /cc$/ ); # Condition codes can be 3 characters long $maxlen = $len if ( $len > $maxlen ); } print I "\tI_none = -1\n"; print I "\n};\n\n"; print I "#define MAX_INSLEN ", $maxlen, "\n"; print I "#define FIRST_COND_OPCODE I_", $opcodes_cc[0], "\n\n"; print I "#endif /* NASM_INSNSI_H */\n"; close I; } if ( !defined($output) || $output eq 'n' ) { print STDERR "Writing insnsn.c...\n"; open N, ">insnsn.c"; print N "/* This file is auto-generated from insns.dat by insns.pl" . " - don't edit it */\n\n"; print N "#include \"tables.h\"\n\n"; print N "const char * const nasm_insn_names[] = {"; $first = 1; foreach $i (@opcodes, @opcodes_cc) { print N "," if ( !$first ); $first = 0; $ilower = $i; $ilower =~ s/cc$//; # Remove conditional cc suffix $ilower =~ tr/A-Z/a-z/; # Change to lower case (Perl 4 compatible) print N "\n\t\"${ilower}\""; } print N "\n};\n"; close N; } printf STDERR "Done: %d instructions\n", $insns; # Count primary bytecodes, for statistics sub count_bytecodes(@) { my $skip = 0; foreach my $bc (@_) { if ($skip) { $skip--; next; } $bytecode_count[$bc]++; if ($bc >= 01 && $bc <= 03) { $skip = $bc; } elsif (($bc & ~03) == 010) { $skip = 1; } elsif (($bc & ~013) == 0144) { $skip = 1; } elsif ($bc == 0172) { $skip = 1; } elsif ($bc >= 0260 && $bc <= 0270) { $skip = 2; } elsif ($bc == 0330) { $skip = 1; } } } sub format_insn(@) { my ($opcode, $operands, $codes, $flags) = @_; my $num, $nd = 0; my @bytecode; return (undef, undef) if $operands eq "ignore"; # format the operands $operands =~ s/:/|colon,/g; $operands =~ s/mem(\d+)/mem|bits$1/g; $operands =~ s/mem/memory/g; $operands =~ s/memory_offs/mem_offs/g; $operands =~ s/imm(\d+)/imm|bits$1/g; $operands =~ s/imm/immediate/g; $operands =~ s/rm(\d+)/rm_gpr|bits$1/g; $operands =~ s/(mmx|xmm|ymm)rm/rm_$1/g; $operands =~ s/\=([0-9]+)/same_as|$1/g; if ($operands eq 'void') { @ops = (); } else { @ops = split(/\,/, $operands); } $num = scalar(@ops); while (scalar(@ops) < $MAX_OPERANDS) { push(@ops, '0'); } $operands = join(',', @ops); $operands =~ tr/a-z/A-Z/; # format the flags $flags =~ s/,/|IF_/g; $flags =~ s/(\|IF_ND|IF_ND\|)//, $nd = 1 if $flags =~ /IF_ND/; $flags = "IF_" . $flags; @bytecode = (decodify($codes), 0); push(@bytecode_list, [@bytecode]); $codes = hexstr(@bytecode); count_bytecodes(@bytecode); ("{I_$opcode, $num, {$operands}, \@\@CODES-$codes\@\@, $flags},", $nd); } # # Look for @@CODES-xxx@@ sequences and replace them with the appropriate # offset into nasm_bytecodes # sub codesubst($) { my($s) = @_; my $n; while ($s =~ /\@\@CODES-([0-9A-F]+)\@\@/) { my $pos = $bytecode_pos{$1}; if (!defined($pos)) { die "$fname: no position assigned to byte code $1\n"; } $s = $` . "nasm_bytecodes+${pos}" . "$'"; } return $s; } sub addprefix ($@) { my ($prefix, @list) = @_; my $x; my @l = (); foreach $x (@list) { push(@l, sprintf("%s%02X", $prefix, $x)); } return @l; } # # Turn a code string into a sequence of bytes # sub decodify($) { # Although these are C-syntax strings, by convention they should have # only octal escapes (for directives) and hexadecimal escapes # (for verbatim bytes) my($codestr) = @_; if ($codestr =~ /^\s*\[([^\]]*)\]\s*$/) { return byte_code_compile($1); } my $c = $codestr; my @codes = (); while ($c ne '') { if ($c =~ /^\\x([0-9a-f]+)(.