/* nasm.h main header file for the Netwide Assembler: inter-module interface * * The Netwide Assembler is copyright (C) 1996 Simon Tatham and * Julian Hall. All rights reserved. The software is * redistributable under the licence given in the file "Licence" * distributed in the NASM archive. * * initial version: 27/iii/95 by Simon Tatham */ #ifndef NASM_H #define NASM_H #define NASM_MAJOR_VER 0 #define NASM_MINOR_VER 93 #define NASM_VER "0.93" #ifndef NULL #define NULL 0 #endif #ifndef FALSE #define FALSE 0 /* comes in handy */ #endif #ifndef TRUE #define TRUE 1 #endif #define NO_SEG -1L /* null segment value */ #define SEG_ABS 0x40000000L /* mask for far-absolute segments */ #ifndef FILENAME_MAX #define FILENAME_MAX 256 #endif /* * We must declare the existence of this structure type up here, * since we have to reference it before we define it... */ struct ofmt; /* * ------------------------- * Error reporting functions * ------------------------- */ /* * An error reporting function should look like this. */ typedef void (*efunc) (int severity, char *fmt, ...); /* * These are the error severity codes which get passed as the first * argument to an efunc. */ #define ERR_WARNING 0 /* warn only: no further action */ #define ERR_NONFATAL 1 /* terminate assembly after phase */ #define ERR_FATAL 2 /* instantly fatal: exit with error */ #define ERR_PANIC 3 /* internal error: panic instantly * and dump core for reference */ #define ERR_MASK 0x0F /* mask off the above codes */ #define ERR_NOFILE 0x10 /* don't give source file name/line */ #define ERR_USAGE 0x20 /* print a usage message */ /* * ----------------------- * Other function typedefs * ----------------------- */ /* * A label-lookup function should look like this. */ typedef int (*lfunc) (char *label, long *segment, long *offset); /* * And a label-definition function like this. */ typedef void (*ldfunc) (char *label, long segment, long offset, struct ofmt *ofmt, efunc error); /* * ----------------------------------------------------------- * Format of the `insn' structure returned from `parser.c' and * passed into `assemble.c' * ----------------------------------------------------------- */ /* * Here we define the operand types. These are implemented as bit * masks, since some are subsets of others; e.g. AX in a MOV * instruction is a special operand type, whereas AX in other * contexts is just another 16-bit register. (Also, consider CL in * shift instructions, DX in OUT, etc.) */ /* size, and other attributes, of the operand */ #define BITS8 0x00000001L #define BITS16 0x00000002L #define BITS32 0x00000004L #define BITS64 0x00000008L /* FPU only */ #define BITS80 0x00000010L /* FPU only */ #define FAR 0x00000020L /* grotty: this means 16:16 or */ /* 16:32, like in CALL/JMP */ #define NEAR 0x00000040L #define SHORT 0x00000080L /* and this means what it says :) */ #define SIZE_MASK 0x000000FFL /* all the size attributes */ #define NON_SIZE (~SIZE_MASK) #define TO 0x00000100L /* reverse effect in FADD, FSUB &c */ #define COLON 0x00000200L /* operand is followed by a colon */ /* type of operand: memory reference, register, etc. */ #define MEMORY 0x00204000L #define REGISTER 0x00001000L /* register number in 'basereg' */ #define IMMEDIATE 0x00002000L #define REGMEM 0x00200000L /* for r/m, ie EA, operands */ #define REGNORM 0x00201000L /* 'normal' reg, qualifies as EA */ #define REG8 0x00201001L #define REG16 0x00201002L #define REG32 0x00201004L #define FPUREG 0x01000000L /* floating point stack registers */ #define FPU0 0x01000800L /* FPU stack register zero */ #define MMXREG 0x00001008L /* MMX registers */ /* special register operands: these may be treated differently */ #define REG_SMASK 0x00070000L /* a mask for the following */ #define REG_ACCUM 0x00211000L /* accumulator: AL, AX or EAX */ #define REG_AL 0x00211001L /* REG_ACCUM | BITSxx */ #define REG_AX 0x00211002L /* ditto */ #define REG_EAX 0x00211004L /* and again */ #define