*)$/i) { push(@codes, hex $1); $c = $2; next; } elsif ($c =~ /^\\([0-7]{1,3})(.*)$/) { push(@codes, oct $1); $c = $2; next; } else { die "$fname: unknown code format in \"$codestr\"\n"; } } return @codes; } # Turn a numeric list into a hex string sub hexstr(@) { my $s = ''; my $c; foreach $c (@_) { $s .= sprintf("%02X", $c); } return $s; } # Here we determine the range of possible starting bytes for a given # instruction. We need only consider the codes: # \1 \2 \3 mean literal bytes, of course # \4 \5 \6 \7 mean PUSH/POP of segment registers: special case # \1[0123] mean byte plus register value # \330 means byte plus condition code # \0 or \340 mean give up and return empty set # \17[234] skip is4 control byte # \26x \270 skip VEX control bytes sub startseq($) { my ($codestr) = @_; my $word, @range; my @codes = (); my $c = $codestr; my $c0, $c1, $i; my $prefix = ''; @codes = decodify($codestr); while ($c0 = shift(@codes)) { $c1 = $codes[0]; if ($c0 == 01 || $c0 == 02 || $c0 == 03) { # Fixed byte string my $fbs = $prefix; while (1) { if ($c0 == 01 || $c0 == 02 || $c0 == 03) { while ($c0--) { $fbs .= sprintf("%02X", shift(@codes)); } } else { last; } $c0 = shift(@codes); } foreach $pfx (@disasm_prefixes) { if (substr($fbs, 0, length($pfx)) eq $pfx) { $prefix = $pfx; $fbs = substr($fbs, length($pfx)); last; } } if ($fbs ne '') { return ($prefix.substr($fbs,0,2)); } unshift(@codes, $c0); } elsif ($c0 >= 010 && $c0 <= 013) { return addprefix($prefix, $c1..($c1+7)); } elsif (($c0 & ~013) == 0144) { return addprefix($prefix, $c1, $c1|2); } elsif ($c0 == 0330) { return addprefix($prefix, $c1..($c1+15)); } elsif ($c0 == 0 || $c0 == 0340) { return $prefix; } elsif ($c0 == 0344) { return addprefix($prefix, 0x06, 0x0E, 0x16, 0x1E); } elsif ($c0 == 0345) { return addprefix($prefix, 0x07, 0x17, 0x1F); } elsif ($c0 == 0346) { return addprefix($prefix, 0xA0, 0xA8); } elsif ($c0 == 0347) { return addprefix($prefix, 0xA1, 0xA9); } elsif (($c0 & ~3) == 0260 || $c0 == 0270) { my $m,$wlp,$vxp; $m = shift(@codes); $wlp = shift(@codes); $prefix .= sprintf('VEX%02X%01X', $m, $wlp & 7); } elsif ($c0 >= 0172 && $c0 <= 174) { shift(@codes); # Skip is4 control byte } else { # We really need to be able to distinguish "forbidden" # and "ignorable" codes here } } return $prefix; } # # This function takes a series of byte codes in a format which is more # typical of the Intel documentation, and encode it. # # The format looks like: # # [operands: opcodes] # # The operands word lists the order of the operands: # # r = register field in the modr/m # m = modr/m # v = VEX "v" field # d = DREX "dst" field # i = immediate # s = register field of is4/imz2 field # - = implicit (unencoded) operand # # For an operand that should be filled into more than one field, # enter it as e.g. "r+v". # sub byte_code_compile($) { my($str) = @_; my $opr; my $opc; my @codes = (); my $litix = undef; my %oppos = (); my $i; my $op, $oq; unless ($str =~ /^(([^\s:]*)\:|)\s*(.*\S)\s*$/) { die "$fname: $line: cannot parse: [$str]\n"; } $opr = "\L$2"; $opc = "\L$3"; my $op = 0; for ($i = 0; $i < length($opr); $i++) { my $c = substr($opr,$i,1); if ($c eq '+') { $op--; } else { $oppos{$c} = $op++; } } $prefix_ok = 1; foreach $op (split(/\s*(?:\s|(?=[\/\\]))/, $opc)) { if ($op eq 'o16') { push(@codes, 0320); } elsif ($op eq 'o32') { push(@codes, 0321); } elsif ($op eq 'o64') { # 64-bit operand size requiring REX.W push(@codes, 0324); } elsif ($op eq 'o64nw') { # Implied 64-bit operand size (no REX.W) push(@codes, 0323); } elsif ($op eq 'a16') { push(@codes, 0310); } elsif ($op eq 'a32') { push(@codes, 0311); } elsif ($op eq 'a64') { push(@codes, 0313); } elsif ($op eq '!osp') { push(@codes, 0364); } elsif ($op eq '!asp') { push(@codes, 0365); } elsif ($op eq 'rex.l') { push(@codes, 0334); } elsif ($op eq 'repe') { push(@codes, 0335); } elsif ($prefix_ok && $op =~ /^(66|f2|f3|np)$/) { # 66/F2/F3 prefix used as an opcode extension, or np = no prefix if ($op eq '66') { push(@codes, 0361); } elsif ($op eq 'f2') { push(@codes, 0362); } elsif ($op eq 'f3') { push(@codes, 0363); } else { push(@codes, 0360); } } elsif ($op =~ /^[0-9a-f]{2}$/) { if (defined($litix) && $litix+$codes[$litix]+1 == scalar @codes) { $codes[$litix]++; push(@codes, hex $op); } else { $litix = scalar(@codes); push(@codes, 01, hex $op); } $prefix_ok = 0; } elsif ($op eq '/r') { if (!defined($oppos{'r'}) || !defined($oppos{'m'})) { die "$fname: $line: $op requires r and m operands\n"; } push(@codes, 0100 + ($oppos{'m'} << 3) + $oppos{'r'}); $prefix_ok = 0; } elsif ($op =~ m:^/([0-7])$:) { if (!defined($oppos{'m'})) { die "$fname: $line: $op requires m operand\n"; } push(@codes, 0200 + ($oppos{'m'} << 3) + $1); $prefix_ok = 0; } elsif ($op =~ /^vex(|\..*)$/) { my ($m,$w,$l,$p) = (undef,2,undef,0); my $has_nds = 0; foreach $oq (split(/\./, $op)) { if ($oq eq 'vex') { # prefix } elsif ($oq eq '128' || $oq eq 'l0') { $l = 0; } elsif ($oq eq '256' || $oq eq 'l1') { $l = 1; } elsif ($oq eq 'w0') { $w = 0; } elsif ($oq eq 'w1') { $w = 1; } elsif ($oq eq 'wx') { $w = 2; } elsif ($oq eq 'ww') { $w = 3; } elsif ($oq eq '66') { $p = 1; } elsif ($oq eq 'f3') { $p = 2; } elsif ($oq eq 'f2') { $p = 3; } elsif ($oq eq '0f') { $m = 1; } elsif ($oq eq '0f38') { $m = 2; } elsif ($oq eq '0f3a') { $m = 3; } elsif ($oq =~ /^m([0-9]+)$/) { $m = $1+0; } elsif ($oq eq 'nds' || $oq eq 'ndd') { if (!defined($oppos{'v'})) { die "$fname: $line: vex.$oq without 'v' operand\n"; } $has_nds = 1; } else { die "$fname: $line: undefined VEX subcode: $oq\n"; } } if (!defined($m) || !defined($w) || !defined($l) || !defined($p)) { die "$fname: $line: missing fields in VEX specification\n"; } if (defined($oppos{'v'}) && !$has_nds) { die "$fname: $line: 'v' operand without vex.nds or vex.ndd\n"; } push(@codes, defined($oppos{'v'}) ? 