REG_COUNT 0x00221000L /* counter: CL, CX or ECX */ #define REG_CL 0x00221001L /* REG_COUNT | BITSxx */ #define REG_CX 0x00221002L /* ditto */ #define REG_ECX 0x00221004L /* another one */ #define REG_DX 0x00241002L #define REG_SREG 0x00081002L /* any segment register */ #define REG_CS 0x01081002L /* CS */ #define REG_DESS 0x02081002L /* DS, ES, SS (non-CS 86 registers) */ #define REG_FSGS 0x04081002L /* FS, GS (386 extended registers) */ #define REG_CDT 0x00101004L /* CRn, DRn and TRn */ #define REG_CREG 0x08101004L /* CRn */ #define REG_CR4 0x08101404L /* CR4 (Pentium only) */ #define REG_DREG 0x10101004L /* DRn */ #define REG_TREG 0x20101004L /* TRn */ /* special type of EA */ #define MEM_OFFS 0x00604000L /* simple [address] offset */ /* special type of immediate operand */ #define UNITY 0x00802000L /* for shift/rotate instructions */ /* * Next, the codes returned from the parser, for registers and * instructions. */ enum { /* register names */ R_AH = 1, R_AL, R_AX, R_BH, R_BL, R_BP, R_BX, R_CH, R_CL, R_CR0, R_CR2, R_CR3, R_CR4, R_CS, R_CX, R_DH, R_DI, R_DL, R_DR0, R_DR1, R_DR2, R_DR3, R_DR6, R_DR7, R_DS, R_DX, R_EAX, R_EBP, R_EBX, R_ECX, R_EDI, R_EDX, R_ES, R_ESI, R_ESP, R_FS, R_GS, R_MM0, R_MM1, R_MM2, R_MM3, R_MM4, R_MM5, R_MM6, R_MM7, R_SI, R_SP, R_SS, R_ST0, R_ST1, R_ST2, R_ST3, R_ST4, R_ST5, R_ST6, R_ST7, R_TR3, R_TR4, R_TR5, R_TR6, R_TR7, REG_ENUM_LIMIT }; enum { /* instruction names */ I_AAA, I_AAD, I_AAM, I_AAS, I_ADC, I_ADD, I_AND, I_ARPL, I_BOUND, I_BSF, I_BSR, I_BSWAP, I_BT, I_BTC, I_BTR, I_BTS, I_CALL, I_CBW, I_CDQ, I_CLC, I_CLD, I_CLI, I_CLTS, I_CMC, I_CMP, I_CMPSB, I_CMPSD, I_CMPSW, I_CMPXCHG, I_CMPXCHG8B, I_CPUID, I_CWD, I_CWDE, I_DAA, I_DAS, I_DB, I_DD, I_DEC, I_DIV, I_DQ, I_DT, I_DW, I_EMMS, I_ENTER, I_EQU, I_F2XM1, I_FABS, I_FADD, I_FADDP, I_FBLD, I_FBSTP, I_FCHS, I_FCLEX, I_FCMOVB, I_FCMOVBE, I_FCMOVE, I_FCMOVNB, I_FCMOVNBE, I_FCMOVNE, I_FCMOVNU, I_FCMOVU, I_FCOM, I_FCOMI, I_FCOMIP, I_FCOMP, I_FCOMPP, I_FCOS, I_FDECSTP, I_FDISI, I_FDIV, I_FDIVP, I_FDIVR, I_FDIVRP, I_FENI, I_FFREE, I_FIADD, I_FICOM, I_FICOMP, I_FIDIV, I_FIDIVR, I_FILD, I_FIMUL, I_FINCSTP, I_FINIT, I_FIST, I_FISTP, I_FISUB, I_FISUBR, I_FLD, I_FLD1, I_FLDCW, I_FLDENV, I_FLDL2E, I_FLDL2T, I_FLDLG2, I_FLDLN2, I_FLDPI, I_FLDZ, I_FMUL, I_FMULP, I_FNOP, I_FPATAN, I_FPREM, I_FPREM1, I_FPTAN, I_FRNDINT, I_FRSTOR, I_FSAVE, I_FSCALE, I_FSETPM, I_FSIN, I_FSINCOS, I_FSQRT, I_FST, I_FSTCW, I_FSTENV, I_FSTP, I_FSTSW, I_FSUB, I_FSUBP, I_FSUBR, I_FSUBRP, I_FTST, I_FUCOM, I_FUCOMI, I_FUCOMIP, I_FUCOMP, I_FUCOMPP, I_FXAM, I_FXCH, I_FXTRACT, I_FYL2X, I_FYL2XP1, I_HLT, I_ICEBP, I_IDIV, I_IMUL, I_IN, I_INC, I_INSB, I_INSD, I_INSW, I_INT, I_INT1, I_INT01, I_INT3, I_INTO, I_INVD, I_INVLPG, I_IRET, I_IRETD, I_IRETW, I_JCXZ, I_JECXZ, I_JMP, I_LAHF, I_LAR, I_LDS, I_LEA, I_LEAVE, I_LES, I_LFS, I_LGDT, I_LGS, I_LIDT, I_LLDT, I_LMSW, I_LOADALL, I_LODSB, I_LODSD, I_LODSW, I_LOOP, I_LOOPE, I_LOOPNE, I_LOOPNZ, I_LOOPZ, I_LSL, I_LSS, I_LTR, I_MOV, I_MOVD, I_MOVQ, I_MOVSB, I_MOVSD, I_MOVSW, I_MOVSX, I_MOVZX, I_MUL, I_NEG, I_NOP, I_NOT, I_OR, I_OUT, I_OUTSB, I_OUTSD, I_OUTSW, I_PACKSSDW, I_PACKSSWB, I_PACKUSWB, I_PADDB, I_PADDD, I_PADDSB, I_PADDSW, I_PADDUSB, I_PADDUSW, I_PADDW, I_PAND, I_PANDN, I_PCMPEQB, I_PCMPEQD, I_PCMPEQW, I_PCMPGTB, I_PCMPGTD, I_PCMPGTW, I_PMADDWD, I_PMULHW, I_PMULLW, I_POP, I_POPA, I_POPAD, I_POPAW, I_POPF, I_POPFD, I_POPFW, I_POR, I_PSLLD, I_PSLLQ, I_PSLLW, I_PSRAD, I_PSRAW, I_PSRLD, I_PSRLQ, I_PSRLW, I_PSUBB, I_PSUBD, I_PSUBSB, I_PSUBSW, I_PSUBUSB, I_PSUBUSW, I_PSUBW, I_PUNPCKHBW, I_PUNPCKHDQ, I_PUNPCKHWD, I_PUNPCKLBW, I_PUNPCKLDQ, I_PUNPCKLWD, I_PUSH, I_PUSHA, I_PUSHAD, I_PUSHAW, I_PUSHF, I_PUSHFD, I_PUSHFW, I_PXOR, I_RCL, I_RCR, I_RDMSR, I_RDPMC, I_RDTSC, I_RESB, I_RESD, I_RESQ, I_REST, I_RESW, I_RET, I_RETF, I_RETN, I_ROL, I_ROR, I_RSM, I_SAHF, I_SAL, I_SALC, I_SAR, I_SBB, I_SCASB, I_SCASD, I_SCASW, I_SGDT, I_SHL, I_SHLD, I_SHR, I_SHRD, I_SIDT, I_SLDT, I_SMSW, I_STC, I_STD, I_STI, I_STOSB, I_STOSD, I_STOSW, I_STR, I_SUB, I_TEST, I_UMOV, I_VERR, I_VERW, I_WAIT, I_WBINVD, I_WRMSR, I_XADD, I_XCHG, I_XLATB, I_XOR, I_CMOVcc, I_Jcc, I_SETcc }; enum { /* condition code names */ C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE, C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP, C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z }; /* * Note that because segment registers may be used as instruction * prefixes, we must ensure the enumerations for prefixes and * register names do not overlap. */ enum { /* instruction prefixes */ PREFIX_ENUM_START = REG_ENUM_LIMIT, P_A16 = PREFIX_ENUM_START, P_A32, P_LOCK, P_O16, P_O32, P_REP, P_REPE, P_REPNE, P_REPNZ, P_REPZ, P_TIMES }; enum { /* extended operand types */ EOT_NOTHING, EOT_DB_STRING, EOT_DB_NUMBER }; typedef struct { /* operand to an instruction */ long type; /* type of operand */ int addr_size; /* 0 means default; 16; 32 */ int basereg, indexreg, scale; /* registers and scale involved */ long segment; /* immediate segment, if needed */ long offset; /* any immediate number */ long wrt; /* segment base it's relative to */ } operand; typedef struct extop { /* extended operand */ struct extop *next; /* linked list */ long type; /* defined above */ char *stringval; /* if it's a string, then here it is */ int stringlen; /* ... and here's how long it is */ long segment; /* if it's a number/address, then... */ long offset; /* ... it's given here ... */ long wrt; /* ... and here */ } extop; #define MAXPREFIX 4 typedef struct { /* an instruction itself */ char *label; /* the label defined, or NULL */ int prefixes[MAXPREFIX]; /* instruction prefixes, if any */ int nprefix; /* number of entries in above */ int opcode; /* the opcode - not just the string */ int condition; /* the condition code, if Jcc/SETcc */ int operands; /* how many operands? 0-3 */ operand oprs[3]; /* the operands, defined as above */ extop *eops; /* extended operands */ int times; /* repeat count (TIMES prefix) */ int forw_ref; /* is there a forward reference? */ } insn; /* * ------------------------------------------------------------ * The data structure defining an output format driver, and the * interfaces to the functions therein. * ------------------------------------------------------------ */ struct ofmt { /* * This is a short (one-liner) description of the type of * output generated by the driver. */ char *fullname; /* * This is a single keyword used to select the driver. */ char *shortname; /* * This procedure is called at the start of an output session. * It tells the output format what file it will be writing to, * what routine to report errors through, and how to interface * to the label manager if necessary. It also gives it a chance * to do other initialisation. */ void (*init) (FILE *fp, efunc error, ldfunc ldef); /* * This procedure is called by assemble() to write actual * generated code or data to the object file. Typically it * doesn't have to actually _write_ it, just store it for * later. * * The `type' argument specifies the type of output data, and * usually the size as well: its contents are described below. */ void (*output) (long segto, void *data, unsigned long type, long segment, long wrt); /* * This procedure is called once for every symbol defined in * the module being assembled. It gives the name and value of * the symbol, in NASM's terms, and indicates whether it has * been declared to be global. Note that the parameter "name", * when passed, will point to a piece of static storage * allocated inside the label manager - it's safe to keep using * that pointer, because the label manager doesn't clean up * until after the output driver has. * * Values of `is_global' are: 0 means the symbol is local; 1 * means the symbol is global; 2 means the symbol is common (in * which case `offset' holds the _size_ of the variable). * Anything else is available for the output driver to use * internally. */ void (*symdef) (char *name, long