0260+$oppos{'v'} : 0270, $m, ($w << 3)+($l << 2)+$p); $prefix_ok = 0; } elsif ($op =~ /^\/drex([01])$/) { my $oc0 = $1; if (!defined($oppos{'d'})) { die "$fname: $line: DREX without a 'd' operand\n"; } # Note the use of *unshift* here, as opposed to *push*. # This is because NASM want this byte code at the start of # the instruction sequence, but the AMD documentation puts # this at (roughly) the position of the drex byte itself. # This allows us to match the AMD documentation and still # do the right thing. unshift(@codes, 0160+$oppos{'d'}+($oc0 ? 4 : 0)); } elsif ($op =~ /^(ib\,s|ib|ibx|ib\,w|iw|iwd|id|idx|iwdq|rel|rel8|rel16|rel32|iq|seg|ibw|ibd|ibd,s)$/) { if (!defined($oppos{'i'})) { die "$fname: $line: $op without 'i' operand\n"; } if ($op eq 'ib,s') { # Signed imm8 push(@codes, 014+$oppos{'i'}); } elsif ($op eq 'ib') { # imm8 push(@codes, 020+$oppos{'i'}); } elsif ($op eq 'ib,u') { # Unsigned imm8 push(@codes, 024+$oppos{'i'}); } elsif ($op eq 'iw') { # imm16 push(@codes, 030+$oppos{'i'}); } elsif ($op eq 'ibx') { # imm8 sign-extended to opsize push(@codes, 0274+$oppos{'i'}); } elsif ($op eq 'iwd') { # imm16 or imm32, depending on opsize push(@codes, 034+$oppos{'i'}); } elsif ($op eq 'id') { # imm32 push(@codes, 040+$oppos{'i'}); } elsif ($op eq 'idx') { # imm32 extended to 64 bits push(@codes, 0254+$oppos{'i'}); } elsif ($op eq 'iwdq') { # imm16/32/64, depending on opsize push(@codes, 044+$oppos{'i'}); } elsif ($op eq 'rel8') { push(@codes, 050+$oppos{'i'}); } elsif ($op eq 'iq') { push(@codes, 054+$oppos{'i'}); } elsif ($op eq 'rel16') { push(@codes, 060+$oppos{'i'}); } elsif ($op eq 'rel') { # 16 or 32 bit relative operand push(@codes, 064+$oppos{'i'}); } elsif ($op eq 'rel32') { push(@codes, 070+$oppos{'i'}); } elsif ($op eq 'seg') { push(@codes, 074+$oppos{'i'}); } elsif ($op eq 'ibw') { # imm16 that can be bytified if (!defined($s_pos)) { die "$fname: $line: $op without a +s byte\n"; } $codes[$s_pos] += 0144; push(@codes, 0140+$oppos{'i'}); } elsif ($op eq 'ibd') { # imm32 that can be bytified if (!defined($s_pos)) { die "$fname: $line: $op without a +s byte\n"; } $codes[$s_pos] += 0154; push(@codes, 0150+$oppos{'i'}); } elsif ($op eq 'ibd,s') { # imm32 that can be bytified, sign extended to 64 bits if (!defined($s_pos)) { die "$fname: $line: $op without a +s byte\n"; } $codes[$s_pos] += 0154; push(@codes, 0250+$oppos{'i'}); } $prefix_ok = 0; } elsif ($op eq '/is4') { if (!defined($oppos{'s'})) { die "$fname: $line: $op without 's' operand\n"; } if (defined($oppos{'i'})) { push(@codes, 0172, ($oppos{'s'} << 3)+$oppos{'i'}); } else { push(@codes, 0174, $oppos{'s'}); } $prefix_ok = 0; } elsif ($op =~ /^\/is4\=([0-9]+)$/) { my $imm = $1; if (!defined($oppos{'s'})) { die "$fname: $line: $op without 's' operand\n"; } if ($imm < 0 || $imm > 15) { die "$fname: $line: invalid imm4 value for $op: $imm\n"; } push(@codes, 0173, ($oppos{'s'} << 4) + $imm); $prefix_ok = 0; } elsif ($op =~ /^([0-9a-f]{2})\+s$/) { if (!defined($oppos{'i'})) { die "$fname: $line: $op without 'i' operand\n"; } $s_pos = scalar @codes; push(@codes, $oppos{'i'}, hex $1); $prefix_ok = 0; } elsif ($op =~ /^([0-9a-f]{2})\+c$/) { push(@codes, 0330, hex $1); $prefix_ok = 0; } elsif ($op =~ /^\\([0-7]+|x[0-9a-f]{2})$/) { # Escape to enter literal bytecodes push(@codes, oct $1); } else { die "$fname: $line: unknown operation: $op\n"; } } return @codes; }