segment, long offset, int is_global); /* * This procedure is called when the source code requests a * segment change. It should return the corresponding segment * _number_ for the name, or NO_SEG if the name is not a valid * segment name. * * It may also be called with NULL, in which case it is to * return the _default_ section number for starting assembly in. * * It is allowed to modify the string it is given a pointer to. * * It is also allowed to specify a default instruction size for * the segment, by setting `*bits' to 16 or 32. Or, if it * doesn't wish to define a default, it can leave `bits' alone. */ long (*section) (char *name, int pass, int *bits); /* * This procedure is called to modify the segment base values * returned from the SEG operator. It is given a segment base * value (i.e. a segment value with the low bit set), and is * required to produce in return a segment value which may be * different. It can map segment bases to absolute numbers by * means of returning SEG_ABS types. */ long (*segbase) (long segment); /* * This procedure is called to allow the output driver to * process its own specific directives. When called, it has the * directive word in `directive' and the parameter string in * `value'. It is called in both assembly passes, and `pass' * will be either 1 or 2. * * This procedure should return zero if it does not _recognise_ * the directive, so that the main program can report an error. * If it recognises the directive but then has its own errors, * it should report them itself and then return non-zero. It * should also return non-zero if it correctly processes the * directive. */ int (*directive) (char *directive, char *value, int pass); /* * This procedure is called before anything else - even before * the "init" routine - and is passed the name of the input * file from which this output file is being generated. It * should return its preferred name for the output file in * `outfunc'. Since it is called before the driver is properly * initialised, it has to be passed its error handler * separately. * * This procedure may also take its own copy of the input file * name for use in writing the output file: it is _guaranteed_ * that it will be called before the "init" routine. * * The parameter `outname' points to an area of storage * guaranteed to be at least FILENAME_MAX in size. */ void (*filename) (char *inname, char *outname, efunc error); /* * This procedure is called after assembly finishes, to allow * the output driver to clean itself up and free its memory. * Typically, it will also be the point at which the object * file actually gets _written_. * * One thing the cleanup routine should always do is to close * the output file pointer. */ void (*cleanup) (void); }; /* * values for the `type' parameter to an output function. Each one * must have the actual number of _bytes_ added to it. * * Exceptions are OUT_RELxADR, which denote an x-byte relocation * which will be a relative jump. For this we need to know the * distance in bytes from the start of the relocated record until * the end of the containing instruction. _This_ is what is stored * in the size part of the parameter, in this case. * * Also OUT_RESERVE denotes reservation of N bytes of BSS space, * and the contents of the "data" parameter is irrelevant. * * The "data" parameter for the output function points to a "long", * containing the address in question, unless the type is * OUT_RAWDATA, in which case it points to an "unsigned char" * array. */ #define OUT_RAWDATA 0x00000000UL #define OUT_ADDRESS 0x10000000UL #define OUT_REL2ADR 0x20000000UL #define OUT_REL4ADR 0x30000000UL #define OUT_RESERVE 0x40000000UL #define OUT_TYPMASK 0xF0000000UL #define OUT_SIZMASK 0x0FFFFFFFUL /* * ----- * Other * ----- */ /* * This is a useful #define which I keep meaning to use more often: * the number of elements of a statically defined array. */ #define elements(x) ( sizeof(x) / sizeof(*(x)) ) #endif